Skip to main content

On line identification of causal relationships between variables in the feed water system of a nuclear power plant

  • Neural Networks for Communications and Control
  • Conference paper
  • First Online:
From Natural to Artificial Neural Computation (IWANN 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 930))

Included in the following conference series:

  • 786 Accesses

Abstract

On line identification of nonlinear causal relationships between variables in the feed water control loop of a nuclear power plant is reported. The knowledge about the observable variables of the application has been used in the design of the architecture for the network, in the local function of each elemental processor (quadratic expansion of inputs and recurrence) and, finally, in the selection of the supervised learning algorithm. This learning algorithm is based on the local evaluation and propagation of individual output errors for each sample in the training set. This nonlinear model with delays and quadratic expansion of inputs is compared with the more usual linear dynamic network and a clear improvement is observed. Some preliminary conclusions on the influence of signal noise relationships and the criteria for the selection of the appropriated sampling period are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barto, G. A. (1990): “Conectionist Learning for Control”. Neural Networks for Control. Miller III, Thomas W.; Sutton, Richard S.; Werbos, Paul J. (Eds.) pp. 5–58. The MIT Press.

    Google Scholar 

  • Cellier, F. E. (1991): “Continuous System Modeling”, pp. 659–671. Springer-Verlag.

    Google Scholar 

  • Fonseca, J.S. da; McCulloch, W.S. (1967): “Synthesis and Linearization of Non-Linear Feedback Shift Registers: Basis of a Model of Memory”. Q.P.R. n∘ 86. pp. 355. MIT.

    Google Scholar 

  • Fukunaga, K. (1964): “A Theory of Non-Linear Autonomous Sequential Nets Using Z-Transformes”. IEEE Trans., 1964, vol. EC-13, pp. 310–313.

    Google Scholar 

  • Gallant, S.I. (1993): “Neural Network Learning and Expert Systems”. The MIT Press.

    Google Scholar 

  • General Electric: “Design Specification” (Nuclenor). Plant documentation of Santa Maria de Garoña Nuclear Power Plant.

    Google Scholar 

  • Mira, J. (1992): “Computación Neuronal”. UNED. Madrid.

    Google Scholar 

  • Mira, J.; Delgado, A.E.(1991): “Always Trying to Write an Equation for the Brain”, Lecture Notes in Computer Science, 540, Artificial Neural Networks. A. Prieto (de.) pp 93–100. Springer-Verlag.

    Google Scholar 

  • Mira, J.; Delgado, A.E.(1991): “Linear and Algorithmic Formulation of Co-operative Computation in Neural Nets.” Lecture Notes in Computer Science, 585, Computer Aided Systems Theory, EuroCast'91. F. Pichler and R. Moreno Diaz (Eds.) pp 2–20. Springer-Verlag.

    Google Scholar 

  • Mira, J.; Delgado, A.E.; Álvarez, J.R.; P. de Madrid, A.; Santos, M. (1993a): “Towards More Realistic Self Contained Models of Neurons: High-Order, Recurrence and Local Learning” New Trends in Neural Computation, pp. 55–62. J.Mira, J.Cabestany, A.Prieto (Eds.) Springer-Verlag.

    Google Scholar 

  • Mira, J.; Fernández, R.A.; Álvarez, J.R. (1993b): “Evaluación, Análisis y Modelación de los Sistemas de Control de la Central Nuclear de Santa Maria de Garoña”. (Project Report) Madrid y Santander.

    Google Scholar 

  • Mira, J.; Delgado, A.E.; Santos, M.; P. de Madrid, A.; Álvarez, J.R. (1994): “Local Learning in Networks of Universal Analogic Neurons”. Cybernetics and Systems 25: pp. 259–273.

    Google Scholar 

  • Narendra, K.S. (1990): “Adaptive control usign neural networks”. Neural Networks for Control. Miller III, Thomas W.; Sutton, Richard S.; Werbos, Paul J. (Eds.) pp. 5–58. The MIT Press.

    Google Scholar 

  • Nilsson, N. (1965): “Learning Machines”.pp. 27–30. McGraw-Hill.

    Google Scholar 

  • Lettvin, J.Y. (1962): “Form-function Relations in Neurons”, Q.P.Q. n∘ 66, pp. 333. Research Lab. of Elect. MIT.

    Google Scholar 

  • Röckmann, D.; Moraga, C. (1991): “Using Quadratic Perceptrons to Reduce Interconnection Density in Multilayer Neural Networks”. Lecture Notes in Computer Science, 540, Artificial Neural Networks, A. Prieto (de.) pp. 86–91, Springer-Verlag.

    Google Scholar 

  • Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. (1986): “Learning internal representations by error propagation”, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol 1 Foundations. D.E. Rumelhart and J.L. McClelland (Eds.). The MIT Press.

    Google Scholar 

  • Werbos, P.J. (1988): “Generalization of back propagation with applications to a recurrent gas market model” Neural Networks, 1. pp 339–356.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Francisco Sandoval

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Álvarez, J.R., Mira, J., Fernández, R.A., Sainz, L., Arroyo, V., Delgado, A.E. (1995). On line identification of causal relationships between variables in the feed water system of a nuclear power plant. In: Mira, J., Sandoval, F. (eds) From Natural to Artificial Neural Computation. IWANN 1995. Lecture Notes in Computer Science, vol 930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59497-3_282

Download citation

  • DOI: https://doi.org/10.1007/3-540-59497-3_282

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59497-0

  • Online ISBN: 978-3-540-49288-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics