Skip to main content

Effects of spatial frequency and stimulus size on the orientation sensitivity of humans

  • Cognitive Science and AI
  • Conference paper
  • First Online:
From Natural to Artificial Neural Computation (IWANN 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 930))

Included in the following conference series:

Abstract

Threshold for grating detection have been measured in six human observers for different orientations (vertical, horizontal, oblique 45° and oblique 135°). Gratings of fifteen different spatial frequencies were presented monocularly to the observers through a circular window. The area of the window was different under two experimental conditions (A=3.14°2 and B=0.785°2). In all cases, the sensitivity was higher for the vertical orientation than for the other ones. Moreover, the sensitivity was lower for all the orientations when the B window was used, in this case, the sensitivity for the oblique orientations was higher than the horizontal one.

This study has been supported by Grant DGICYT PB91-0045

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, D.P. (1967). Perception of contour orientation in the central fovea. Part I: short lines. Vision Research, 7, 975–997.

    PubMed  Google Scholar 

  2. Appelle, S.(1972). Perception and discrimination as a function of stimulus orientation: the “oblique effect” in man and animals. Psychological Bulletin, 78, 266–278.

    PubMed  Google Scholar 

  3. Blakemore, C. & Campbell, F.W. (1969). On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. Journal of Physiology, 203, 237–260.

    PubMed  Google Scholar 

  4. Blakemore, C. & Cooper, G.F.(1970). Development of the brain depends on the visual environment.Nature, 228, 477–478.

    PubMed  Google Scholar 

  5. Campbell, F.W., Kulikowski, J.J. & Levinson, J. (1966). The effect of orientation on the visual resolution of gratings. Journal of Physiology, 187, 427–436.

    PubMed  Google Scholar 

  6. Campbell, F.W., Maffei, L. & Piccolino, M. (1973). The contrast sensitivity of the cat. Journal of Physiology, 229, 719–731.

    PubMed  Google Scholar 

  7. Essock, E.A. (1990). The influence of stimulus length on the oblique effect of contrast sensitivity. Vision Research, 30, 1243–1246.

    PubMed  Google Scholar 

  8. Heeley, D.W. & Timney, B. (1989). Spatial frequency discriminations at different orientations. Vision Research, 29, 1221–1228.

    PubMed  Google Scholar 

  9. Hirsch, J. & Hylton, R. (1984). Orientation dependence of hiperacuity contains a component with hexagonal symmetry. Journal of the Optical Society of America, A, 1, 300–308.

    Google Scholar 

  10. Hubel, D.H. & Wiesel, T.N. (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology, 160, 106–154.

    PubMed  Google Scholar 

  11. Maffei, L. & Campbell, F.W. (1970). Neurophysiological localization of the vertical and horizontal coordinates in man. Science, 167, 386–387.

    PubMed  Google Scholar 

  12. Mansfield, R.J.W. (1974). Neural basis of orientation perception in primate vision. Science, 186, 1133–1135.

    PubMed  Google Scholar 

  13. Mansfield, R.J.W. & Ronner, S.F. (1978). Orientation anisotropy in monkey visual cortex. Brain Research, 149, 229–234.

    PubMed  Google Scholar 

  14. Rose, D. & Blakemore, C. (1974). An analysis of orientation selectivity in the cat's visual cortex. Experimental Brain Research, 20, 1–17.

    Google Scholar 

  15. Timney, B. & Muir, D.W. (1976). Orientation anisotropy: Incidence and magnitude in Caucasian and Chinese subjects. Science, 193, 699–700.

    PubMed  Google Scholar 

  16. Tootle, J.S. & Berkley, M.A. (1983). Contrast sensitivity for vertically and obliquely oriented gratings as a function of grating area. Vision Research, 23, 907–910.

    PubMed  Google Scholar 

  17. Vidyasagar, T.R. & Sigüenza, J.A. (1985). Relationship between orientation tuning and spatial frequency in neurones of cat area 17. Experimental Brain Research, 57, 628–631.

    Google Scholar 

  18. Weymouth, F. W. (1960) Stimulus orientation and threshold: an optical analysis. Journal of the Optical Society of America, 63, 763–765.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Francisco Sandoval

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Díaz-Otero, F., Caballero, A., Lorenzo, A., Sigüenza, J.A. (1995). Effects of spatial frequency and stimulus size on the orientation sensitivity of humans. In: Mira, J., Sandoval, F. (eds) From Natural to Artificial Neural Computation. IWANN 1995. Lecture Notes in Computer Science, vol 930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59497-3_232

Download citation

  • DOI: https://doi.org/10.1007/3-540-59497-3_232

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59497-0

  • Online ISBN: 978-3-540-49288-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics