Abstract
We study the principal dynamical aspects of the cyclic automata on finite graphs.
We give bounds in the transient time and periodicity depending essentially on the graph structure. It is important to point out that there exist non-polynomial periods \(e^\Omega (\sqrt {\left| V \right|} )\), where V denotes the number of sites in the graph.
To obtain these results we introduce some mathematical tool as continuity, firing paths, jump and efficiency, which are interesting by themselves because they give a strong mathematical framework to study such discrete dynamical systems.
Partially supported by grant Fundación Andes (M.M.), EC project in applied Mathematics(E.G) and Fondecyt 194520 (E.G.).
Preview
Unable to display preview. Download preview PDF.
References
J. P. Allouche and Ch. Reder. Oscillations spatio-temporelles engendrées par un automate cellulaire. Disc. Appl. Maths, pages 215–254, 1984.
M. Bramson and D. Griffeath. Flux and fixation in cyclic particle system. Ann. Probability, 17(1):26–45, 1989.
Robert Fisch. Cyclic cellular automata and related processes. Physica D, 45:19–25, 1990.
E. Goles and S. Martínez. Neural and Automata Networks. Kluwer Pub., 1990.
J. M. Greenberg, B. D. Hassard and S.P. Hastings. Patterns formation and periodic structures in systems modeled by reaction-diffusion equations. Bull. Amer. Math. Soc., 34(3):515–523, 1978.
J. M. Greenberg, C. Greene and S. Hastings C. A combinatorial problem arising in the study of reaction-diffusion equations. SIAM J. on Alg. and Disc. Maths, 1(1):34–42, 1980.
J.M. Greenberg and S.P. Hasting. Spatial patterns for discrete models of diffusion in excitable media. SIAM Journal Appl. Maths., 34(3):515–523, 1978.
D. Griffeath. Excitable Cellular Automata. Proc of workshop on cellular automata(center for scientific computing, Espoo, Finland), 1991.
G. H. Hardy and E. M. Wright. An introduction to the Theory of Numbers Oxford University Press, New York, fifth edition, 1979.
R. Shingai. Maximum period on 2-dimensional uniform neural networks. Inf. and Control, 41:324–341, 1979.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Matamala, M., Goles, E. (1995). Cyclic automata networks on finite graphs. In: Baeza-Yates, R., Goles, E., Poblete, P.V. (eds) LATIN '95: Theoretical Informatics. LATIN 1995. Lecture Notes in Computer Science, vol 911. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59175-3_105
Download citation
DOI: https://doi.org/10.1007/3-540-59175-3_105
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-59175-7
Online ISBN: 978-3-540-49220-7
eBook Packages: Springer Book Archive