Skip to main content

Neural approaches to robot control: Four representative applications

  • Neural Networks for Communications and Control
  • Conference paper
  • First Online:
From Natural to Artificial Neural Computation (IWANN 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 930))

Included in the following conference series:

Abstract

This paper reviews neural network techniques for achieving adaptivity in both manipulator and mobile robots. It is structured in two parts. First, the different learning approaches are classified according to the amount of training information they require: quantitative (supervised approaches), qualitative (reinforcement-based approaches) and none (unsupervised approaches). Afterwards, the adequacy of each approach for solving specific problems in robot control is illustrated through four working industrial prototypes developed by the authors in the frame of two Esprit projects. The problems tackled are the inverse kinematics and inverse dynamics of robot manipulators, visual robot positioning and mobile robot navigation.

The support from the ESPRIT III Program of the European Union under contracts No. 6715 (project CONNY) and No. 7274 (project B-LEARN II) is gratefully acknowledged. The authors wish to thank all the partners involved in these projects for their cooperation and especially, Dr. Christophe Venaille, for his contribution in the field of visual positioning, Mr. Jesús Sardá for his help in developing dynamic control schemes and Mr. Conor Doherty for his work in the implementation of the inverse kinematics update.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abidi and R. Gonzalez, ‘The use of multisensor data for robotic applications, IEEE Trans. on Robotics and Automation, 6(2), (1990).

    Google Scholar 

  2. Z. Ahmad and A. Guez, ‘On the solution to the inverse kinematic problem, Proc. IEEE Conf. on Robotics and Automation, (1990).

    Google Scholar 

  3. J.S. Albus, ‘A new approach to manipulator control: The cerebellar model articulation controller (CMAC)', Transactions of the ASME, Journal of Dynamic Systems, Measurement and Control, 97, 220–227, (1975).

    Google Scholar 

  4. S. Ananthraman and D.P. Garg, ‘Training backpropagation and CMAC neural networks for control of a SCARA robot', Engineering Applications of Artificial Intelligence, April, (1993).

    Google Scholar 

  5. A.G. Barto, ‘Learning by statistical cooperation of self-interested neuron-like computing elements', Human Neurobiology, 4, 229–256, (1985).

    PubMed  Google Scholar 

  6. A.G. Barto, R.S. Sutton, and P.S. Brouwer, ‘Associative Search Network: A reinforcement learning associative memory', Biological Cybernetics, 40, 201–211, (1981).

    Google Scholar 

  7. K. Berns, R. Dillmann and U. Zachmann, ‘Reinforcement-learning for the control of an autonomous mobile robot', Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, 1808–1815, (1992).

    Google Scholar 

  8. R.A. Brooks, ‘A robust layered control system for a mobile robot', IEEE Journal of Robotics and Automation, 2(1), 14–23, (1986).

    Google Scholar 

  9. G. Cembrano and G. Wells, ‘Neural networks for control', in Artificial Intelligence in Process Control, Pergamon Press, 1992.

    Google Scholar 

  10. J.H. Connell, Minimalist Mobile Robotics: A Colony-Style Architecture for an Artificial Creature, San Diego, CA: Academic Press, 1990.

    Google Scholar 

  11. F. Chaumette, P. Rives and B. Espiau, ‘Positioning of a robot with respect to an object, tracking it and estimating its velocity by visual servoing, Proc. IEEE Int. Conf. on Robotics and Automation, Sacramento, (1991).

    Google Scholar 

  12. M. Dorigo and M. Colombetti, ‘Robot shaping: Developing autonomous agents through learning', Artificial Intelligence, 71(2), 321–370, (1994).

    Google Scholar 

  13. B. Espiau, F. Chaumette and P. Rives, ‘A new approach to visual servoing in robotics, IEEE Trans. on Robotics and Automation, (1992).

    Google Scholar 

  14. F. Fogelman-Soulié, ‘Le connexionnisme', Support de cours MARI 87 — COGNITIVA 87, Paris, May, (1987).

    Google Scholar 

  15. K. Goldberg and B. Pearlmutter, ‘Using a neural network to learn the dynamics of the CMU direct-drive arm II, Technical Report CMU-CS-88-160, Computer Science Department, Carnegie-Mellon University, (1988).

    Google Scholar 

  16. S. Grossberg, ‘Competitive learning: from interactive activation to adaptive resonance', Cognitive Science, 11, 23–63, (1987).

    Article  Google Scholar 

  17. A. Guez and J. Selinsky, ‘A trainable neuromorphic controller', Journal of Robotic Systems, 5(4), 363–388, (1988).

    Google Scholar 

  18. H. Hashimoto, K. Takashi, M. Kudou, and F. Harashima, 'self-organizing visual servo system based on neural networks', IEEE Control Systems, 31–36, (April 1992).

    Google Scholar 

  19. D.O. Hebb, The Organization of Behavior, Wiley, New York, 1949.

    Google Scholar 

  20. R. Hecht-Nielsen, Neurocomputing, Addison-Wesley, 1990.

    Google Scholar 

  21. G.E. Hinton, ‘Connectionist learning procedures', Artificial Intelligence, 40, 185–234, (1989).

    Google Scholar 

  22. D.A. Hoskins, J.N. Hwang and J. Vagners, ‘Iterative inversion of neural networks and its applications to adaptive control', IEEE Trans. on Neural Networks, 3(2), (1992).

    Google Scholar 

  23. K.J. Hunt, D. Sbarbaro, R. Zbikowski and P.J. Gawthrop, ‘Neural networks for control systems — a survey', Automatica, 28(6), (1993).

    Google Scholar 

  24. M. Kabuka and A. Arenas, ‘Position verification of a movile robot using standard pattern, IEEE Journal of Robotics and Automation, 13(6), (1987).

    Google Scholar 

  25. M. Kaiser, V. Klingspor, J. del R. Millán, M. Accame, F. Wallner and R. Dillman, ‘Achiving intelligence in mobility: incorporating learning capabilities in real-world mobile robots', IEEE Expert, to appear.

    Google Scholar 

  26. M. Kawato, Y. Uno, M. Isobe and R. Suzuki, ‘A hierarchical model of voluntary movement and its application to robotics, Proc. IEEE 1st Intl. Conf. on Neural Networks, San Diego, (1987).

    Google Scholar 

  27. T. Kohonen, Self-Organization and Associative Memory (second edition), Springer-Verlag, Berlin Heidelberg New-York Tokyo, 1988.

    Google Scholar 

  28. C. Kozakiewicz, T. Ogiso and N. Miyake, ‘Partitioned neural network for inverse kinematic calculation of a 6 dof robot manipulator', Proceedings IEEE INNS, (1991).

    Google Scholar 

  29. B.J.A. Kröse and J.W.M. van Dam, ‘Adaptive state space quantisation for reinforcement learning of collision-free navigation', Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, 1327–1332,(1992).

    Google Scholar 

  30. B.J.A. Kröse and P.P. van der Smagt, An Introduction to Neural Networks, 5th edition, University of Amsterdam, 1993.

    Google Scholar 

  31. Y. LeCun, ‘Une procedure d'aprentissage pour reseau au seuil assymetrique', Proceedings of COGNITIVA, 599–604, (1985).

    Google Scholar 

  32. L-J. Lin, ‘Programming robots using reinforcement learning and teaching', Proc. of the 9th Natl. Conf. on Artificial Intelligence, 781–786, (1991).

    Google Scholar 

  33. S. Mahadevan and J. Connell, ‘Automatic programming of behavior-based robots using reinforcement learning', Artificial Intelligence, 55(2), 311–365, (1992).

    Google Scholar 

  34. K. Mandel and N. Duffie, ‘On-line compensation of mobile robot docking errors', IEEE Journal of Robotics and Automation, 3(6), (1987).

    Google Scholar 

  35. T.M. Martinetz, H.J. Ritter and K.J. Schulten, ‘Three-dimensional neural net for learning visuomotor coordination of a robot arm, IEEE Trans. on Neural Networks, 1(1), (1990).

    Google Scholar 

  36. J. del R. Millán, ‘Reinforcement learning of goal-directed obstacle-avoidance reaction strategies in an autonomous mobile robot', Robotics and Autonomous Systems, to appear.

    Google Scholar 

  37. J. del R. Millán, ‘Rapid, safe, and incremental learning of navigation strategies', IEEE Trans. on Systems, Man and Cybernetics, to appear.

    Google Scholar 

  38. J. del R. Millán and C. Torras, ‘A reinforcement connectionist approach to robot path finding in non-maze-like environments', Machine Learning, 8(3/4), 363–395, (1992).

    Google Scholar 

  39. J. del R. Millán and C. Torras, ‘Efficient reinforcement learning of navigation strategies in an autonomous robot', Intl. Conf. on Intelligent Robots and Systems (IROS'94), (1994). (To appear also in a special issue of the journal Robotics and Autonomous Systems).

    Google Scholar 

  40. W.T. Miller, ‘Real-time neural network control of a biped walking robot', IEEE Control Systems, February, (1994).

    Google Scholar 

  41. W.T. Miller, F.H. Glanz and L.G. Kraft, ‘Application of a general learning algorithm to the control of robotic manipulators', Intl. Journal of Robotics Research, 6(2), 84–98, (1987).

    Google Scholar 

  42. W.T. Miller, R.P. Hewes, F.H. Glanz, and L.G. Kraft, ‘Real-time dynamic control of an industrial manipulator using a neural-network-based learning controller', IEEE Trans. on Robotics and Automation, 6(1), 1–9, (1990).

    Google Scholar 

  43. T.M. Mitchell, ‘Becoming increasingly reactive', Proc. of the 8th Natl. Conf. on Artificial Intelligence, 1051–1058, (1990).

    Google Scholar 

  44. T.M. Mitchell and S.B. Thrun, ‘Explanation-based neural networks learning for robot control', in C.L. Giles, S.J. Hanson and J.D. Cowan (eds.), Advances in Neural Information Processing Systems, 5, 287–294, San Mateo, CA: Morgan Kaufmann, 1993.

    Google Scholar 

  45. K.S. Narendra and K. Parthasarathy, ‘Identification and control of dynamical systems using neural networks', IEEE Trans. on Neural Networks, 1(1), (1990).

    Google Scholar 

  46. D.A. Pomerleau, ‘Efficient training of artificial neural networks for autonomous navigation', Neural Computation, 3, 88–97, (1991).

    Google Scholar 

  47. T.J. Prescott and J.E.W. Mayhew, ‘Obstacle avoidance through reinforcement learning', in J.E. Moody, S.J. Hanson and R.P. Lippmann (eds.), Advances in Neural Information Processing Systems, 4, 523–530, San Mateo, CA: Morgan Kaufmann, (1992).

    Google Scholar 

  48. H. Ritter, T. Martinetz, and K. Schulten, Neural Computation and Self-Organizing Maps, New York: Addison Wesley, 1992.

    Google Scholar 

  49. S.J. Rosenschein and L.P. Kaelbling, ‘The synthesis of machines with provable epistemic properties', Proc. of the 1986 Conf. on Theoretical Aspects of Reasoning about Knowledge, 83–98, (1986).

    Google Scholar 

  50. V. Ruiz de Angulo and C. Torras, ‘Random weights and regularization', Proceedings of the International Conference on Artificial Neural Networks (ICANN'94), Sorrento, May, (1994).

    Google Scholar 

  51. V. Ruiz de Angulo and C. Torras, ‘On-line learning with minimum degradation in feedforward networks', IEEE Transactions on Neural Networks, 6(3), May, (1995).

    Google Scholar 

  52. D.E. Rumelhart and D. Zipser, ‘Feature discovery by competitive learning', Cognitive Science, 9, 75–112, (1985).

    Google Scholar 

  53. D.E. Rumelhart, G.E. Hinton, and R.J. Williams, ‘Learning representations by back-propagating errors', Letters to Nature, 323, 533–535, (1986).

    Google Scholar 

  54. D. Sbarbaro-Hofer, D. Neumerkel and K. Hunt, ‘Neural control of a steel rolling mill', IEEE Control Systems, 13(3), (1993).

    Google Scholar 

  55. M.J. Schoppers, ‘Universal plans for reactive robots in unpredictable environments', Proc. of the 10th Intl. Joint Conf. on Artificial Intelligence, 1039–1046, (1987).

    Google Scholar 

  56. R.S. Sutton, ‘Learning to predict by the methods of temporal differences', Machine Learning, 3, 9–44, (1988).

    Google Scholar 

  57. C. Torras, Temporal-Pattern Learning in Neural Models, Lecture Notes in Biomathematics No. 63, Springer-Verlag, 1985.

    Google Scholar 

  58. C. Torras, ‘Relaxation and neural learning: points of convergence and divergence', Journal of Parallel and Distributed Computing, 6, 217–244, (1989).

    Google Scholar 

  59. C. Torras, ‘From geometric motion planning to neural motor control in robotics', AI Communications, 6(1), 3–17, (1993).

    Google Scholar 

  60. C. Torras, ‘Neural learning for robot control'. Proc. 11th European Conf. on Artificial Intelligence (ECAI'94), edited by A. Cohn, 814–819, Amsterdam, August, (1994).

    Google Scholar 

  61. E. Tzirkel-Hancock and F. Fallside, 'stable control of nonlinear systems using neural networks', Intl. Journal of Robust and Nonlinear Control, 2, (1992).

    Google Scholar 

  62. C. Venaille, G. Wells, and C. Torras, ‘A neural network approach to image-based robot positioning', Proceedings of SICICA, Budapest, June, (1994).

    Google Scholar 

  63. B. Widrow and M.E. Hoff, ‘Adaptative switching capatibility and its relation to the mechanisms of association', Kybernetik, 12, 204–215, (1960).

    Google Scholar 

  64. A.Y. Zomaya and T.M. Nabhan, ‘Centralized and decentralized neuro-adaptive robot controllers', Neural Networks, 6, 223–244, (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Francisco Sandoval

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Torras, C., Cembrano, G., Millán, J.d.R., Wells, G. (1995). Neural approaches to robot control: Four representative applications. In: Mira, J., Sandoval, F. (eds) From Natural to Artificial Neural Computation. IWANN 1995. Lecture Notes in Computer Science, vol 930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59497-3_281

Download citation

  • DOI: https://doi.org/10.1007/3-540-59497-3_281

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59497-0

  • Online ISBN: 978-3-540-49288-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics