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Abstract. This paper proposes an extension of Reinforcement Learning (RL) 
to acquire co-operation among agents. The idea is to learn filtered payoff that 
reflects a global objective function but does not require mass commtmication 
among agents. It is shown that the acquisition of two typical co-operation tasks 
is realised by preparing simple filter functions: an averaging filter for co- 
operative tasks and an enhancement filter for deadlock prevention tasks. The 
performance of these systems was tested through computer simulations of n- 
persons prisoner's dilemma, and a traffic control problem. 

1 Introduction 
Reinforcement Learning (RL) is widely used in robot learning fields [1][2]. One 
reason for the feasibility to robotic applications is that it requires minimum 
information to develop policies; only state observation and real-valued payoff 
feedback are necessary, and these two types of information are always guaranteed in 
re,d-world robotic applications. This paper is aiming at extending single RL to 
acquire co-operation among multiple-agents, preserving the simplicity of RL that it 
can learn from minimal information. 

The approach is to acquire global co-operation from locally exchanging payoff 
signals. Since communication of payoff is realised by asynchronously broadcasting 
and listening to scalar values, it is a minimal realistic way of co-ordinating co- 
operation. The main idea proposed here is to apply a filter to gathered payoffs to 
generate a pa);off that will guide the agent to behave co-operatively. It is shown that 
spatial averaging and enhancement filters will give global co-operation over agents, 
and that the type of acquired co-operation is predicted by the type of the filter. 

2 Related Works 
Achieving co-operation mnong robots is actively studied in the field of Decentralised 
AI (for exmnple[3]) and Artificial Life (for example [4]). Although there ,are some 
works that use RL to acquire robot co-operation (for example [5] [6]), these works do 
not include communication amongst agents, which is necessary to learn complicated 
interactions, or they require huge real-time communication capabilities so that 
physical implementation into distributed robots is difficult. This paper is the first 
attempt to realise communication-based co-operative RL under realistic constraints. 
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The idea of applying filter to payoff has been widely used in RL Temporal filters, 
such as TD algorithms [1], are well studied. However, spatial filters ,amongst agents, 
such as the one proposed in this paper, have not been investigated. The learning of 
an iterated N-persons prisoner's dilemma game is employed for testing co-operative 
RL, since it is one of the commonly used co-operative problems and there are many 
GA based approaches to acquire co-operation such as [7]. 

3 Payoff Filters 

We define a minimal co-operative agent (robot) 
tollowing trial-cormnunication-learn cycle: 

1. 

2. 

3. 

4. 

5. 

6. 

as the one that performs the 

get sensory data as a state vector, 

perform an action according to the state, 

evaluate irmnediate local payoff r ,  where i is the index of an agent, 

broadcast the normalised payoff to neighbours, 

monitor the broadcasted message, and 

apply filter to the broadcasted message, and invoke RL by using the filtered 
payoff. 

The objectives of co-operation ,are generally classified into two types: one is to 
maximise one common objective function, ,and ,another is to maximise each objective 
function where they interfere with each other as the result of sharing an 
environment. 

For the former type of co-operation, we consider the case where the global 

objective function is a summation of local payoffs ~ v i  r~ and where each agent has 

an identical local payoff at the state where the global function is maximised. In this 
case, the payoff filter should easily be implemented by averaging local payoffs ,as 

r '= y~wrj / N ,  (1) 

where r' is the payoff given to RL and N is the number of neighbouring agents. It 
is proven that if neighbours of agents overlap with each other, the filter maximises 
the global objective function. 

A more important case is the latter type of co-operation. We deal with the case 
where each agent's objective is to achieve its goals one after another, that are 
specified as the tops of a payoff landscape. In this case, a dead-lock over many 
agents may take place at states where climbing up directions for payoff functions 
differs for each agent (Fig.l). Thus, to co-operate corresponds to exiting this dead- 
lock situation. This is achieved by encouraging one agent to achieve its goal, ,and the 
other agents to give way. Representing this strategy into a payoff filter, it should be 
written as the following spatial enhancement filter: 



321 

r, {i+@l' if(Zvjrj/N)<r; 
-@1, otherwise, 

where ~ is a positive enhancement factor. 
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Fig. l. Deadlock on two agents. 
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Fig. 2. Score curve by the simulation 1. 

4 Simulation 1: Learning N-Persons Prisoners Dilemmaa 

This experiment was conducted to illustrate the effect of an averaging filter (Eq.1). 
Each agent is allocated a cell in a NxN lattice. Each agent performs either an action 
0 (co-operative) or 1 (selfish). Action 0 gives score 10/N 2 to the agent whereas 
action 1 gives score 3 0 / N  2 to the agent ,and subtracts score I O / N  2 from all the 
agents. The objective is to maximise the total scores over agents. 

Three simulations were conducted: (1) single agent RL, (2) average filtered RL 
with 4 overlapping neighbours, and (3) average filtered RL with 4 isolated 
neighbours. TD(0) was used for the RL algorithm ,and its learning parameter was set 
to 0.02. Fig.2 shows the percentage of the gloNd score plotted against iteration 
times. It is shown that the overlapping average filtered RL could achieve co- 
operation. It should be pointed out that the convergence speed will be faster if the 
size of the scope of the neighbourhood is relatively bigger. 

5 Simulation 2: Conflict Resolution in Traffic Signal Control 

To test the enhancement filter (Eq.2), a simple traffic control simulation was 
employed, where each traffic signal was controlled by RL. It should be noted that an 
optimisation of the traffic flow at a junction may sometimes cause congestion at the 
other junctions. This is the typical deadlocking situation ,and it is therefore a good 
ex,'unple of testing the ability of conflict resolution. 

The simulation contains 3x3 lattice roads. A car arrives at the edge of randomly 
chosen road approxhnately once every 2 seconds, ,and it runs 33km/h. At a junction, 
it decides its new direction according to the probability ,associated with that junction. 
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The number of cars that are allowed to stay on the roads is limited, by which we can 
specify the traffic density. More precise descriptions are found in [7]. 

Each junction is associated with an agent that controls two phases (go or stop) of 
its 4 signals. At each unit time (around every 15 seconds), it decides whether to 
change its signal phase or not, according to the output from RL. The state provided 
to RL is the signal phases of its 4-neighbouring junctions. Immediate local payoff is 
provided by the multiplication of -1 by the number of cars waiting at the junction 
during a unit time. TD(0) with learning factor 0.5 was used for RL. 

Pure random controllers, single RL controllers, and enhancement faltered RL 
controllers colmnunicating with 4 neighbourhood, were simulated. Table 1 
summarises the degree of congestion during 40 minutes in simulation time. The 
number in the table shows total time during which cars were waiting for signals. Tile 
number in parenthesis shows the degree of improvement over random controllers. It 
is shown that the enhancement filter improved the quality of control over a wide 
range of congestion. From Fig.3, it is shown that the filter is parameter ~ sensitive, 

and the appropriate c~ lies around 1.5. 

Table 1. Total waiting time (minutes) 180 
over 40 minutes simulation. 
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Fig. 3. Performance improvement 
against enhancement parameter. 
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