Skip to main content

Neurobiological inspiration for the architecture and functioning of cooperating neural networks

  • Neuroscience
  • Conference paper
  • First Online:
From Natural to Artificial Neural Computation (IWANN 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 930))

Included in the following conference series:

Abstract

In order to emulate more complex and more realistic human-like functions, it is now well admitted that a single monolithic neural network is not sufficient. Biological data show that the cortex is a set of interconnected neural networks. Beyond the classical view of one way feedforward neural network guiding an information flow from an input to an output layer, we now have to imagine architectures and functioning rules that permit cooperation and information exchange between such neural networks. Inspired with biological data, we propose here such a scheme bringing into play of complex units like the cortical column, a functional micro-circuit repeated throughout the cortex. This basic unit of treatment gathers the classical weighted sum for feedforward information flow and sigma-pi operations for cooperation between different axis of treatment. We illustrate this model with an application of cooperation between character recognition and localization.

This work was partly supported by the Centre National d'Etude des Télécommunications, Lannion

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alexandre, F., Guyot, F., Haton, J.P. (1990) A connectionist network with two complementary visual processing systems for x-ray image interpretation, INNC'90, Paris.

    Google Scholar 

  • Alexandre, F., Burnod, Y., Guyot, F., Haton, J. P. (1991) The Cortical Column: a new processing unit for multilayered networks, Neural Networks,Vol 4, n 1, pp. 15–25.

    Google Scholar 

  • Alexandre, F., Guyot, F. (1992) A connectionist model constrained by an optical implementation, Int. Congress on Artificial Neural Networks, Brighton, Sept. 92.

    Google Scholar 

  • Alexandre, F., Guyot, F. (1994) Evaluation d'un modèle connexionniste simple pour la reconnaissance automatique de caractères, Colloque National sur l'Ecrit et le Document, Rouen, Juillet 1994.

    Google Scholar 

  • Burnod, Y. (1988) An adaptive neural network: The cerebral cortex, 2nd Edition, Masson, Paris.

    Google Scholar 

  • Burnod, Y, Grandguillaume, P., Otto, I., Ferraina, S., Johnson, P., Caminiti, R. (1992) Visuomotor Transformations Underlying Arm Movements toward Visual Targets: A Neural Network Model of Cerebral Cortical Operations, Journ. of Neuroscience, 12, 4, 1435–1453.

    Google Scholar 

  • Guigon, E. (1993) Modélisation des propriétés du cortex cérébral, PhD Thesis, Ecole centrale de Paris

    Google Scholar 

  • Guyot, F., Alexandre, F., Haton, J.P. (1990a) Principles and applications of the cortical column symbolic neural model, IJCNN'90, San Diego.

    Google Scholar 

  • Guyot, F., Alexandre, F., Dingeon, C., Haton, J.P. (1990b) The Cortical Column as a Model for Speech Recognition: Principles and First Experiments, in Speech Recognition and Understanding Recent Advances, Trends and Applications, Springer Verlag.

    Google Scholar 

  • D. H. Hubel, and T. N. Wiesel, Receptive fields binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. Lond., 160, p. 106–154, 1962.

    PubMed  Google Scholar 

  • [LeCun, Y.,]Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., Jackel, L. (1990) Handwritten Digit Recognition with Back-propagation Network, NIPS, vol.2, Morgan Kaufmann.

    Google Scholar 

  • Olshausen, B., Anderson, C., Van Essen, D. (1993) A Neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information, The Journal of Neuroscience, 13 (11), pp. 4700–4719.

    PubMed  Google Scholar 

  • O'Regan, J. K. (1990) Les “vrais” mystères de la vision, 5èmes journées NSI, Aussois.

    Google Scholar 

  • Pican, N., Alexandre, F. (1993) Integration of Context in Process Models used for Neuro-Control. Proc. IEEE Systems Man and Cybernetics, Le Touquet.

    Google Scholar 

  • Rumelhart, D., Mc Clelland, J. (1986) Parallel distributed processing, MIT Press, Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Francisco Sandoval

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alexandre, F., Guyot, F. (1995). Neurobiological inspiration for the architecture and functioning of cooperating neural networks. In: Mira, J., Sandoval, F. (eds) From Natural to Artificial Neural Computation. IWANN 1995. Lecture Notes in Computer Science, vol 930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59497-3_152

Download citation

  • DOI: https://doi.org/10.1007/3-540-59497-3_152

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59497-0

  • Online ISBN: 978-3-540-49288-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics