
Supporting Transaction Design in
Conceptual Modelling of Information

Systems

J o a n A. Pas to r -Co l l ado , An ton i Ol iv6

DepL de LSI - Facultat d~lnform~tica
Universitat Politkmica de Catalunya

Pau Gargallo, 5, 08028 Barcelona, Catalonia
{pastor I olive} @lsi.upe.es

A b s t r a c t . A method and a tool for supporting transaction design in
conceptual modelling of information systems is presented. The method
derives automatically a transaction specification that integrates in a uniform
manner the updating of base and derived information and the checking and
maintenance of integrity within an information base conceptual schema.
Transaction specifications thus obtained achieve their intended purpose and
guarantee that information base consistency will be preserved. When there
are several possible solutions, the method derives all of them. The designer
may then intervene in various ways in order to select the most appropriate
ones. From this choice on, the transaction processing system and the end-
user can also play a role in the final application of the transaction
specification, for this one can be directly executable. Using a declarative,
logic-based approach, the method is general, and can be adapted easily to most
conceptual modelling methodologies.

1. I n t r o d u c t i o n a n d P r e v i o u s W o r k

We present here a method and a tool that we have developed for supporting transaction
design in conceptual modelling of information systems.

Transaction design is one of the key activities in most current information systems
development methodologies. In essence, transaction design has as input the conceptual
schema of the information base, including a set of integrity constraints (ICs) that must
be satisfied, and the expected result (or intended effect) of a given transaction. From this
input, the designer's job consists in specifying, in some language, a set of preconditions
and a sequence of operations such that, ff the preconditions are satisfied, the sequence of
operations will produce the expected result, while leaving the information base
consistent [CA+94].

It is not difficult to see that in presence of a complex conceptual schema, possibly
considering derived as well as base information, and a large set of ICs, transaction design
may be an error-prone activity. On the other hand, transaction specifications are very
sensitive with regard to schema changes in deductive laws and integrity constraints:
addition, removal or modification of a deductive law or a constraint may invalidate a
given transaction specification.

Despite its importance and difficulty, transaction design support has not received the
same level of attention as other activities in conceptual modelling. In most
methodologies, the task of deriving the preconditions from the ICs is entirely manual,
without a supporting tool. The same happens to the task of deriving the appropriate

41

sequence of operations. As an example, [CFI'91] presents an information system design
expert tool that enforces a modularisation methodology where the designer is confronted
with questions relevant to the preservation of consistency when defining update
operations, but the designer must somehow ensure manually that transaction execution
preserves consistency. In [SO94] we presented, in the context of temporal deductive
conceptual models, a method for deriving transactions that included consistency checking
preconditions. These were derived from a single base ground update, integrity
maintenance was not addressed, and updating derived information did not make sense in
such context. There has also been some related work in the database field
[CW90,Qia93,SS89,Wa191]. See [PO94,PO95] for more comparative details.

In this paper, we describe a method that can be used to derive automatically a
transaction specification, or Trek (Transaction enforcing -view and integrity-
knowledge), that integrates in a uniform manner the updating of base and derived
information and the checking and maintenance of integrity within an information base
conceptual schema. The method is an extension and an adaptation of our previous work
in the context of transaction synthesis for relational and deductive databases [PO94]. We
now regard the output of our synthesis more as transaction specifications to be further
refined by a transaction designer. The method is general, and can be adapted easily to
most conceptual modelling methodologies. We use a declarative, logic-based language
for the def'mition of conceptual schemas, in the manner of [CHF92]. Transaction
specifications obtained with our method achieve their intended purpose and guarantee
that information base consistency will be preserved. Often, there are several possible
solutions and the method derives all of them. However, the designer may intervene in
various ways in order to select the most appropriate ones.

The paper (see [PO95] for an extended version) is organised as follows. Next section
defines our accepted information base schemes and introduces the example that will be
used throughout the paper. Section 3 reviews the components of the augmented
information base schema, a key concept for the method. Section 4 illustrates our
synthesis method through a detailed example. In section 5 we comment on how the
method can be used to furtherly support transaction design with some additional
examples. Finally, in section 6 we present our conclusions.

2. Information Base Conceptual Schemes

We define here the kind of information base schemes treated in this paper. We want to
be general, and therefore we use a simple formalism, easily adaptable to any conceptual
modelling language. An information base (conceptual) schema IBS consists of three
finite sets: a set B of base predicates, a set D of derived predicates with their deductive
rules, and a set I of integrity constraints (ICs). Base predicates are the schemes of the
facts explicitly stored in the information base, which form the so called extensional
information base. Derived predicates are schemes representing information that is not
stored in the information base but can be derived using deductive rules. ICs are used to
specify unwanted information base states and forbidden state Iransitions.

Before providing more formal definitions for some of the previous concepts, let us
introduce the base predicate schemes corresponding to the information base example that
we will be using throughout the paper. They are shown in Fig. 2-1 on next page,
together with their intended meaning. Our example, inspired upon the one in [Qia93],

~2

is an information base for an "Employment Office" that arranges labour interviews
between its registered job applicants and some employer companies collaborating with
it. For the people administered by the office, it also keeps track of those already
employed.

Base predicate
App(x)
Eco(y)
Infix,y)
Fanp(x)

Derived predicate with rule
Cand(x) ~- Int(x,y) ^ Eco(y)

Integrity rule
Icl ~- Emp(x) ^ A l e x)
Ic2 <-- Cand(x) ^ ~ App(x)

FII~. 2-1
Base predicat e meaning
'x' is a job applicant
'y' is an employer company
'x' has an interview with 'y'
'x' is an employee
Fig. 2-2

Derived predicate meaning
'x' is considered a job candidate when s/he has an
interview with an employer
Fig. 2-3

Integrity constraint meaning
Nobody can beboth employee and applicant
Candidates must be applicants

Formally, a deductive rule is a formula of the form: A ~ L 1 ^ ... ^ L n with n >_. 1
where A is an atom denoting the conclusion or derived predicate, and the L 1 L n are
literals representing the conditions, which can be base, derived or evahable predicates,
possibly negated. Evaluable predicates are system predicates, such as the comparison or
arithmetic predicates, that can be evaluated without accessing the information base. Any
variables in A, L 1 L n are assumed to be universally quantified over the whole
formula. The terms in the conclusion must be distinct variables, and the terms in the
conditions must be variables or constants. Variables in the body of a rule not appearing
in its head are called the "local variables" of such rule. As usual, we require that the
schema is allowed. Fig. 2-2 has our single derived predicate for defining job candidates.

Integrity constraints t ics) are conditions that the information base is required to
satisfy at all times. Formally, an IC is a closed first-order formula that the information
base is required to satisfy. We deal with constraints that have the form of a denial:
<--- L 1 ^ ... ^ L n with n~.>l where the L i are literals (i.e. positive or negative base,
derived or evaluable predicates) and variables are assumed to be universally quantified
over the whole formula. For the sake of uniformity, we associate to each IC an
inconsistency predicate Icn, thus taking the same form as deductive rules. We call them
integrity rules. We will use in our example the two ICs shown in Fig. 2-3 above. The
set of employees is disjoint with the set of applicants t icl) , which is a superset of
candidates (Ic2). Note that Ic2 is furtherly defined in terms of the derived predicate Canal.

3. The Augmented Information Base Schema

In this section we shortly present and define the concepts and terminology of internal
events, transition and internal events rules, key concepts in our method. Conceptually,
internal events, transition rules and internal events rules are meta-level constructs
describing the dynamic behaviour of an information base when confronted with updates.
These rules depend only on the information base schema. They are independent from the

43

base facts stored, and from any particular update. In section 4, we will discuss the use of
transition and internal events rules for Iransaction specification synthesis. The
following presentation is an overview of theory explained elsewhere [for ex. PO94],
where the reader will find the full details on their formal derivation.

Let IB be a information base, U an update and IB n the "new" updated information
base. We say that U induces a transition from IB (current state) to IB n (new, updated
state). We assume that U consists of a set of base facts to be inserted and/or deleted.

Due to the deductive rules, U may induce other updates on some derived predicates.
Let P be a (derived) predicate in D, and let pn denote the same predicate evaluated in IB n.
Formally, we associate to each predicate P an insertion internal events predicate tP and a
deletion internal events predicate 8P, defined as:
(1) Vx(tP(x) ~ pn(x) a "~P(x))
(2) Vx(SP(x) ~ P(x) ^ "~pn(x))
where x is a vector of variables. From (1) and (2) we have:
(3) Vx(pn(x) ~ (P(x) ^ -~SP(x)) v tP(x))
(4) Vx('~pn(x) ~ ('~P(x) ^ -~tP(x)) v 8P(x))
If P is a base predicate, then tP facts and 8P facts respectively represent insertions and
deletions of base facts, i.e. base updates. They will represent derived updates if P is a
derived predicate. If P is an inconsistency predicate (i.e. Ic), then tic facts that occur
during the transition will correspond to violations of its corresponding IC and 8Ic facts
cannot happen in any transition. Two special-purpose system events are also used,
'tAbort' and 'tExit'; their meaning vail be clear with the examples of sections 4 and 5.

Let us take a base, derived or inconsistency predicate P of the database. The
definition of P consists of the rules in the database schema having P in the conclusion.
Consider now one of such rules, say rule T: Pi(x) ~ L 1 ^ ... ^ Lq, When the rule is
to be evaluated in the updated state its form is Pni(x) ~ Ln 1 ^ ... ^ Lnq. Now if we
replace each literal in the body by its equivalent definition, given in (3) and-(4), we get a
new rule, which defines predicate Pni (new state) in terms of current state predicates and
of internal events. When this is done for all deductive rules defining predicate P, we
obtain a whole new rule set, where it is convenient to distinguish between two types of
rules:
1) Rules 'nO': They explain when P remains true in the new state because it has not

been changed during the transition, thus remaining as in the Old state. They are
headed with pnO i (x) when they apply to a single definition T of P, and with p a t
(x) when applying to P as a whole.

2) Rules 'nT': They indicate all possible ways for P to become true in the new state due
to some internal events occurred within the Transition. They are headed with pnT.

1
(x) when they apply to a single definition T of P, and with pnT (x) when applying
to P as a whole.

Finally, we may now refer to both pnO and pnT through: pn(x) ~-- pnO(x) and
pn(x) ~-- pnT(x). We call these rules, i.e. with (possibly subindexed) conclusions pn,
pnT and pnO, transition rules for predicate P. The transition rules corresponding to the
information base example are shown in Fig. 3-1 with a clear intuitive meaning. Thus,
for example, TR.6 states that 'x' is a candidate in the new state, if s/he had a
programmed interview with 'y' in the old state that has not been cancelled in the
transition, and 'y' has been inserted as employer company during the transition.

Code
TR.I
TR.2
TR.3
TR.4
TR.5
TR.6
TR.?
TR.8
TR.9
TR.10
TR. I I
TR.12
TR.13
TR.14
TR.15
TR.16
TR.17
TR.18
TR.19
TR.20
TR

Fi R. 3-1
Transition rule
Candn(x) ~- CandnO(x)
Candn(x) ~-- CandnT(x)
CandnT(x) e - CandnT1 (x)
cana Ofx) -Cand O (x)
CandnOl(x) ~ Iat(x,y) ^ -, 8Im(x,y) ^ F.r.o(y) ^ -, 8F~.oQ)
Candntl(X) ,,-- Iat(x,y) ^ - 5Int(x,y) ^ tEc.oQ)
CandnTl(x) ~- tlm(x,y) ^ Eco(y) A "1 5EcoQ)
CandnT 1 (x) ,-- tlnt(xff) ^ tF_x~y)
Icl nO <--- Emp(x) A -1 b'Emp(x) ^ App(x) ^ -I 8App(x)
Iel nT ~ Emp(x) ^ - 8Fmp(x) ^ lApp(x)
Icl nT ~- tEmp(x) ^ App(x) ^ -~ 8App(x)
Icl nT <--- tEmp(x) A tApp(x)
Ic2 nO +- Cand(x) ^ "~ Stand(x) A -App(x) ^ -1 tApp(x)
Ic2 nT r Cand(x) ^ -~ Stand(x) ^ 8App(x)
Ic2 nT <-- tCand(x) ^ -~ App(x) ^ -~ tApp(x)
Ic2 nT (-- tCand(x~ ^ 8App(x)
Appn(x) <-- Appm~(x)
Appn(x) ~- AppnT(x)
Appn~(x) e - App(x) ^ -~ 8App(x)
App n (X) ~- tApp(x)
Econ(y) ~ ...; Intn(x,y) ~- ...; Empn(x)

Let P be a derived or inconsistency predicate. Once pnT has been stated, from formula
(1) we get: tP(x) <-- pnT(x) ^ -,P(x) which is called the insertion internal events rule
of predicate P, and allows us to deduce which tP facts (induced insertions) happen in a
transition. If P is an inconsistency predicate we can remove the literal -~P(x) since we
will assume that P(x) is false, for all x, in the old state. For this case we further define
general database inconsistency with the standard auxiliary rules: t ic <-- t ick with
k = 1.x, where r is the number of I t s in the database. Fig. 3-2 shows the insertion
internal events rules for the example.

If P is a derived predicate, we can use definition (2) for a deletion internal event to
generate its corresponding deletion internal events rule of predicate P: 8P(x) <--- P(x) ^
"~pn(x). Last row in Fig. 3-2 includes the deletion internal events rule for our example.

Fig. 3-2
Code Insertion internal events rule
IR.1 ~Cand(x) ~- CandnT(x) ̂ - ~ n d (x)
IR.2 tIr ~-- Ir nT
IR.3 tir <-- Ir nT
IR.4 tie <-- t Ic l
IR.5 tic ~-- tie2

D e l e t i o n internal events rule
DR.1 8Cand(x) ~-- Cand(x) A "-,Candn(x)

45

Let IBS be a information base schema. We call augmented information base schema, or
A(IBS), the schema consisting of IBS, its transition rules and its internal events rules.
In the next section we will discuss the important role of A(IBS) in our method for
transaction specificacion synthesis. The augmented information base schema for our
example would be the union of the contents of Figs. 2-1, 2-2, 2-3, 3-1 and 3-2. It is
easy to show that, because IBS is allowed, then A(IBS) is also allowed.

4. Synthesis of Transaction Specifications

4.1 Transaction Requests

We envision a transaction-design-support-system that builds transactions specifications
from the corresponding design-time parameterised transaction requests. A transaction
(specification) request (Tr) basically includes those transaction "postconditions
requirements" posed by the designer, i.e. his/her intents about the effect of the expected
transaction. Formally, a parameterised update transaction request Tr consists of either
[pn(p)] or [-~pn(p)] at least, where P can be a base, a derived or an auxiliar predicate, and
p is a vector of terms. Usually, terms will mostly be parameters (i.e. 'Per', 'Comp') but
some could also be constants (~oan',TlPC3.

The simplest case is that of Tr being a postcondition expressed in terms of one of
the base or derived predicates of the information base schema. As examples, two of the
transaction requests that we will later elaborate on are [Appn(Per)] and [-Candn(Per)].
With the fwst one the designer wants a transaction specification to insert the person 'Per'
as applicant. In the case of ["C_.andn(Per)], our method will synthesise a transaction
specification for removing the job candidate status of a particular person if s/he had it.
Note that this means a deletion from a derived predicate.

More complex is the case where Tr represents a compound postcondition affecting
more than one base and/or derived predicate. For doing so, the designer must temporarily
use an auxiliar (derived) predicate (i.e. P), different from any other in the information
base schema, whose definition expresses the intended posteondition. The (auxiliar)
augmented schema corresponding to the rules of such predicate is generated on the fly, to
be used in the synthesis of the pursued transaction specification. For example,
[Auxin(per)] with Auxl(x)~-Emp(x)^--~App(x) can be used to synthesise a Iransaction
specification for doing whatever is needed so that "Per' is a non-applicant employee.

4.2 Our Approach

We now focus on the problem of the automatic generation at design-time of
consistency-preserving transaction specifications from transaction requests. Stated more
precisely, the problem is: Given an initial transaction request, which reflects the
transaction designer's updating intents, and considering the information base schema,
obtain a transaction capable of performing those intents without violating consistency.
In order to realise this purpose, we have designed and implemented a method that can be
briefly described and exemplified as follows. See [PO95] for a detailed formalisation of
the method.

~6

4.2.1 S y n t h e s i s O u t p u t f r o m [A p p n (P e r)]
Assume that a designer poses the request [Appn(Per)] in search of a transaction
specification for a_&J_ing someone as a job applicant. From this request and our example
(augmented) information base schema, our method ultimately generates the
corresponding transaction text (i.e trek_text) contained in Fig. 4-1. Note the slightly
different syntax used for the various predicate types, which comes directly from our
implementation of the method in Prolog. The only differences are that base and derived
predicates must begin with a lower-ease letter, that the super-index ,n, qualifying new
predicates is implemented with prefix 'n_.', and that meta-level update operators 't' and '5'
are also handled as prefixes 'i_' and 'd_', respectively. Horizontal and vertical lines have
been added for ease of reading. This layout format will be also followed for the other
example outputs in section 5.

Fig. 4-1
t r e k . _ t e x t ([n _ _ a p p (P e r)] ,

1 if app(Per) then
2 I-- i_exit
3 I- else
4 I-- i app(Per),
5 I - - - if emp(Per) then
6 I I- either
7 I I--I-- d_.emp(Per)
8 I I--t- or
9 - I H - - - i a b o r t

10 I----I- end_either
11 I end if
12 end_if

). % end of trek text

With regard to our assumed run-time environment in this and any other examples, we
consider delayed-update semantics for transaction-processing-time.

Within Fig. 4-1, line I controls if the person is already an applicant, in which case
line 2 proposes to exit the transaction without any updating. In general, the special
event 'i_exit' is used to exit its nesting compound instruction but keeping any update so
far proposed. If the person under consideration is not an applicant, line 4 proposes to
insert him/her as such. However, in this case, our integrity constraint Icl is directly
affected by such base update, and a checking/maintenance preventive repair can be
offered. The repair notices that, if we want to insert as applicant (line 4) some
employee (line 5), then there are only two alternatives not to violate database
consistency: either to delete the person as employee (line 7) or to abort the whole
transaction (line 9).

4.2.2 S y n t h e s i s p r o c e s s f rom [Appn(Per)]
The above used transaction request [Appn(Per)], together with the implicit consistency
requirement [-,tic] and the AflBS), implicidy configure a generic search space that we
conveniently explore through two types of design-time derivations: Translate and
Repair derivations. From the interleaving of those derivations we draw an interim tree,

47

the trek_tree. The process is independent of any particular value that parameter 'Per'
could take. For the case of our example, Fig. 4-2 on next page shows the generic search
space of interest, together with the resulting trek_tree.

A translate derivation is used to obtain a "translation" from the original transaction
request. Box T1 in Fig. 4-2 includes the starting translate derivation rooted at the
original request. Single translate steps explore and resolve their input goals until
none is left. ' Intuitively, Appn(Per) will succeed if it was already true in the old state
(step 1, left branch), that is if App(Per) holds (step 3, left) and is not deleted during the
transition (to be controlled in box R1). Alternatively, it will also succeed if added in
the transition (step 1, right branch), i.e. if App(Per) is inserted (step 3, right). On their
way, translate steps add new nodes to the trek_tree under construction, depending upon
the semantics of their input goal and selected literal within such goal. Note how
various new predicates in the example have resulted in different node types in the
trek_tree (steps 1, 2 left, 2 right). Their concrete semantics can be found in [PO95].

However, for the translation above to be consistency-preserving, consistency needs
to be enforced with regard to some conditions, such as the schema ICs and other
particular transaction requirements either initially given by the designer or drawn from
the A(IBS) while doing the translate derivation. Repair derivations are in charge of
enforcing such external and internal consistency conditions. A repair derivation
represents a subsidiary derivation spawning from a Translate derivation. Repair
derivations maintain, check and use the "Consistency conditions set" C, an internally
maintained set o f conditions representing situations that we want any transaction to
avoid. C is the source of all possible repairs or branch invalidations in our interim tree.
For efficiency considerations, C is initially filled with all consistency conditions
implied by the special consistency request [-tic], which is implicitely appended to every
other transaction request. For our current example, only one such condition is used,
which coincides with the body of rule TR.10 from Fig. 3-1. For this and other
consistency conditions there is always an implicit preserving action, i.e. that of aborting
whatever updates had been proposed so far, as shown in Fig. 4-2.

Back to our example, box R1 in Fig. 4-2 includes the appropriate repair derivation
for ensuring that App(Per) has not been deleted and, more important, that it will not be
deleted later on; this is accomplished by including such internal consistency condition in
set C, On the other hand, repair derivation in box R2 follows the right branch in T1,
where the insertion of App(Per) was considered. This insertion affects one of our ICs,
i.e. Icl, in the way shown in R 2. There, the above mentioned consistency condition is
relevant to the proposed insertion (step 1), particularly if "Per' was already employee in
the old state (step 2). Since we do not want such potential inconsistency to succeed, we
may force its failure in either two ways (step 3): by deleting 'Per' as employee, or by
aborting the whole transaction. Both alternatives are respectively considered by the
two translate derivations in boxes T 2 and T 3. This ends the derivation process, for ICs
are not further affected.

In this way, repair derivations call other translate derivations in order to obtain the
translations for their found redressing actions. These actions may include base updates,
such as SEtup(Per) in T 2, or the special kabort' event, like in T 3, cases where the
translation is straightforward. But they may also include derived events, for which an
appropriate translation in terms of base events must be found through the further
exploration of the search space implied by their internal events rules from A(IBS).

/.8

Tt

'111.17 , ,

, - Ap,~P~) ,],
I

2 TR.19 [[exit_struct, I]I
I <-- Ap_ r~Per) 6"1 ~ App(Per)

 r2j [] I (TR.IO)

<-- Appn (Per)

1 [~ ' = ~ T R . 1 8
i i . |

<-- AppnT(per) I I

2 i TR.20] [either struct, I]I

<-- tApp(Pcol [

r ~lIC R1 / i

~- 8 A p I ~ P ~ , ' , [==="--"
<- Emp(x) ^ -, 8 Emp(x) ^ ~ [^ - , t Abort]

1 AC [~ - ~

Emp(Pe0 [^- , t Abort]

2

~- -~ SEtup(Per] [A-~ t Abort]

[]

r}
L
i m m

[either_struct,

<-- t Abort

L____._

[]

[]

i

49

Trek_trees such as the one in Fig. 4-2 usually need to be opfimised In various ways:
redundant and empty nodes as well as useless or unsuccessful branches must be pruned
away. Finally, a simple in-order search of the remaining tree isthe base for the layout
of the final transaction specification text, or trek_text, in whatever appropriate
transaction language syntax we choose. The labels in the nodes of the trimmed trek_tree
are interpreted and treated according to their implied semantics and the language chosen;
this guides the inclusion of the appropriate keywords in the text, as well as the correct
composition of condition conjunctions and disjunctions. Fig. 4-1 portraits the trek_text
resulting from the above tree, once trimmed, using an English pseudo-code language.

5. Supporting Transaction Design

In general, a transaction specification synthesised with our method may include every
possible way in which its request could be accomplished. This may embrace several
alternative ways for preserving consistency, translating an update to a derived predicate,
or selecting relevant tuples for any of those. In our transaction specifications, all such
alternative options may be presented under the premises of special ad-hoc control
instructions, such as 'either' in Fig. 4-1. However, there are cases where a designer is
not necessarily interested in the fullblown transaction specification but in a (still
consistency-preserving) version of it. Such refmement may result from speciallsing the
synthesis to particnlar design requirements, and/or from the appropriate handling of the
synthesis (interim) outputs.

For a simple example, rexall from Fig. 4-1 the two alternative ways of preserving
consistency included within the 'either' control instruction. That was our t-h-St example
of non-determinism within a transaction specification. In our transaction specifications,
non-determinism may appear within consistency repairs, and in the context of
translating updates to derived predicates. Since, in general, translate and repair
transaction pieces may interleave, the resulting transaction specifications can be highly
non-deterministic. However, we regard such non-determinism both as a good
specification knowledge som'ce for fucther transaction design, as well as the basis for an
advanced transaction processing system and a sophisticated user-interaction system.

The trek_tree in Fig. 4-2 includes all consistency-preserving alternatives relevant to
its original request. We used them all in the trek_text of Fig. 4-1. However, we could
have searched such trY_tree in a more specialised way in order to come up with different
(customised) trek_texts. For example, a designer could be interested in considering just
consistency checking for a particular transaction, thus only aborting any potential
integrity violation. This would leave our example trek_text without lines 6, 7, 8 and
10. For some other Wansaction, s/he could be after integrity maintenance alone, i.e. not
to consider aborts as long as there are possible compensating actions. There are also
interesting intermediate situations, where consistency checking might be used for some
constraints while for some other constraints integrity maintenance is preferred.

From a trimmed trek_tree, a designer could further choose, out of all the valid
updating alternatives considered in it, those options most interesting for his/her
application. This would not require to undo every non-deterministic situation within the
tree. On the other hand, s/he can also rely on the run-time Wansaction processing
system or the end-user to take some or all of the (remaining) decisions. The next two
examples show more complex non-deterministic situations amenable to further design
refinement and advanced use.

5 0

5.1 Synthesis output from [-,Appn(Per)]

If the designer issues the [-~Appn(Per)] request to our system, the method will generate
the trek_text contained in Fig. 5-1. Within this figure, line 1 controls ff the person to
be employed is already an applicant, in which case line 2 proposes to delete him/her as
such. Such deletion of applicant direcdy affects Ic2, so a checking/maintenance
preventive repair is drawn from a consistency condition that coincides with the body of
rule TR.14 in Fig. 3-1. That is, in ease that such not-to-be-applicant were also a
candidate (line 3) either it should be deleted as such (lines 5 to 12) or an abort should be
proposed (line 14).

For the alternative of deleting the person as candidate, we initially draw the proposal
that 8Cand(Per) should be pursued, shown in line 5 as a commented action preceding its
unfolding. Later on, our method translates such derived-update request into the needed
base update instructions (lines 5 to 12).

Line 3 together with lines 5 to 12 in fact correspond to the main body of the
transaction that would be synthesised from the [--~andnfPer)] request. This is a request
for deleting an instance of a derived predicate defined using a local variable. To
accomplish such objective, we should eliminate any existing way in which the contents
of the information base support the fact Cand(Per), for which we will now need to take
into account the values taken by the local variable(s) in the definition(s) of the view
predicate. In our example, this is obtained with the 'foreach' instruction of lines 6 to
12. For this instruction we automatically synthesise the needed meaningful Skolem
variable names (i.e. '_Comp'). Line 6 walks through the set of all employer companies
with whom the person in 'Per' has an arranged job interview, thus setting the cursor
variable '__Comp' appropriately.

1
2
3
4
5
6
7
8
9

1C
11
12
13
14
15
16
17

F!g. 5-1
t rek_text([not n_app(Per)] ,
. i f app(Per) then
. I- d app (Pe r) ,
. I--- if cand(Per) then
. I- .b- either
........... I--I-4- { d_cand(Per) }
........... I I--I-- foreach [_.Comp] in int(Per, _Comp) and eco(_Comp) do
. I - - - b - I - - - I - - either
. I---I---I--b--I--- d_int(Per, _Comp)
. 1 - - - - I - - - I - - - I - - I- o r

. I - - - I - - I - - - l - - - I - - - d_eco(_Comp)

. I - - - - I - - - I - - - t - - - end_either

. I---I--I-- end_foreach

. I - - - 1 - - - I - o r

. t---i--t-- i_.abort

. I - - l - - end_either

. I-- end_if

. end_if
). % end of trek text

51

For each such company, lines 7 to 11 offer to either delete the pending interview or
delete the employer slams for the company. In this way, 'Per' will no longer remain a
job candidate since s/he will not have any more interviews with employer companies,
although s/he could still keep some interviews with non-employers.

This example shows how we address in an integrative way the problems of base and
derived updating, integrity checking and integrity maintenance within our transaction
specification synthesis approach.

Again, Fig. 5-1 includes the transaction obtained directly from a trek_tree that
includes all possible consistency-preserving and derived-update alternatives. But, as was
said before, the designer could intervene in order to customize the resulting transaction
to particular application-domain semantics or to personal requirements. Integrity
checking alone, or integrity maintenance alone, or both adequately mixed would result in
various versions of the above transaction in Fig. 5-1.

5.2 Synthes is ou tpu t f r o m [C a n d n (P e r)]

This example deals with a derived-update request for a transaction specification to make
some person 'Per' candidate. For space limitations, we only show in Fig. 5-2 the
synthesis output for [Candn(Per)] without considering ICs.

1
2
3
4
5
6
7
8
9
t0
t l
12
13
t4
15
16
t7
t8
t9
~-0

Fig. 5-2
trek_text([n_cand(Per)], % without I t s
. , if int(Per, _Comp) and eco(..Comp) then
.......... I--- Lexit
. I- else
.......... I--- either
. I---I--- forsome LComp] in int(Per, _Comp) do
. I l---I- i_eco(__Comp)
. I---I--- end_forsome
. I---I- or
. I I--- forsome [__Comp] in eco(_Comp) do
. I I----I- i_int(Per,_Comp)
. I----I-- end_forsome
. I---I- or
. I---I--- forsome new LComp] such that
.......... I I I not int(Per, _Comp) and not eco(__Comp)
. I I---I- do
. I I---f--- Lint(Per, _Comp) ,
. I I----I-- i_eco(_Comp)
. I I--- end_forsome
. I-- end._either
. end_if

). % end of Izek text

Fig. 5-2 above contains the trek_text for this request. When 'Per' already has some
interview with some employer (line 1), i.e. s/he is already a job candidate, line 2 exits
the transaction. Otherwise, three alternatives exist: namely, to consider as employers
some (at least one) o f the companies with whom 'Per' has interviews, if any (lines 5 to

.52

7); or to arrange an interview between 'Per' and some (one or more) of our already
considered employer companies, if any (lines 9 to 11); or to ask the user for some (one
at least) yet unknown companies in order to make them employers with interviews with
'Per' (lines 13 to 18).

The condition within line 14 can be used to help the user look for the right
companies, or to help the system check for wrong user elections. Similarly, the
conditions in lines 5 and 9 could be used to present the respectively satisfying
companies to the use, for him/her to select some.

The above combination of 'either' with 'forsomes' is highly non-deterministic. Of
course, the designer could purge some 'either' options. S/he could also restrict some
'forsome' instructions to their "forone" counterpart, which asks the user (resp. system)
for just one (resp. the first found) Skolem-variable value satisfying the condition. Out
of the remaining alternatives, at run-time the user should choose one or more relevant
'either' options and guide the selection of (or provide) 'forsome' values. While the last
'either' option may always be relevant, the other two depend on the existence of values
in the nformation base satisfying their conditions. Note that the (three) relevant
alternatives could be fxeely combined within one transaction execution, thus making
'Per' a candidate through various non-conflicting ways. A run-time update solution
involving these multiple ways might not be minimal, but it could be meaningful, and
thus useful. The lack of conflicts is given by the delayed-update semantics; recall that it
guarantees that 'forsome' and 'forsome-new' conditions are only affected by the old
database state, and not by the proposed base updates, to be applied at transaction-finish.

The flexibility implied by the above instructions will require a sophisticated run-
time user interaction system that we have not yet developed. Such flexible user-
interaction framework could sometimes prove too demanding for some types of user, or
even inadequate for some types of applications (i.e. user-less applications, with update
requests issued programmatically). It is for situations like these that our transactions
should better be synthesised under the selective guidance of a designer. In this case, s/he
could also use application-domain knowledge to purge alternatives and/or assign them
priorities to be used by the transaction processing system. Evaluation cost-estimates
could be used at design-time, such as the length or complexity of 'either' options, or
types of 'forsome' conditions (i.e. base vs. derived, simple vs. compound); as well as at
run-time, such as database population statistics. The transaction processing system, on
its side, could also incorporate mechanisms to automatically select or invent variable
values. Other additional features of our method are explained in [P095].

6. Conclus ions and Further Work

Transaction design is one of the key activities in conceptual modelling of information
systems but its support has not received enough attention by the research community.

In this paper we have presented a new method for the generation of consistency-
preserving transaction specifications in the context of conceptual modelling of
information systems. The method is based on the transition and internal events rules,
which explicitly define the dynamic bchaviour of the information base when updated.
Using these rules, a formal method allows us to automatically synthesise a legal
transaction specification from an initial update transaction request. The integrative way
in which the method deals with the problems of base and derived updating, integrity

53

checking and integrity maintenance can be considered as its most important asset.
However, the results are also useful as the basis for more advanced transaction design
support and mote sophisticated transaction processing and user-interaction systems.

At its current stage, the synthesis part of the method has been fully prototyped using
meta-programming techniques in Prolog. We can also generate directly executable
transaction specifications in Prolog in order to simulate information base updating
within the dynamic maln-memory Prolog database.

We plan to extend this work along several fines: fornmlisation and implementation
of the case of schemes with recursive rules and rules with aggregate functions; explicit
treatment of the modification operation; consideration of more complex initial
transaction requests. Last, there is plenty of further implementation work along the
advanced transaction design support, processing and ufilisafion introduced in this paper.

Acknowledgements
The authors would like to thank H. Decker and the rest of the Odissea Group fT.Urpl,
E.Teniente, J.Sistac, M.R.Sancho, C.Quer, CaMartin, E.Mayol, D.Costal) for many
useful comments and discussions on the theme of this paper. We also appreciate the
valuable comments from the unknown referees.
This wc~k has been partially supported by the CICYT PRONTIC project TIC 680.

References
[CA+94] Colcman,D.;Amold, P.;Bodoff, S;Dollin,C;Gilchrist,H.;Hayes,F.;Jeremes,P.

"Object-oriented Development. The Fusion Method". Prentice Hall Intl.,
1994.

[CFTgl] Casanova,M.A.;Furtado,A.L.;Tucherman,L. "A Software Tool for Modular
Database Design". ACM TODS, Vol. 16, No. 2, June 1991, pp. 209-234.

[CHF92] Casanova, M.A.;Hemerly,A.S.;Furtado,A.L. "A Declarative Conceptual
Modelling Language: Description and Example Application". Proc. of the 4th
Int. Conf, CAiSE92, Manchester, 1992, pp. 589-611.

[CW90] Ceri, S.; WidomJ. "Deriving Production Rules for ConsWaint Maintenance".
Proc. of 16th VLDB, Brisbane, Australia, 1990, pp. 566-577.

[PO94] PastorJ.A.; Oliv~,A. "An Approach to the Synthesis of Update Transactions
in Deductive Databases", Proc. of the 5th. Int. Conference on Information
Systems and Management of Data (CISMOD94), Madras, Indls~ 1994.

[PO95] Pastor, LA.; Oliv6,A. "Supporting Transaction Design in Conceptual
Modelling of Information Systems (Extended Version)", Internal research
report LSI-95-I I-R, Dept. LSI, UPC, Barcelona, 1995.

[Qia93] Quian~. "The Deductive Synthesis of Database Transactions'.ACM TODS,
Vol. 18, No. 4, December 1993, pp. 626-677.

[SO94] Sancho,M.R.; Oliv6,A. "Deriving Transaction Specifications from Deductive
Conceptual Models of Information Systems". Proc. of the 6th Int. Conf.
CAiSE94, Utrech, The Netherlands, 1994, pp. 311-324.

[SS89] Sheard, T.;Stemplej). "Automatic Verification of Database Transaction
Safety", ACM TODS, Vol. 14, No. 3, September 1989, pp. 322-368.

[Wal91] Wallaee,M. "Compiling Integrity Checking into Update Procedures", 12th
Int. Conf. on Artificial Intelligence, Sydney, Australia, 1991, Vol. 2, pp. 24-
30.

