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A b s t r a c t .  A method and a tool for supporting transaction design in 
conceptual modelling of information systems is presented. The method 
derives automatically a transaction specification that integrates in a uniform 
manner the updating of base and derived information and the checking and 
maintenance of integrity within an information base conceptual schema. 
Transaction specifications thus obtained achieve their intended purpose and 
guarantee that information base consistency will be preserved. When there 
are several possible solutions, the method derives all of them. The designer 
may then intervene in various ways in order to select the most appropriate 
ones. From this choice on, the transaction processing system and the end- 
user can also play a role in the final application of the transaction 
specification, for this one can be directly executable. Using a declarative, 
logic-based approach, the method is general, and can be adapted easily to most 
conceptual modelling methodologies. 

1. I n t r o d u c t i o n  a n d  P r e v i o u s  W o r k  

We present here a method and a tool that we have developed for supporting transaction 
design in conceptual modelling of information systems. 

Transaction design is one of the key activities in most current information systems 
development methodologies. In essence, transaction design has as input the conceptual 
schema of the information base, including a set of integrity constraints (ICs) that must 
be satisfied, and the expected result (or intended effect) of a given transaction. From this 
input, the designer's job consists in specifying, in some language, a set of preconditions 
and a sequence of operations such that, ff the preconditions are satisfied, the sequence of 
operations will produce the expected result, while leaving the information base 
consistent [CA+94]. 

It is not difficult to see that in presence of a complex conceptual schema, possibly 
considering derived as well as base information, and a large set of ICs, transaction design 
may be an error-prone activity. On the other hand, transaction specifications are very 
sensitive with regard to schema changes in deductive laws and integrity constraints: 
addition, removal or modification of a deductive law or a constraint may invalidate a 
given transaction specification. 

Despite its importance and difficulty, transaction design support has not received the 
same level of  attention as other activities in conceptual modelling. In most 
methodologies, the task of deriving the preconditions from the ICs is entirely manual, 
without a supporting tool. The same happens to the task of deriving the appropriate 
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sequence of operations. As an example, [CFI'91] presents an information system design 
expert tool that enforces a modularisation methodology where the designer is confronted 
with questions relevant to the preservation of  consistency when defining update 
operations, but the designer must somehow ensure manually that transaction execution 
preserves consistency. In [SO94] we presented, in the context of temporal deductive 
conceptual models, a method for deriving transactions that included consistency checking 
preconditions. These were derived from a single base ground update, integrity 
maintenance was not addressed, and updating derived information did not make sense in 
such context. There has also been some related work in the database field 
[CW90,Qia93,SS89,Wa191]. See [PO94,PO95] for more comparative details. 

In this paper, we describe a method that can be used to derive automatically a 
transaction specification, or Trek (Transaction enforcing -view and integrity- 
knowledge), that integrates in a uniform manner the updating of base and derived 
information and the checking and maintenance of integrity within an information base 
conceptual schema. The method is an extension and an adaptation of our previous work 
in the context of transaction synthesis for relational and deductive databases [PO94]. We 
now regard the output of our synthesis more as transaction specifications to be further 
refined by a transaction designer. The method is general, and can be adapted easily to 
most conceptual modelling methodologies. We use a declarative, logic-based language 
for the def'mition of conceptual schemas, in the manner of [CHF92]. Transaction 
specifications obtained with our method achieve their intended purpose and guarantee 
that information base consistency will be preserved. Often, there are several possible 
solutions and the method derives all of them. However, the designer may intervene in 
various ways in order to select the most appropriate ones. 

The paper (see [PO95] for an extended version) is organised as follows. Next section 
defines our accepted information base schemes and introduces the example that will be 
used throughout the paper. Section 3 reviews the components of the augmented 
information base schema, a key concept for the method. Section 4 illustrates our 
synthesis method through a detailed example. In section 5 we comment on how the 
method can be used to furtherly support transaction design with some additional 
examples. Finally, in section 6 we present our conclusions. 

2. Information Base Conceptual Schemes 

We define here the kind of information base schemes treated in this paper. We want to 
be general, and therefore we use a simple formalism, easily adaptable to any conceptual 
modelling language. An information base (conceptual) schema IBS consists of three 
finite sets: a set B of base predicates, a set D of derived predicates with their deductive 
rules, and a set I of integrity constraints (ICs). Base predicates are the schemes of the 
facts explicitly stored in the information base, which form the so called extensional 
information base. Derived predicates are schemes representing information that is not 
stored in the information base but can be derived using deductive rules. ICs are used to 
specify unwanted information base states and forbidden state Iransitions. 

Before providing more formal definitions for some of the previous concepts, let us 
introduce the base predicate schemes corresponding to the information base example that 
we will be using throughout the paper. They are shown in Fig. 2-1 on next page, 
together with their intended meaning. Our example, inspired upon the one in [Qia93], 
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is an information base for an "Employment Office" that arranges labour interviews 
between its registered job applicants and some employer companies collaborating with 
it. For the people administered by the office, it also keeps track of those already 
employed. 

Base predicate 
App(x) 
Eco(y) 
Infix,y) 
Fanp(x) 

Derived predicate with rule 
Cand(x) ~- Int(x,y) ^ Eco(y) 

Integrity rule 
Icl ~- Emp(x) ^ A l e x )  
Ic2 <-- Cand(x) ^ ~ App(x) 

FII~. 2-1 
Base predicat e meaning 
'x' is a job applicant 
'y' is an employer company 
'x' has an interview with 'y' 
'x' is an employee 
Fig. 2-2 

Derived predicate meaning 
'x' is considered a job candidate when s/he has an 
interview with an employer 
Fig. 2-3 

Integrity constraint meaning 
Nobody can beboth employee and applicant 
Candidates must be applicants 

Formally, a deductive rule is a formula of the form: A ~ L 1 ^ ... ^ L n with n >_. 1 
where A is an atom denoting the conclusion or derived predicate, and the L 1 ..... L n are 
literals representing the conditions, which can be base, derived or evahable predicates, 
possibly negated. Evaluable predicates are system predicates, such as the comparison or 
arithmetic predicates, that can be evaluated without accessing the information base. Any 
variables in A, L 1 ..... L n are assumed to be universally quantified over the whole 
formula. The terms in the conclusion must be distinct variables, and the terms in the 
conditions must be variables or constants. Variables in the body of a rule not appearing 
in its head are called the "local variables" of such rule. As usual, we require that the 
schema is allowed. Fig. 2-2 has our single derived predicate for defining job candidates. 

Integrity constraints t ics)  are conditions that the information base is required to 
satisfy at all times. Formally, an IC is a closed first-order formula that the information 
base is required to satisfy. We deal with constraints that have the form of a denial: 
<--- L 1 ^ ... ^ L n with n~.>l where the L i are literals (i.e. positive or negative base, 
derived or evaluable predicates) and variables are assumed to be universally quantified 
over the whole formula. For the sake of uniformity, we associate to each IC an 
inconsistency predicate Icn,  thus taking the same form as deductive rules. We call them 
integrity rules. We will use in our example the two ICs shown in Fig. 2-3 above. The 
set of employees is disjoint with the set of applicants t icl) ,  which is a superset of 
candidates (Ic2). Note that Ic2 is furtherly defined in terms of the derived predicate Canal. 

3. The Augmented Information Base Schema 

In this section we shortly present and define the concepts and terminology of internal 
events, transition and internal events rules, key concepts in our method. Conceptually, 
internal events, transition rules and internal events rules are meta-level constructs 
describing the dynamic behaviour of an information base when confronted with updates. 
These rules depend only on the information base schema. They are independent from the 
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base facts stored, and from any particular update. In section 4, we will discuss the use of 
transition and internal events rules for Iransaction specification synthesis. The 
following presentation is an overview of theory explained elsewhere [for ex. PO94], 
where the reader will find the full details on their formal derivation. 

Let IB be a information base, U an update and IB n the "new" updated information 
base. We say that U induces a transition from IB (current state) to IB n (new, updated 
state). We assume that U consists of a set of base facts to be inserted and/or deleted. 

Due to the deductive rules, U may induce other updates on some derived predicates. 
Let P be a (derived) predicate in D, and let pn denote the same predicate evaluated in IB n. 
Formally, we associate to each predicate P an insertion internal events predicate tP and a 
deletion internal events predicate 8P, defined as: 
(1) Vx(tP(x) ~ pn(x) a "~P(x)) 
(2) Vx(SP(x) ~ P(x) ^ "~pn(x)) 
where x is a vector of variables. From (1) and (2) we have: 
(3) Vx(pn(x) ~ (P(x) ^ -~SP(x)) v tP(x)) 
(4) Vx('~pn(x) ~ ('~P(x) ^ -~tP(x)) v 8P(x)) 
If P is a base predicate, then tP facts and 8P facts respectively represent insertions and 
deletions of base facts, i.e. base updates. They will represent derived updates if P is a 
derived predicate. If P is an inconsistency predicate (i.e. Ic), then tic facts that occur 
during the transition will correspond to violations of its corresponding IC and 8Ic facts 
cannot happen in any transition. Two special-purpose system events are also used, 
'tAbort' and 'tExit'; their meaning vail be clear with the examples of sections 4 and 5. 

Let us take a base, derived or inconsistency predicate P of the database. The 
definition of  P consists of the rules in the database schema having P in the conclusion. 
Consider now one of such rules, say rule T: Pi(x) ~ L 1 ^ ... ^ Lq, When the rule is 
to be evaluated in the updated state its form is Pni(x) ~ Ln 1 ^ ... ^ Lnq. Now if we 
replace each literal in the body by its equivalent definition, given in (3) and-(4), we get a 
new rule, which defines predicate Pni (new state) in terms of current state predicates and 
of internal events. When this is done for all deductive rules defining predicate P, we 
obtain a whole new rule set, where it is convenient to distinguish between two types of 
rules: 
1) Rules 'nO': They explain when P remains true in the new state because it has not 

been changed during the transition, thus remaining as in the Old state. They are 
headed with pnO i (x) when they apply to a single definition T of P, and with p a t  
(x) when applying to P as a whole. 

2) Rules 'nT': They indicate all possible ways for P to become true in the new state due 
to some internal events occurred within the Transition. They are headed with pnT. 

1 
(x) when they apply to a single definition T of P, and with pnT (x) when applying 
to P as a whole. 

Finally, we may now refer to both pnO and pnT through: pn(x) ~-- pnO(x) and 
pn(x) ~-- pnT(x). We call these rules, i.e. with (possibly subindexed) conclusions pn, 
pnT and pnO, transition rules for predicate P. The transition rules corresponding to the 
information base example are shown in Fig. 3-1 with a clear intuitive meaning. Thus, 
for example, TR.6 states that 'x' is a candidate in the new state, if s/he had a 
programmed interview with 'y' in the old state that has not been cancelled in the 
transition, and 'y' has been inserted as employer company during the transition. 
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TR.I 
TR.2 
TR.3 
TR.4 
TR.5 
TR.6 
TR.? 
TR.8 
TR.9 
TR.10 
TR. I I  
TR.12 
TR.13 
TR.14 
TR.15 
TR.16 
TR.17 
TR.18 
TR.19 
TR.20 
TR .... 

Fi R. 3-1 
Transition rule 
Candn(x) ~- CandnO(x) 
Candn(x) ~-- CandnT(x) 
CandnT(x) e -  CandnT1 (x) 
cana Ofx)  -Cand O  (x) 
CandnOl(x) ~ Iat(x,y) ^ -, 8Im(x,y) ^ F.r.o(y) ^ -, 8F~.oQ) 
Candntl(X ) ,,-- Iat(x,y) ^ - 5Int(x,y) ^ tEc.oQ) 
CandnTl(x ) ~- tlm(x,y) ^ Eco(y) A "1 5EcoQ) 
CandnT 1 (x) ,-- tlnt(xff) ^ tF_x~y) 
Icl nO <--- Emp(x) A -1 b'Emp(x) ^ App(x) ^ -I 8App(x) 
Iel  nT ~ Emp(x) ^ - 8Fmp(x) ^ lApp(x) 
Icl nT ~- tEmp(x) ^ App(x) ^ -~ 8App(x) 
Icl  nT <--- tEmp(x) A tApp(x) 
Ic2 nO +- Cand(x) ^ "~ Stand(x) A -App(x) ^ -1 tApp(x) 
Ic2 nT r  Cand(x) ^ -~ Stand(x) ^ 8App(x) 
Ic2 nT <-- tCand(x) ^ -~ App(x) ^ -~ tApp(x) 
Ic2 nT (-- tCand(x~ ^ 8App(x) 
Appn(x) <-- Appm~(x) 
Appn(x) ~- AppnT(x) 
Appn~(x) e -  App(x) ^ -~ 8App(x) 
App n (X) ~- tApp(x) 
Econ(y) ~ ...; Intn(x,y) ~- ...; Empn(x) 

Let P be a derived or inconsistency predicate. Once pnT has been stated, from formula 
(1) we get: tP(x) <-- pnT(x) ^ -,P(x) which is called the insertion internal events rule 
of predicate P, and allows us to deduce which tP facts (induced insertions) happen in a 
transition. If P is an inconsistency predicate we can remove the literal -~P(x) since we 
will assume that P(x) is false, for all x, in the old state. For this case we further define 
general database inconsistency with the standard auxiliary rules: t ic  <-- t ick with 
k = 1.x, where r is the number of I t s  in the database. Fig. 3-2 shows the insertion 
internal events rules for the example. 

If P is a derived predicate, we can use definition (2) for a deletion internal event to 
generate its corresponding deletion internal events rule of predicate P: 8P(x) <--- P(x) ^ 
"~pn(x). Last row in Fig. 3-2 includes the deletion internal events rule for our example. 

Fig. 3-2 
Code Insertion internal events rule 
IR.1 ~Cand(x) ~- CandnT(x) ̂  - ~ n d ( x )  
IR.2 tIr ~-- Ir nT 
IR.3 tir <-- Ir nT 
IR.4 tie <-- t Ic l  
IR.5 tic ~-- tie2 

D e l e t i o n  internal events rule 
DR.1 8Cand(x) ~-- Cand(x) A "-,Candn(x) 
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Let IBS be a information base schema. We call augmented information base schema, or 
A(IBS), the schema consisting of IBS, its transition rules and its internal events rules. 
In the next section we will discuss the important role of A(IBS) in our method for 
transaction specificacion synthesis. The augmented information base schema for our 
example would be the union of the contents of Figs. 2-1, 2-2, 2-3, 3-1 and 3-2. It is 
easy to show that, because IBS is allowed, then A(IBS) is also allowed. 

4. Synthesis of Transaction Specifications 

4.1 Transaction Requests 

We envision a transaction-design-support-system that builds transactions specifications 
from the corresponding design-time parameterised transaction requests. A transaction 
(specification) request (Tr) basically includes those transaction "postconditions 
requirements" posed by the designer, i.e. his/her intents about the effect of the expected 
transaction. Formally, a parameterised update transaction request Tr consists of either 
[pn(p)] or [-~pn(p)] at least, where P can be a base, a derived or an auxiliar predicate, and 
p is a vector of terms. Usually, terms will mostly be parameters (i.e. 'Per', 'Comp') but 
some could also be constants (~oan',TlPC3. 

The simplest case is that of Tr being a postcondition expressed in terms of one of 
the base or derived predicates of the information base schema. As examples, two of the 
transaction requests that we will later elaborate on are [Appn(Per)] and [-Candn(Per)]. 
With the fwst one the designer wants a transaction specification to insert the person 'Per' 
as applicant. In the case of ["C_.andn(Per)], our method will synthesise a transaction 
specification for removing the job candidate status of a particular person if s/he had it. 
Note that this means a deletion from a derived predicate. 

More complex is the case where Tr represents a compound postcondition affecting 
more than one base and/or derived predicate. For doing so, the designer must temporarily 
use an auxiliar (derived) predicate (i.e. P), different from any other in the information 
base schema, whose definition expresses the intended posteondition. The (auxiliar) 
augmented schema corresponding to the rules of such predicate is generated on the fly, to 
be used in the synthesis of the pursued transaction specification. For example, 
[Auxin(per)] with Auxl(x)~-Emp(x)^--~App(x) can be used to synthesise a Iransaction 
specification for doing whatever is needed so that "Per' is a non-applicant employee. 

4.2 Our Approach 

We now focus on the problem of the automatic generation at design-time of 
consistency-preserving transaction specifications from transaction requests. Stated more 
precisely, the problem is: Given an initial transaction request, which reflects the 
transaction designer's updating intents, and considering the information base schema, 
obtain a transaction capable of performing those intents without violating consistency. 
In order to realise this purpose, we have designed and implemented a method that can be 
briefly described and exemplified as follows. See [PO95] for a detailed formalisation of 
the method. 
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4.2.1 S y n t h e s i s  O u t p u t  f r o m  [ A p p n ( P e r ) ]  
Assume that a designer poses the request [Appn(Per)] in search of a transaction 
specification for a_&J_ing someone as a job applicant. From this request and our example 
(augmented) information base  schema,  our method ultimately generates the 
corresponding transaction text (i.e trek_text ) contained in Fig. 4-1. Note the slightly 
different syntax used for the various predicate types, which comes directly from our 
implementation of the method in Prolog. The only differences are that base and derived 
predicates must begin with a lower-ease letter, that the super-index ,n, qualifying new 
predicates is implemented with prefix 'n_.', and that meta-level update operators 't' and '5' 
are also handled as prefixes 'i_' and 'd_', respectively. Horizontal and vertical lines have 
been added for ease of reading. This layout format will be also followed for the other 
example outputs in section 5. 

Fig. 4-1 
t r e k . _ t e x t ( [ n _ _ a p p ( P e r ) ] ,  

1 . . . . . . .  if app(Per) then 
2 . . . . . . . .  I-- i_exit 
3 . . . . . . . . .  I- else 
4 . . . . . . . .  I-- i app(Per), 
5 . . . . . . .  I - - -  if emp(Per) then 
6 . . . . . . . .  I . . . . .  I- either 
7 . . . . . .  I . . . . .  I--I-- d_.emp(Per) 
8 . . . . . . . . .  I . . . . .  I--t- or 
9 - .  . . . .  I . . . .  H - - -  i a b o r t  

10 .......... I----I- end_either 
11 . . . . .  I . . . .  end if 
12 . . . . . . .  end_if 

). % end of trek text 

With regard to our assumed run-time environment in this and any other examples, we 
consider delayed-update semantics for transaction-processing-time. 

Within Fig. 4-1, line I controls if the person is already an applicant, in which case 
line 2 proposes to exit the transaction without any updating. In general, the special 
event 'i_exit' is used to exit its nesting compound instruction but keeping any update so 
far proposed. If the person under consideration is not an applicant, line 4 proposes to 
insert him/her as such. However, in this case, our integrity constraint Icl  is directly 
affected by such base update, and a checking/maintenance preventive repair can be 
offered. The repair notices that, if  we want to insert as applicant (line 4) some 
employee (line 5), then there are only two alternatives not to violate database 
consistency: either to delete the person as employee (line 7) or to abort the whole 
transaction (line 9). 

4.2.2 S y n t h e s i s  p r o c e s s  f rom [Appn(Per ) ]  
The above used transaction request [Appn(Per)], together with the implicit consistency 
requirement [-,tic] and the AflBS), implicidy configure a generic search space that we 
conveniently explore through two types of design-time derivations: Translate and 
Repair derivations. From the interleaving of those derivations we draw an interim tree, 
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the trek_tree. The process is independent of any particular value that parameter 'Per' 
could take. For the case of our example, Fig. 4-2 on next page shows the generic search 
space of interest, together with the resulting trek_tree. 

A translate derivation is used to obtain a "translation" from the original transaction 
request. Box T1 in Fig. 4-2 includes the starting translate derivation rooted at the 
original request. Single translate steps explore and resolve their input goals until 
none is left. ' Intuitively, Appn(Per) will succeed if it was already true in the old state 
(step 1, left branch), that is if App(Per) holds (step 3, left) and is not deleted during the 
transition (to be controlled in box R1). Alternatively, it will also succeed if added in 
the transition (step 1, right branch), i.e. if App(Per) is inserted (step 3, right). On their 
way, translate steps add new nodes to the trek_tree under construction, depending upon 
the semantics of their input goal and selected literal within such goal. Note how 
various new predicates in the example have resulted in different node types in the 
trek_tree (steps 1, 2 left, 2 right). Their concrete semantics can be found in [PO95]. 

However, for the translation above to be consistency-preserving, consistency needs 
to be enforced with regard to some conditions, such as the schema ICs and other 
particular transaction requirements either initially given by the designer or drawn from 
the A(IBS) while doing the translate derivation. Repair derivations are in charge of 
enforcing such external and internal consistency conditions. A repair derivation 
represents a subsidiary derivation spawning from a Translate derivation. Repair 
derivations maintain, check and use the "Consistency conditions set" C, an internally 
maintained set o f  conditions representing situations that we want any transaction to 
avoid. C is the source of all possible repairs or branch invalidations in our interim tree. 
For efficiency considerations, C is initially filled with all consistency conditions 
implied by the special consistency request [-tic], which is implicitely appended to every 
other transaction request. For our current example, only one such condition is used, 
which coincides with the body of rule TR.10 from Fig. 3-1. For this and other 
consistency conditions there is always an implicit preserving action, i.e. that of aborting 
whatever updates had been proposed so far, as shown in Fig. 4-2. 

Back to our example, box R1 in Fig. 4-2 includes the appropriate repair derivation 
for ensuring that App(Per) has not been deleted and, more important, that it will not be 
deleted later on; this is accomplished by including such internal consistency condition in 
set C, On the other hand, repair derivation in box R2 follows the right branch in T1, 
where the insertion of App(Per) was considered. This insertion affects one of our ICs, 
i.e. Icl,  in the way shown in R 2. There, the above mentioned consistency condition is 
relevant to the proposed insertion (step 1), particularly if "Per' was already employee in 
the old state (step 2). Since we do not want such potential inconsistency to succeed, we 
may force its failure in either two ways (step 3): by deleting 'Per' as employee, or by 
aborting the whole transaction. Both alternatives are respectively considered by the 
two translate derivations in boxes T 2 and T 3. This ends the derivation process, for ICs 
are not further affected. 

In this way, repair derivations call other translate derivations in order to obtain the 
translations for their found redressing actions. These actions may include base updates, 
such as SEtup(Per) in T 2, or the special kabort' event, like in T 3, cases where the 
translation is straightforward. But they may also include derived events, for which an 
appropriate translation in terms of base events must be found through the further 
exploration of the search space implied by their internal events rules from A(IBS). 
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Trek_trees such as the one in Fig. 4-2 usually need to be opfimised In various ways: 
redundant and empty nodes as well as useless or unsuccessful branches must be pruned 
away. Finally, a simple in-order search of the remaining tree isthe base for the layout 
of the final transaction specification text, or trek_text, in whatever appropriate 
transaction language syntax we choose. The labels in the nodes of the trimmed trek_tree 
are interpreted and treated according to their implied semantics and the language chosen; 
this guides the inclusion of the appropriate keywords in the text, as well as the correct 
composition of condition conjunctions and disjunctions. Fig. 4-1 portraits the trek_text 
resulting from the above tree, once trimmed, using an English pseudo-code language. 

5. Supporting Transaction Design 

In general, a transaction specification synthesised with our method may include every 
possible way in which its request could be accomplished. This may embrace several 
alternative ways for preserving consistency, translating an update to a derived predicate, 
or selecting relevant tuples for any of those. In our transaction specifications, all such 
alternative options may be presented under the premises of special ad-hoc control 
instructions, such as 'either' in Fig. 4-1. However, there are cases where a designer is 
not necessarily interested in the fullblown transaction specification but in a (still 
consistency-preserving) version of it. Such refmement may result from speciallsing the 
synthesis to particnlar design requirements, and/or from the appropriate handling of the 
synthesis (interim) outputs. 

For a simple example, rexall from Fig. 4-1 the two alternative ways of preserving 
consistency included within the 'either' control instruction. That was our t-h-St example 
of non-determinism within a transaction specification. In our transaction specifications, 
non-determinism may appear within consistency repairs, and in the context of 
translating updates to derived predicates. Since, in general, translate and repair 
transaction pieces may interleave, the resulting transaction specifications can be highly 
non-deterministic. However, we regard such non-determinism both as a good 
specification knowledge som'ce for fucther transaction design, as well as the basis for an 
advanced transaction processing system and a sophisticated user-interaction system. 

The trek_tree in Fig. 4-2 includes all consistency-preserving alternatives relevant to 
its original request. We used them all in the trek_text of Fig. 4-1. However, we could 
have searched such trY_tree in a more specialised way in order to come up with different 
(customised) trek_texts. For example, a designer could be interested in considering just 
consistency checking for a particular transaction, thus only aborting any potential 
integrity violation. This would leave our example trek_text without lines 6, 7, 8 and 
10. For some other Wansaction, s/he could be after integrity maintenance alone, i.e. not 
to consider aborts as long as there are possible compensating actions. There are also 
interesting intermediate situations, where consistency checking might be used for some 
constraints while for some other constraints integrity maintenance is preferred. 

From a trimmed trek_tree, a designer could further choose, out of all the valid 
updating alternatives considered in it, those options most interesting for his/her 
application. This would not require to undo every non-deterministic situation within the 
tree. On the other hand, s/he can also rely on the run-time Wansaction processing 
system or the end-user to take some or all of the (remaining) decisions. The next two 
examples show more complex non-deterministic situations amenable to further design 
refinement and advanced use. 
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5.1 Synthesis output from [-,Appn(Per)] 

If the designer issues the [-~Appn(Per)] request to our system, the method will generate 
the trek_text contained in Fig. 5-1. Within this figure, line 1 controls ff the person to 
be employed is already an applicant, in which case line 2 proposes to delete him/her as 
such. Such deletion of applicant direcdy affects Ic2, so a checking/maintenance 
preventive repair is drawn from a consistency condition that coincides with the body of 
rule TR.14 in Fig. 3-1. That is, in ease that such not-to-be-applicant were also a 
candidate (line 3) either it should be deleted as such (lines 5 to 12) or an abort should be 
proposed (line 14). 

For the alternative of deleting the person as candidate, we initially draw the proposal 
that 8Cand(Per) should be pursued, shown in line 5 as a commented action preceding its 
unfolding. Later on, our method translates such derived-update request into the needed 
base update instructions (lines 5 to 12). 

Line 3 together with lines 5 to 12 in fact correspond to the main body of the 
transaction that would be synthesised from the [--~andnfPer)] request. This is a request 
for deleting an instance of a derived predicate defined using a local variable. To 
accomplish such objective, we should eliminate any existing way in which the contents 
of the information base support the fact Cand(Per), for which we will now need to take 
into account the values taken by the local variable(s) in the definition(s) of the view 
predicate. In our example, this is obtained with the 'foreach' instruction of lines 6 to 
12. For this instruction we automatically synthesise the needed meaningful Skolem 
variable names (i.e. '_Comp'). Line 6 walks through the set of all employer companies 
with whom the person in 'Per' has an arranged job interview, thus setting the cursor 
variable '__Comp' appropriately. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1C 
11 
12 
13 
14 
15 
16 
17 

F!g. 5-1 
t rek_text([not  n_app(Per) ] ,  
. . . . . . . .  i f  app(Per)  then 
. . . . . . . .  I- d app (Pe r ) ,  
. . . . . . . .  I--- if cand(Per) then 
. . . . . . . .  I- .b- either 
........... I--I-4- { d_cand(Per) } 
........... I .... I--I-- foreach [_.Comp] in int(Per, _Comp) and eco(_Comp) do 
. . . . . . . . . . .  I - - - b - I - - - I - -  either 
. . . . . . . . .  I---I---I--b--I--- d_int(Per, _Comp) 
. . . . . . . . . .  1 - - - - I - - - I - - - I - -  I- o r  

. . . . . . . . . .  I - - - I - - I - - - l - - -  I - - -  d_eco(_Comp) 

. . . . . . . . . .  I - - - - I - - - I - - - t - - -  end_either 

. . . . . . . . . .  I---I--I-- end_foreach 

. . . . . . .  I - - - 1 - - - I -  o r  

. . . . . . . . . .  t---i--t-- i_.abort 

. . . . .  I - - l - -  end_either 

. . . . . . . . .  I-- end_if 

. . . . . . .  end_if 
). % end of trek text 
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For each such company, lines 7 to 11 offer to either delete the pending interview or 
delete the employer slams for the company. In this way, 'Per' will no longer remain a 
job candidate since s/he will not have any more interviews with employer companies, 
although s/he could still keep some interviews with non-employers. 

This example shows how we address in an integrative way the problems of  base and 
derived updating, integrity checking and integrity maintenance within our transaction 
specification synthesis approach. 

Again, Fig. 5-1 includes the transaction obtained directly from a trek_tree that 
includes all possible consistency-preserving and derived-update alternatives. But, as was 
said before, the designer could intervene in order to customize the resulting transaction 
to particular application-domain semantics or to personal requirements. Integrity 
checking alone, or integrity maintenance alone, or both adequately mixed would result in 
various versions of  the above transaction in Fig. 5-1. 

5.2 Synthes is  ou tpu t  f r o m  [ C a n d n ( P e r ) ]  

This example deals with a derived-update request for a transaction specification to make 
some person 'Per' candidate. For space limitations, we only show in Fig. 5-2 the 
synthesis output for [Candn(Per)] without considering ICs. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
t0 
t l  
12 
13 
t4 
15 
16 
t7 
t8 
t9 
~-0 

Fig. 5-2 
trek_text([n_cand(Per)], % without I t s  
. . . . . .  , if int(Per, _Comp) and eco(..Comp) then 
.......... I--- Lexit  
. . . . . . . .  I- else 
.......... I--- either 
. . . . . . . .  I---I--- forsome LComp] in int(Per, _Comp) do 
. . . . . . . .  I .... l---I- i_eco(__Comp) 
. . . . . . .  I---I--- end_forsome 
. . . . . . .  I---I- or 
. . . . . . . . .  I .... I--- forsome [__Comp] in eco(_Comp) do 
. . . . . . . . .  I .... I----I- i_int(Per,_Comp) 
. . . . . . . .  I----I-- end_forsome 
. . . . . . . . .  I---I- or 
. . . . . . . .  I---I--- forsome new LComp] such that 
.......... I .... I .... I .... not int(Per, _Comp) and not eco(__Comp) 
. . . . . . . . .  I .... I---I- do 
. . . . . . . . .  I .... I---f--- Lint(Per, _Comp) ,  
. . . . . . . .  I .... I----I-- i_eco(_Comp) 
. . . . . .  I .... I--- end_forsome 
. . . . . . . .  I-- end._either 
. . . . . . .  end_if 

). % end of  Izek text 

Fig. 5-2 above contains the trek_text for this request. When 'Per' already has some 
interview with some employer (line 1), i.e. s/he is already a job candidate, line 2 exits 
the transaction. Otherwise, three alternatives exist: namely, to consider as employers 
some (at least one) o f  the companies with whom 'Per' has interviews, if any (lines 5 to 
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7); or to arrange an interview between 'Per' and some (one or more) of our already 
considered employer companies, if any (lines 9 to 11); or to ask the user for some (one 
at least) yet unknown companies in order to make them employers with interviews with 
'Per' (lines 13 to 18). 

The condition within line 14 can be used to help the user look for the right 
companies, or to help the system check for wrong user elections. Similarly, the 
conditions in lines 5 and 9 could be used to present the respectively satisfying 
companies to the use, for him/her to select some. 

The above combination of 'either' with 'forsomes' is highly non-deterministic. Of 
course, the designer could purge some 'either' options. S/he could also restrict some 
'forsome' instructions to their "forone" counterpart, which asks the user (resp. system) 
for just one (resp. the first found) Skolem-variable value satisfying the condition. Out 
of the remaining alternatives, at run-time the user should choose one or more relevant 
'either' options and guide the selection of (or provide) 'forsome' values. While the last 
'either' option may always be relevant, the other two depend on the existence of values 
in the nformation base satisfying their conditions. Note that the (three) relevant 
alternatives could be fxeely combined within one transaction execution, thus making 
'Per' a candidate through various non-conflicting ways. A run-time update solution 
involving these multiple ways might not be minimal, but it could be meaningful, and 
thus useful. The lack of conflicts is given by the delayed-update semantics; recall that it 
guarantees that 'forsome' and 'forsome-new' conditions are only affected by the old 
database state, and not by the proposed base updates, to be applied at transaction-finish. 

The flexibility implied by the above instructions will require a sophisticated run- 
time user interaction system that we have not yet developed. Such flexible user- 
interaction framework could sometimes prove too demanding for some types of user, or 
even inadequate for some types of applications (i.e. user-less applications, with update 
requests issued programmatically). It is for situations like these that our transactions 
should better be synthesised under the selective guidance of a designer. In this case, s/he 
could also use application-domain knowledge to purge alternatives and/or assign them 
priorities to be used by the transaction processing system. Evaluation cost-estimates 
could be used at design-time, such as the length or complexity of 'either' options, or 
types of 'forsome' conditions (i.e. base vs. derived, simple vs. compound); as well as at 
run-time, such as database population statistics. The transaction processing system, on 
its side, could also incorporate mechanisms to automatically select or invent variable 
values. Other additional features of our method are explained in [P095]. 

6. Conclus ions  and Further  Work 

Transaction design is one of the key activities in conceptual modelling of information 
systems but its support has not received enough attention by the research community. 

In this paper we have presented a new method for the generation of consistency- 
preserving transaction specifications in the context of conceptual modelling of 
information systems. The method is based on the transition and internal events rules, 
which explicitly define the dynamic bchaviour of the information base when updated. 
Using these rules, a formal method allows us to automatically synthesise a legal 
transaction specification from an initial update transaction request. The integrative way 
in which the method deals with the problems of base and derived updating, integrity 
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checking and integrity maintenance can be considered as its most important asset. 
However, the results are also useful as the basis for more advanced transaction design 
support and mote sophisticated transaction processing and user-interaction systems. 

At its current stage, the synthesis part of the method has been fully prototyped using 
meta-programming techniques in Prolog. We can also generate directly executable 
transaction specifications in Prolog in order to simulate information base updating 
within the dynamic maln-memory Prolog database. 

We plan to extend this work along several fines: fornmlisation and implementation 
of the case of schemes with recursive rules and rules with aggregate functions; explicit 
treatment of the modification operation; consideration of more complex initial 
transaction requests. Last, there is plenty of further implementation work along the 
advanced transaction design support, processing and ufilisafion introduced in this paper. 
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