
Learning Disjunctive Normal Forms
in a Dual Classifier System

(Extended Abstract)

Cathy Escazut Philippe Collard

University of Nice-Sophia Antipolis-CNRS, Laboratory I3S, Bs 4
250 Av. Albert Einstein, Sophia Antipohs, 06560 Valbonne - - FRANCE

{escazut ,pc}@unice .fr

Abst rac t . Genetics-Based Machine Learning systems suffer from many
problems as representational weaknesses. We propose to introduce more
general structures we used to learn disjunctive normal forms. Results
show how our model can be used to discover and maintain complete
classifier solutions.

1 Genetics-Based Machine Learning

Genetics-Based Machine Learning systems use Genetic Algorithms (GAs) as dis-
covery heuristic. Such algorithms modify a population of potential solutions, us-
ing operators stemmed on natural genetics: reproduction, crossover, mutation.
Learning Classifier System (LCS) implementations have shown the potential of
this paradigm for machine learning, and also some limitations. LCSs automati-
cally discover rules to perform tasks [2]. Each classifier is an "if-then" rule, with
a condition part and an action part. New classifiers are generated by genetic
operators applied to existing rules. Each condition part of a classifier, also called
schema or hyperplane, is a string of length A over the alphabet {0,1,#}, where #
is a wildcard character. Classifier representations appear to be a simple, effective
method for implementing computational systems. However, many subtleties arise
within the representation [5]. Indeed, disjunctions are hardly represented with a
single rule. Consequently, the solution set and the search effort are increased.

2 Relational Schemata

In order to allow a more natural expression of solutions we propose to consider
not only the value on each locus but also the relations (equality and inequality)
between the values on different locus. We thus define relational schemata, called
[l-schema, as a string built over the alphabet {X,X',#} 1. As standard schema
only express values on the different locus, we call them P-schemata or positional
schemata. We are now going to study R-schemata in relation to properties Rad-
cliffe [4] thinks requisite for a useful representation. Our aim is not to show
R-schemata are better than P-schemata but to show they are complementary.

1 The two symbols X and X' represent two complementary variables.

272

The closure: The intersection of any pair of compatible 2 schemata should
itself be a schema. This property allows search to be gradually refined. Obvi-
ously, P-schemata and corroborating 3 R-schemata possess the closure property.
Whereas the intersection of two non-corroborating R-schema is not a R-schema.
In this sense, we say that R-schemata are semi-closed for intersection.

The respect : Crossing two members of any schema should produce another
member of that schema. This property is necessary to keep good schemata.
Crossover operators respect P-schemata but not R-schemata.

The p rope r a ssor tment : Given instances of two compatible schemata, it
should be possible to cross them to produce a child which is an instance of both
schemata. This property allows the recombination of usefull schemata. Only
uniform crossovers properly assort P-schemata, but not R-schemata.

Using R-schemata, we are able to represent more hyperplanes. For instance,
the R-schema XX represents the subset {00,11]. But all the hyperplanes, for
instance {011,000}, are not representable. We are thus going to extend the ex-
pressiveness of a schema defining a RP-schema as a string built over the al-
phabet {0,1,X,X',#]. So, a RP-schema can be obtained by the intersection of
a R-schema and a P-schema. For instance, the intersection of 0## and #XX is
the RP-schema 0XX.R-schemata don't possess the requisite properties and the

use of variables increases the size of the space. That is why R-schemata are not
explicitly used in LCS. Thus, a solution is to implement the notion of R-schema
in an implicit way.

3 I m p l e m e n t a t i o n o f R e l a t i o n a l S c h e m a t a

The aim of a implicit implementation of R-schemata is to keep the alphabet
{0,1,#} unchanged and to have the properties possessed. A string, in our system,
will consist of two parts: the first one, a single bit called head-bit, contains the
information needed for understanding the rest of the string. More formally, let
the search space be 12={0,1} A, and the dual space be <12>={0,1}x12. We define
a transcription function, T, from the dual space <12> to the basic space 12 by
Vw E 12 v(Ow) = w and v(lw) = 0J' where w and w' are complementary strings.
It is worth noticing that different strings may be interpreted in the same way.
For instance the two conditions 0_0101 and 11010 are both decoded as 0101. We
call them dual strings. Moreover, when the head-bit is undetermined the use of a
variable is requisite. For instance, the P-schema #_01#0 becomes the R-schema
XX'#X. Does implicit R-schemata possess all the properties stated previously?

The respect : A GA applied on <S/>, through a choice between dual strings,
allows R-schemata of 12 to be respected. For example, the set of the members
of R-schema X#X' is not closed, but a corresponding one in <~2>, for instance
{0_0001,0011,1011,1001}, is the P-schema #_0#1 possessing the respect property.

2 Two schemata are compatible if there exists a string being a member of both.
3 Two compatible R-schemata are corroborating if they share at least one locus with

variable.

273

T h e p r o p e r a s s o r t m e n t : A GA applied on <Y2> through a choice between
dual strings, allows a uniform crossovers to properly assort R-schemata. For
example, let us consider the compatible R-schemata X#X' and #XX and be 001
and 000 two members. If we represent them in </2> by respectively 0001 and
_1 111, a uniform crossover breeds 0011 in the intersection XX'X'.

T h e e r g o d i c i t y : It should be possible through a finite sequence of application
of genetic operators, to access any point in the search space. This property is the
"raison d'etre" of the mutation. For two ,~-strings of/2, at least A mutations are
needed to reach a point, while in <t2>, this number is smaller than int(~) + 1.

A RP-schema is the intersection of a P-schema and a R-schema. So it can
be represented by a conjunction [a, b] where a is a P-schema of Y2(A) and b a
P-schema of t2()~+l) 4. The condition is satisfied when the two fields are satisfied
[3]. Another way to implement RP-sehemata, is to use a mask: the condition is
composed with a mask (A bits), and with a P-schema of Y2(A+I). Only the loci
of the P-schema corresponding to a 1 in the mask will be influenced by the head
bit. For instance the RP-schema 0XX can be implemented by [011, #_000].

4 Learning disjunctive normal forms

To validate our proposition, we applied the algorithm on a similarity-based learn-
ing problem: the LCS has to learn a concise disjunctive normal form [6]. Each
rule represents a conjunction of attributes. A set of classifiers represents a dis-
junction of such conjunctions. We test our system on two well-known problems:
the XOR problem and the multiplexer function. The LCS used, is an adaptation
of the one described by D.E. Goldberg [2]. The results obtained do not represent
our "best efforts"; rather, they are intended as comparative results.

T h e X O R P r o b l e m

Schemata in the XOR problem are highly epistatic. LCSs have difficulties
in learning such problems. In both cases (dual and basic approach), the initial
population is randomly created with 22 classifiers. Results show that our system
behaves in a better way than a standard LCS: approximately beyond cycle 2000,
the solution set is found out: the final population contains 2 dominating classifiers
(#_00:0 and #01:1). The undetermined head-bit leads to the use of variables
(XX:0 and XX':I) and so the use of less specialized classifiers. While the standard
LCSs needs 5000 cycles to discover the four totally specialized classifiers: 00:0,
01:1, 10:1 and 11:05. The dual learning is realized at an upper level of abstraction.

T h e M u l t i p l e x e r F u n c t i o n

Two multiplexer functions, like the one described in [2], have been tested
with different goals. The first one was to make good RP-schemata to appear in
the population and the second one as to improve the success rate. In both trials,
two fields compose the condition of the classifiers: the rightmost bits are for the

4 Nervertheless, the head-bit of b must be undetermined and the schema a must be
undetermined on the specified locus of b.

5 The system has no other possibility than learning the solution by heart.

274

address lines, and the remaining ones are for the data. A head-bit is added in
the dual approach. The action part represents the system's answer.

In the 6-line multiplexer, 2 bits are for the address and 4 for the data. The
l~P-schemata are expressed using a mask. For instance, the rule X###11:X will
be represented by the string: [111100, #0###11]:0. Moreover, in this case, the
head-bit has to influence the action in order to make variables emerged. The
initial population is randomly created with 100 classifiers. The GA is invoked
every 2500 iterations, and 20% of the current population undergoes genetic oper-
ators. After 50,000 iterations the minimal solution set 6 dominates into the dual
population, while in the standard one 8 rules are needed. Once more, the use of
R-schemata allowed to learn at an upper level of abstraction.

We also test our system on an 11-line multiplexer (3 lines for the address
and 8 for the data), in order to improve the success rate of the LCS. The initial
population is randomly created with 300 classifiers. The GA is invoked every
5000 iterations, and 20% of the current population undergoes genetic operators.
The performance average of the two systems increases from the beginning, but
the one of our LCS evolves faster. Indeed, since the cycle 35,000 the average is
above 80%, against 71% for standard LCS. At the end, it reaches 83% with our
system, while it is only near 72% with standard LCS.

5 C o n c l u s i o n

This paper has presented a new LCS based on general structures called relational
schemata. To each string is associated its bitwise complement. So we introduce
in the population dual strings having the same meaning. We have shown how
minimal classifier sets can be found using implicit relationl schemata. Further
work is aimed at applying the dual LCS to more difficult tasks.

R e f e r e n c e s

1. P. Collard, J.P. Aurand. DGA: An efficient genetic algorithm. In ECAI'9~: Euro-
pean Conference on Artificial Intelligence, 1994.

2. D. E. Goldberg. Genetic algorithms in search, optimization, and machine learning.
Reading, MA : Addison-Wesley, 1989.

3. J. H. Holland. Escaping brittleness : The possibilities of general purpose learning
algorithms appfied to parallel rule-based systems. In Machine Learning II. Morgan
Kaufmann, 1986.

4. N. J. Radcliffe. Forma analysis and random respectful recombination. In Proceed-
ings of the Fourth International Conference on Genetic Algorithms, San Mateo, CA,
1991. Morgan Kaufmann.

5. D. Scliuurmans, J. Schaeffer. Representational difficulties with classifier systems.
In Proceedings of the Third International Conference on Genetic Algorithms, 1989.

6. S. W. Wilson. Classifier systems and the animat problem. Machine Learning,
2(3),1987.

6 {X### ll:X, # X # # IO:X, # # X # 01:X, ###XOO:X}.

