Skip to main content

Using connection method in modal logics: Some advantages

  • Modal Logic
  • Conference paper
  • First Online:
Theorem Proving with Analytic Tableaux and Related Methods (TABLEAUX 1995)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 918))

Abstract

For mechanizing modal logics, it is possible to distinguish the approach by translation and the direct approach. In our previous works, we advocate the use of translations to find a proof with a prover dedicated to the target logics but we introduced the notion of backward translation in order to present the proofs in the source logics. In this paper, we show that the connection method is well suited for the backward translation of proofs when first-order serial modal logics are involved. We use Wallen's matrix method for modal logics (extending Bibel's connection method) and Petermann's connection method for order-sorted logics with equational theories. We state that it is possible to build from a connection proof in the target logic a connection proof in the source logic in polynomial time with respect to the size of the proof in the target logic. Such a translation provides interesting insights to compare the approach by translation and the direct approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Auffray and P. Enjalbert. Modal theorem proving: an equational viewpoint. In IJCAI-11, Detroit, pages 441–445, August 1989.

    Google Scholar 

  2. M. Abadi and Z. Manna. Modal theorem proving. In J. H. Siekmann, editor, CADE-8, pages 172–189. Springer Verlag, LNCS 230, July 1986.

    Google Scholar 

  3. S. Aitken, H. Reichgelt, and N. Shadbolt. Resolution theorem proving in reified modal logics. Journal of Automated Reasoning, 12:103–129, 1994.

    Article  Google Scholar 

  4. W. Bibel, S. Brüning, U. Egly, and T. Rath. KoMeT. In CADE-12, System Descriptions, pages 783–787. Springer-Verlag, LNAI 814, 1994.

    Google Scholar 

  5. W. Bibel. On matrices with connections. Journal of the Association for Computing Machinery, 28(4):633–645, October 1981.

    Google Scholar 

  6. W. Bibel. Deduction: Automated Logic. Academic Press, 1993.

    Google Scholar 

  7. R. Caferra and S. Demri. Proof construction using backward translations for propositional and first-order S5. Submitted.

    Google Scholar 

  8. R. Caferra and S. Demri. Cooperation between direct method and translation method in non classical logics: some results in propositional S5. In IJCAI-13, pages 74–79. Morgan Kaufmann, 1993.

    Google Scholar 

  9. R. Caferra, S. Demri, and M. Herment. A framework for the transfer of proofs, lemmas and strategies from classical to non classical logics. Studia Logica, 52(2):197–232, 1993.

    Article  Google Scholar 

  10. F. Debart, P. Enjalbert, and M. Lescot. Multimodal logic programming using equational and order-sorted logic. Theoretical Computer Science, 105(1):141–166, March 1992.

    Article  Google Scholar 

  11. S. Demri. Approches directe et par traduction en logiques modales: nouvelles stratégies et traduction inverse de preuves. PhD thesis, Institut National Polytechnique de Grenoble, December 1994.

    Google Scholar 

  12. P. Enjalbert and L. Fariñas del Cerro. Modal resolution in clausal form. Theoretical Computer Science, 65:1–33, 1989.

    Article  Google Scholar 

  13. M. C. Fitting. Proof methods for modal and intuitionistic logics. D. Reidel Publishing Co., 1983.

    Google Scholar 

  14. A. Foret. Rewrite rule systems for modal propositional logic. Journal of Logic Programming, 12:281–298, 1992.

    Article  Google Scholar 

  15. I. Gent. Theory matrices (for modal logics) using alphabetical monotonicity. Studia Logica, 52(2):233–257, 1993.

    Article  Google Scholar 

  16. R. I. Goldblatt. Logics of Time and Computation. Lecture Notes 7, CSLI Standford, 2d edition, 1992.

    Google Scholar 

  17. G. E. Hughes and M. J. Cresswell. An introduction to modal logic. Methuen and Co., 1968.

    Google Scholar 

  18. A. Herzig. Raisonnement automatique en logique modale et algorithmes d'unification. PhD thesis, Université P. Sabatier, Toulouse, 1989.

    Google Scholar 

  19. J. Halpern and Y. Moses. A guide to completeness and complexity for modal logics of knowledge and belief. Artificial Intelligence, 54:319–379, 1992.

    Article  Google Scholar 

  20. C. Kirchner. Order-sorted equational unification. In 5th International Conference on Logic Programming, 1988.

    Google Scholar 

  21. R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: a high-performance theorem prover. Journal of Automated Reasoning, 8(2):183–212, 1992.

    MathSciNet  Google Scholar 

  22. D. McDermott. Nonmonotonic logic II: nonmonotonic modal theories. Journal of the Association for Computing Machinery, 29(1):33–57, January 1982.

    Google Scholar 

  23. G. Mints. Gentzen-type and resolution rules part I: prepositional logic. In P. Martin-Löf and G Mints, editors, International Conference on Computer Logic, Tallinn, pages 198–231. Springer Verlag, LNCS 417, 1988.

    Google Scholar 

  24. C. Morgan. Methods for automated theorem proving in non classical logics. IEEE Transactions on Computers, 25(8):852–862, August 1976.

    Google Scholar 

  25. H. J. Ohlbach. Translation methods for non-classical logics: an overview. Bulletin of the Interest Group in Propositional and Predicate Logics, 1(1):69–90, July 1993.

    Google Scholar 

  26. E. Orłowska. Resolution systems and their applications I. Fundamenta Informaticae, 3:253–268, 1979.

    Google Scholar 

  27. U. Petermann. Towards a connection procedure with built in theories. In J. van Eijck, editor, JELIA '90, Amsterdam, pages 444–453. Springer-Verlag, LNAI 478, 1990.

    Google Scholar 

  28. M. E. Stickel. Automated deduction by theory resolution. Journal of Automated Reasoning, 1:333–355, 1985.

    Article  Google Scholar 

  29. L. Wallen. Matrix proof methods for modal logics. In J. McDermott, editor, IJCAI-10, Milan, pages 917–923. Morgan Kaufmann Publishers, August 1987.

    Google Scholar 

  30. L. Wallen. Automated Deduction in Nonclassical Logics. MIT Press, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter Baumgartner Reiner Hähnle Joachim Possega

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Demri, S. (1995). Using connection method in modal logics: Some advantages. In: Baumgartner, P., Hähnle, R., Possega, J. (eds) Theorem Proving with Analytic Tableaux and Related Methods. TABLEAUX 1995. Lecture Notes in Computer Science, vol 918. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59338-1_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-59338-1_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59338-6

  • Online ISBN: 978-3-540-49235-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics