Skip to main content

Cyclic automata networks on finite graphs

  • Conference paper
  • First Online:
LATIN '95: Theoretical Informatics (LATIN 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 911))

Included in the following conference series:

  • 158 Accesses

Abstract

We study the principal dynamical aspects of the cyclic automata on finite graphs.

We give bounds in the transient time and periodicity depending essentially on the graph structure. It is important to point out that there exist non-polynomial periods \(e^\Omega (\sqrt {\left| V \right|} )\), where V denotes the number of sites in the graph.

To obtain these results we introduce some mathematical tool as continuity, firing paths, jump and efficiency, which are interesting by themselves because they give a strong mathematical framework to study such discrete dynamical systems.

Partially supported by grant Fundación Andes (M.M.), EC project in applied Mathematics(E.G) and Fondecyt 194520 (E.G.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. P. Allouche and Ch. Reder. Oscillations spatio-temporelles engendrées par un automate cellulaire. Disc. Appl. Maths, pages 215–254, 1984.

    Google Scholar 

  2. M. Bramson and D. Griffeath. Flux and fixation in cyclic particle system. Ann. Probability, 17(1):26–45, 1989.

    Google Scholar 

  3. Robert Fisch. Cyclic cellular automata and related processes. Physica D, 45:19–25, 1990.

    Google Scholar 

  4. E. Goles and S. Martínez. Neural and Automata Networks. Kluwer Pub., 1990.

    Google Scholar 

  5. J. M. Greenberg, B. D. Hassard and S.P. Hastings. Patterns formation and periodic structures in systems modeled by reaction-diffusion equations. Bull. Amer. Math. Soc., 34(3):515–523, 1978.

    Google Scholar 

  6. J. M. Greenberg, C. Greene and S. Hastings C. A combinatorial problem arising in the study of reaction-diffusion equations. SIAM J. on Alg. and Disc. Maths, 1(1):34–42, 1980.

    Google Scholar 

  7. J.M. Greenberg and S.P. Hasting. Spatial patterns for discrete models of diffusion in excitable media. SIAM Journal Appl. Maths., 34(3):515–523, 1978.

    Google Scholar 

  8. D. Griffeath. Excitable Cellular Automata. Proc of workshop on cellular automata(center for scientific computing, Espoo, Finland), 1991.

    Google Scholar 

  9. G. H. Hardy and E. M. Wright. An introduction to the Theory of Numbers Oxford University Press, New York, fifth edition, 1979.

    Google Scholar 

  10. R. Shingai. Maximum period on 2-dimensional uniform neural networks. Inf. and Control, 41:324–341, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ricardo Baeza-Yates Eric Goles Patricio V. Poblete

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Matamala, M., Goles, E. (1995). Cyclic automata networks on finite graphs. In: Baeza-Yates, R., Goles, E., Poblete, P.V. (eds) LATIN '95: Theoretical Informatics. LATIN 1995. Lecture Notes in Computer Science, vol 911. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59175-3_105

Download citation

  • DOI: https://doi.org/10.1007/3-540-59175-3_105

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59175-7

  • Online ISBN: 978-3-540-49220-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics