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Abstract. In order to reduce the elapsed time of a computation, a pop-
ular approach is to decompose the program into a collection of largely
independent subtasks which are executed in parallel. Unfortunately, it is
often observed that tightly-coupled parallel programs run considerably
slower than initially expected. In this paper, a framework for the anal-
ysis of parallel programs and their potential speedup is presented. Two
parameters which strongly affect the scalability of parallelism are iden-
tified, namely the grain of synchronization, and the degree to which the
target hardware is available. It is shown that for certain classes of appli-
cations speedup is inherently poor, even if the program runs under the
idealized conditions of perfect load balance, unbounded communication
bandwidth and negligible communication and parallelization overhead.
Upper bounds are derived for the speedup that can be obtained in three
different types of computations. An example illustrates the main find-
ings.

1 Introduction

Today, parallel and distributed computing is almost ubiquitous. Apart from fault
tolerance considerations, one of the main goals of parallel programming is to
improve performance. Substantial speedup may be achieved by partitioning a
problem into several subproblems, and by solving all subproblems concurrently
on parallel and potentially distributed hardware.

In practice, however, it is sometimes difficult to realize performance gains.
Certain classes of problems do not lend themselves for efficient parallel execution.
Problems which are notoriously ”reluctant” to parallelization are those which re-
quire frequent interaction between the concurrent threads of control constituting
the parallel problem solving algorithm. Such tight coupling tends to be particu-
larly disturbing in a distributed environment, simply because remote interaction
is subject to relatively high communication latency and (typically) compara-
tively low communication bandwidth. Other potential sources of performance
losses are, e.g., poor problem partitioning leading to undue load imbalances, ad-
ditional costs for managing a complex parallel runtime environment, or overhead
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caused by the parallelization of a problem solving strategy which is not inher-
ently concurrent. Nevertheless, it is generally assumed that substantial speedup
should be feasible, provided that the runtime environment operates efficiently,
communication links are fast, and a suitable parallel algorithm leading to even
load distribution exists.

Ideally, a programmer could hope for a speedup which is linear in the number
of physical processors being used. Note that we do not consider phenomenons
leading to so-called ”superlinear speedup”, caused mainly by an increase in main
memory resources or by a reduction of the problem size due to parallelization.
Such effects are known to occur, e.g., in branch & bound applications [8]. It is
very tempting to assume that linear speedup will inevitably result if the paral-
lelization and communication overhead approaches zero.

Unfortunately, it often turns out that parallel programs run surprisingly slow,
although there is no clear performance bottleneck — neither in the application
program, nor in the runtime environment. While we were analyzing a runtime
package for parallel and distributed programming, we actually found several
benchmark applications which seemed to have properties favorable for parallel
execution — no additional parallelization overhead, reasonably low communica-
tion and synchronization demands, divisibility in perfectly even partitions — but
which still did not yield scalable performance on parallel hardware. These obser-
vations aroused our curiosity, and led to an analytical study of factors relevant
for the performance of parallel programs.

In this paper, we analyze how sporadic processor preemption affects the over-
all performance of a parallel system. Section 2 presents an abstract model of a
tightly-coupled parallel computation which serves as a basis to study some fun-
damental effects that lead to speedup losses. In Sect. 3, three different execution
profiles representing three different classes of parallel programs are analyzed,
and speedup limits are derived in each case. The relevance of our study is dis-
cussed in Sect. 4, and a case study based on empirical results is presented which
illustrates some implications of our analysis. Related work is briefly surveyed in
Sect. 5, and Sect. 6 summarizes the main findings.

2 Basic Model of a Tightly-Coupled Parallel Computation

Our study is based on the simple model depicted in Fig.1l. Let the parallel
system consist of n processors Py, ..., P,. For the subsequent analysis, we (op-
timistically) assume that communication between processors is feasible without
any latency, and without bandwidth limitations — i.e., essentially at zero cost.
Under these assumptions, communication events different from those which are
necessary to achieve synchronization may be completely excluded from the an-
alytical model.

We further assume that a parallel program is divided into n subtasks, each
running on a separate processor. In order to reflect a close interaction between
all subtasks, it is assumed that the computation consists of a large number of
successive rounds and that at the end of each round all subtasks perform a global
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Fig. 1. Idealized model of a parallel computation

barrier synchronization. Such a pattern is frequently found in parallel algorithms,
e.g. in iterative numerical computations. An example is presented in Sect. 4.

We also assume that all subtasks require the same amount of processing
time in each round, yielding perfect load distribution over all processors. Global
barrier synchronization, like communication, is assumed to cause no overhead
and no delay. Therefore, synchronization events can be depicted as thin vertical
bars in the space-time diagram of Fig. 1.

Let T denote the CPU time required to compute a single subtask round on
one processor, and let the overall computation require r rounds on n processors.
That is, the computation on n processors requires time 7'(n) = rT. In the absence
of any overhead, the same computation could be executed on one processor
computing all n subtasks, which would ideally require time n7T per round. A
single processor would thus require an elapsed time T'(1) = rnT.

The aim of our analysis is to obtain upper bounds for the achievable speedup
of a parallel computation. Let T'(n) denote the elapsed time required to finish
the computation on n processors. We then define speedup in the usual way as

(1)

In the ideal scenario above, the speedup is — as expected — linear, i.e. S(n) = n.
Under realistic conditions, however, we can hardly expect that a computation
runs as smoothly as shown in Fig. 1. Instead, we typically observe that different
processors require slightly different times to complete their round, even if all of
them perform identical computations. Speed differences usually have their origin
in the underlying operating system or in the runtime environment. For example,
each node may run a timesharing system (a typical situation in a workstation
cluster), and may therefore attribute only a small fraction of the available time
slices to a specific subtask. Also, the operating system may spend some time on
"housekeeping” tasks such as, e.g., dynamic heap defragmentation, swapping, or
garbage collection. As a result of these local speed variations, the processors reach



the global barrier at different times. More specifically, all processes have to wait
at the barrier for the slowest participant of the computation. The enforced idle
times caused by the need to wait for global synchronization lead to performance
losses. It is important to note that these delays are not under the control of the
application program; they will occur even under the (optimistic) assumption of
perfect load distribution.

In order to capture the notion of speed differences in our analytical model,
we introduce so-called time-out intervals, periods where a processor is effectively
not available for the application, for a reason hidden from the programmer.
Furthermore, we partition the continuous execution into small, discrete time
units. According to the assumptions stated above, each round of the application
program requires a certain constant amount of time units where the processor is
available to carry out the computation. Sporadic processor time-outs appear as
time units where the processor is not available for the application subtask. This
is reflected in our model by inserting a certain number of additional time-out
units in each round. Time-outs on one processor lead to the occurrence of idle
time on others at the synchronization barrier. The discrete model that results is
depicted in Fig. 2.
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Fig. 2. Discrete model of a computation suffering from reduced availability
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3 The Potential for Speedup in Parallel Computations

Based on the abstract model above, the impact of sporadic time-outs leading
to speed variations can be analyzed. In this section, we present three different
classes of computations, and derive limits for the speedup that is obtainable
in each case. The models differ in the ratio between the average duration of a
time-out period, denoted ¢, and the duration of a computation round, denoted
T'. Model I assumes that t is substantially smaller than 7', model IT assumes that
t is significantly larger than 7', and model III considers the case where t & T



3.1 ModelI: Short Time-out Periods, Long Rounds

If t « T, then we may choose t as the basic time unit of the discrete model.
Without loss of generality, we assume that ¢t = 1. At each time unit, the processor
may be available — spending its time computing a unit of work for the subtask
— or it may not be available, thus costing the subtask an additional time-out
time unit without actual progress. As ¢ is considered small in comparison with 7T,
we ignore its variation. Instead, we assume that each time unit (independently of
any other) is available for the application with probability a, or that it is a time-
out time unit with probability 1 — a. This implies that time-outs are Bernoulli-
distributed with probability 1 — a.

Each round requires T time units where the processor is available, plus addi-
tional k& time units where the processor happens to be not available. From a local
perspective, a round ends with a final time unit where the processor is available
(several idle or timeout units may follow until the synchronization barrier oc-
curs, but this must be caused by a different processor whose local subtask round
takes longer to complete). Each of the remaining 7'— 1 + k time units may be
either available or not, as shown in Fig. 2. Based on a Bernoulli distribution, the
probability that a specific permutation of available and time-out units occurs
for a round of length 7'+ k is a” (1 — a)*, and therefore the probability for the
occurrence of any such pattern of length T+ & is

priat)= (" T @)

Consequently, the probability that (locally) a round requires at most T+ u time
units is

pria,uw) =3 pr(a ) . 3)

If n processors with availability a compute their rounds independently, then the
probability that they all require at most T + u time units is simply the prod-
uct of the probabilities for each processor, i.e., pr(a,u)”. Thus, the probability
Pr(n,a,u) that ezactly T +u time units are required until the last processor has
finished its round — i.e., that all processors require at most 7" + u time units,
but more than just 74+ u — 1 — is given by

PT(na a,O) = ﬁT(a:O)n
Pr(n,a,u) = pr(a,u)” — pr(a,u—1)" . 4)

The mean elapsed time Tyet(n, @) of a round having a net requirement of 7' time
units and being executed on n processors with average availability @ is then

[ee]

Tact(n,a) = Z(T—l— u)Pr(n,a,u) . (5)

u=0



According to (1), the actual speedup Si(n) achieved by an application of r rounds
running on n processors is obtained by substituting Tyet(n, a) for T, yielding

rnToet(1, a) _ nTaCt(l,a) . (6)
rTact(na Cl) Tact(n: (1)

Speedup Si(n) =

Equation (6) shows that the ideal linear speedup n is reduced by the factor
Tact (1, a)/Tact(n, a). The actual speedup that is achievable is depicted in Fig.3
for some characteristic parameter settings. According to the diagram, this class
of computations has a high potential for speedup. Figure 3 shows that if T is
sufficiently large, then even a substantial decrease in availability will not lead to
major performance degradations. Therefore, a parallelization of such applications
should yield good performance.

So far, we only considered the case where all processors have the same avail-
ability a. If we assume that there is one processor P; whose availability a; is
substantially smaller than a3 = ... = a,, then (4) has to be adapted. Intuitively,
it should be clear that in this case Pr(n,a,u) is dominated by the slowest pro-
cessor Pj. For brevity, we do not present the corresponding equations that can
easily be obtained. Instead, we just state without a formal proof that the follow-
ing ”rule of thumb” characterizes modell: If a computation of type I runs on a

system of n processors Py, ..., P, with availabilities ay, ..., a,, then the observed
availability a,ce of the overall system is roughly given by anct = min{ay, ..., a,}.
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Fig. 3. Speedup of computations where T > ¢



3.2 ModelII: Long Time-out Periods, Short Rounds

In this model, we assume that T < t. Therefore, we may safely choose T as
the basic time unit, assuming without loss of generality that 7" = 1. Figure4
shows the corresponding discrete model. Each round requires one time unit of
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Fig. 4. Discrete model of computation where T' < ¢
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computation, and ideally barrier synchronization should occur once per time
unit. However, the frequency of barriers actually observed is reduced by sporadic
time-out periods, similar to modelI.

Unfortunately, the assumption of time-outs obeying a simple Bernoulli dis-
tribution is inappropriate in the case of modelIl. Note that time-outs — if they
are long — correspond to runs of time-out time units in our discrete model.
Furthermore, it is known from experience that the duration of long time-outs is
subject to considerable variation. As a practical example, we studied the time-
sharing behavior of a highly loaded workstation running SunOS, and we found
that time-out periods due to timeslicing ranged from less than 7 ms to more than
250 ms, with a mean of about 35 ms. Therefore, a more sophisticated distribution
scheme for time-out units is required.

One possibility to reflect the assumptions of our model — time-out bursts
of considerably varying length — is to base the analysis on a so-called Markov-
modulated Bernoulli process (MMBP). In our case, the MMBP consists of two
different states and associated transition probabilities which determine the per-
manence of each state. The two states reflect periods of ”availability” and ” time-
out” of a single processor. The parameters a and 8 denote the probability that
an interval of availability (or time-out, respectively) ends with the next discrete
time unit of the computation. Figure 5 shows the MMBP that was used for the
subsequent analysis.

Our MMBP model has some interesting properties. In particular, it is easy
to show that the mean duration which the MMBP continuously spends in state
AvAILABLE (TIME-oUT) is 1/a (1/8, respectively). And the overall probability
that the MMBP is in state AVAILABLE is 3/(« + ). Thus, we can adjust the
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Fig.5. A Markov-modulated Bernoulli process for model IT

MMBP model so that it simulates arbitrary rates of availability ¢ € (0, 1), and
arbitrary mean time-outs ¢t > 1, by defining § = 1/t and &« = 5(1 — a)/a. But
besides being easily adaptable to our needs, the model may serve as a reasonable
approximation of reality. For example, if we interpret AVAILABLE as ”sunshine”,
TIME-OUT as "rain”, and the time unit 7' as one day, then for &« = 1/4 and
B = 1/3 the process depicted in Fig.5 approximates the weather conditions in
Tel Aviv between December and February [5].

Assuming that time-outs are distributed according to a Markov-modulated
Bernoulli distribution and that each round requires one time unit of computation,
our aim is to determine the average frequency f of barrier synchronizations. Note
that the reciprocal 1/f — the mean time between successive barriers — denotes
the expected time Tyt which elapses per round. In order to obtain f, we convert
our model of computation into a Markov chain model, as shown in Fig.6.

To this end, each discrete step of our original model is characterized by a
state with two attributes, ny and n.,. Attribute n; denotes the number of pro-
cessors which are currently in state TIME-OUT according to the MMBP model.
State attribute ny, denotes the number of processors which have not yet finished
their subtask round, i.e., which have been continuously in state TIME-OUT since
the beginning of the current round. As demonstrated in Fig.6, each instant of
a computation can be uniquely represented by some state s = (n¢, ny). Conse-
quently, each computation corresponds to a state sequence si, s, s3, ..., where
ny € [0, n] and ny € [0,n;] according to the definition.

Figure 6 shows the Markov chain corresponding to a system comprising 2
processors. In this diagram, an arrow between two states s; and s; indicates that
a state transition from s; to s; may occur with positive probability (transitions
from s; to s; have been omitted for simplicity of exposition). If two states are
not connected by a directed edge, then a state transition from one to the other
is impossible according to the definition of the states’ attributes. Note that state
s = (2,0) is not feasible for n = 2. Similar restrictions apply for n > 2 which
reduce the number of feasible states in the Markov model.

Knowing n; and n,y, it is a simple but tedious task to determine the transition
probabilities for each pair (s;, s;) of states as a function of & and § — or ¢ and ¢,
respectively. Several transitions are known to be impossible, yielding transition
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probability 0. For example, n,, can only decrease on each state transition, except
for the case where ny, = 0: If no processor is waiting, then the round is finished,
global synchronization can be established, and the next state transition must
lead to a feasible initial state of the next round. For this initial state, ny = ny
must hold by definition. For the probability p = p(n, ns, nw, ni, nl;) of a feasible
state transition (n¢, ny) — (nf, ni,) in an n processor Markov chain model, the
following equations can be obtained with elementary techniques of probability
theory. We omit the details of the derivation for brevity. Equation (7) denotes
the transition probability pg for a transition from a feasible final state of a round
r; to the first state of the subsequent round r;41. As noted above it follows in
this case that ny, = 0 and n] = nl,, yielding

min{n¢,n—n;}

_ g k _ ny—k n—ng ni—ny+k _ n—ni—k

k=max{0,ns—n}}
(7)

The general probability p for a feasible state transition internalto a round (i.e.,
a transition where ny # 0 and nl, £ ny) is given by

N AL nw—nl anl Nt — Nw kEani—nw—k (70— Tt y(k) ~n—ny—y(k)
p=(o)orrre ()t (N )

w k
where
a=1l-a;f=1-p
max{0,n; — n, + ny — nw} < k< min{n; — ny,n —n, — ny + nl,}
ylk) =n{ —ni+ny —nly +k . (8)

Let {s1,...,s:} denote the set of feasible states. The Markov chain equivalent
of modellIl is completely determined by the matrix M = (m;;),1 < 4,5 < [,
with m;; denoting the probability of transition s; — s;, as given by (7) and (8).
Each computation conforming to model Il may be interpreted as a random walk
through the corresponding Markov chain (and vice versa), where the state that



is entered next is chosen according to the probabilities defined by M. From the
theory of Markov chains it is known that (for our specific model) the probability
q; that state s; is entered during a random walk of infinite length is well-defined
— regardless of the starting point of the walk; in fact, ¢ = (¢q1,...,q) is the
so-called steady-state probability distribution of the Markov chain. It can easily
be shown that ¢ is uniquely defined by the following equation (for a proof, the
interested reader is referred to any standard textbook on Markov chains):

M =gq . (9)

From ¢, the solution of (9), we can immediately derive the frequency f of global
barrier synchronization. Recall that synchronization takes place as soon as the
final processor has completed its subtask round. In the Markov chain model this
corresponds to a state s = (n, ny) where ny = 0. Therefore, it follows that

f= > - (10)

ke{ilsi=(n+,0)}

Let f(n,a,t) denote the frequency obtained for a computation on n processors,
each being available with probability a, and suffering from time-outs of mean
duration ¢. Recall that the mean elapsed time T, per round is 1/f. The speedup
achievable in model Il is then given by

(1) f(n,a,t)
rTact(n) _nf(laa:t)

(11)

Speedup  Sp(n) =

Similar to (6), the potential for linear speedup is reduced by a characteristic
factor, f(n,a,t)/f(1,a,t). To compute the corresponding frequencies, (9) has to
be solved. This can be done, e.g., by choosing an arbitrary initial probability
distribution ¢(®) and by applying the iteration ¢U+1) = ¢()M which quickly
converges. Note, however, that the Markov chain model tends to become rather
large even for moderate values of n. The number of components of ¢ is of the
order O(n?), and the size of M is of the order O(n?); for n = 99, matrix M
comprises about 25,5 million elements.

The speedup diagram corresponding to (11) is depicted in Fig.7. In contrast
to model I, computations belonging to this class are extremely vulnerable by
reduced availability of the processors. Even for a small number of processors a
moderate decrease in the availability ¢ dramatically reduces the performance of
the computation. The negative effects of time-outs are illustrated in Fig.4. In
the example given there, the avarage availability a is about 0.76, but 29 time
units on three processors are required to compute only 14 rounds.

Interestingly, the precise value of the average time-out duration ¢ is not a
decisive factor in modelIl, which makes it robust against parameter changes.
Provided that a is known, a rough estimate of ¢ suffices to make accurate pre-
dictions.
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Fig.7. Speedup of computations where T' < ¢

3.3 ModelIII: Time-out Duration Comparable to Round Duration

To bridge the gap between modell and model IT above, we next assume that
t &~ T'. Unfortunately, none of the previous models can be extended to cover this
situation. If we assume that ¢ = 7" = 1, then modell lacks accuracy because
it neglects the variation of ¢ and the fact that a round may be partly finished
when a time-out interval occurs. Alternatively, we may try to analytically solve
modelIl, assuming that ¢ = 7" = k time units for some k£ > 0. Although feasible
in principle, this is again not a viable approach, simply because the required
number of Markov states would by far exceed our ability to solve (9) numerically.

As we were not aware of a manageable analytical model which satisfactorily
solves the case where t &~ T, we studied model Il by simulating some repre-
sentative cases. To this end, we chose different values for T' from the interval
[20,100], and for ¢t from [T/2,2T] to cover a wide range of possible parameter
settings. A MMBP was used to generate time-out intervals of mean duration
t, while T" was assumed to be constant. Figure8 shows the simulation results
for some of these experiments. A comparison with Fig.7 and Fig. 3 reveals that
model Il is closely related to model I, substantially closer than to modell. This
is particularly true for @ & 1. In this case, the value of t — like in model Il — is
again not decisive, and therefore reliable predictions are feasible even if accurate
parameter values are not available. Roughly speaking, for a & 1 the analytical
results that were formally derived for model Il under the assumption that ¢t > T'
extend to the case where T' &2 ¢t. This means that computations of typelll are
almost as sensitive to reduced availability as computations of typeIl.
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3.4 Efficiency of Models I-TII

In the previous subsections, we saw that for each model the desired optimal
speedup is reduced by a characteristic factor, S(n)/n, the so-called efficiency
of the computation [4]. Efficiency can be interpreted as the fraction of perfect
speedup that can be realized in practice. Figure9 depicts S(n)/n for our three
different models, for an availability a = 0.95. The diagram emphasizes the strong
difference between modell on the one hand, and modelsII and III on the other.
It also shows the close resemblance between the latter two models.

4 Discussion

4.1 Validity and Scope of Results

In order to validate our analysis, we compared our analytical predictions with
measurements obtained by simulation. We found that the results matched per-
fectly which confirms the correctness of (6) and (11). Of course, both simulation
and analysis were based on a specific set of assumptions, and the parameters
that we chose lack concise empirical justification. To explore the scope of our
models, we therefore made further simulation experiments, considerably varying
the parameters ¢ and 7" in each case. We also tested probability distributions
which were quite different from a simple Bernoulli or MMBP model. Our models
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turned out to be rather robust. We found that their general tendency was pre-
served over a wide range of different scenarios, and the speedup results obtained
by simulation were in good accordance with the values predicted by (6) and (11).

Another concern is whether the specific pattern of interaction on which our
analysis has been based — a sequence of rounds, each followed by a global barrier
synchronization — is frequently found in practice. Admittedly, such a tight cou-
pling is a rather pessimistic assumption, and one might argue that most parallel
programs try to restrict synchronization events to only a small subset of all pro-
cessors, thus escaping from the limitations imposed by our analytical results.
To a certain degree, our model compensates for its pessimism by being far too
optimistic in other respects. For example, we assumed that parallelization, com-
munication and synchronization causes no additional overhead, and that perfect
load balance is preserved throughout the computation. It should be noted that
(to a certain extent) load imbalances and parallelization overhead could roughly
be interpreted as additional time-outs according to our model: The processor
”wastes” additional time while computing the next round of the application
program, again leading to the undesirable effect that different processors reach
the barrier at different and unexpected times.

Interestingly, the behavior of some parallel programs closely resembles our
model of global barrier synchronization, even though processors synchronize only
bilaterally. As an example, consider a computation organized as a pipeline of n
stages, where each stage is executed by a separate processor. Each stage receives
its input from its predecessor, and sends its output to its successor. If the in-



terconnection between successive stages is not able to buffer sufficient data in
order to compensate for speed variations, then each processor has to agree with
its neighbors on the beginning of the next round of input and output. In this
case the whole pipeline essentially runs in lockstep, which is comparable to our
assumption of global barrier synchronization. A slightly different, but closely
related scenario — a parallel version of successive over-relaxation (SOR) — is
discussed below in greater detail.

But even if we assume that large-scale barrier synchronization is not found
frequently in parallel programming, one should recall that according to model IT
substantial performance penalties may already result in small, tightly-coupled
groups of less that 10 individuals. Such groups are typical for a large number
of applications and protocols such as, e.g., atomic group communication. This
observation — together with the relative insensitivity of the analytical results
towards parameter changes — strongly suggests that our specific model may
serve as a representative for a wide range of tightly-coupled parallel programs.

4.2 Case Study: SOR

As a practical application of our theoretical results, we studied the Red/Black
Successive Over-Relaxation (SOR) algorithm. SOR is an iterative method for
solving discretized Laplace equations on a rectangular grid. During each iteration
the algorithm considers all non-boundary points of the grid. For each inner point,
SOR computes the average value of its four neighbors in the North, South, East,
and West, and updates the point using this value. Conceptually, the grid is
colored red and black like the squares of a checkerboard. In the red phase, only
the red points are updated, and in the subsequent black phase, only black points
are considered.

For a parallel execution of the SOR algorithm, the grid is partitioned into
regions of consecutive colummes, and each region is assigned to a different proces-
sor. At the beginning and at the end of a phase, each processor has to exchange
the grid values of its leftmost and rightmost column with the corresponding
neighbor. To enforce consistency, synchronization has to ensure that all proces-
sors compute the same round of the iteration. This may be achieved either by a
global barrier synchronization, or by pairwise synchronization between adjacent
grid regions. In any case, all processors are forced to compute the same round
and the same color phase concurrently. Therefore, SOR is a good example for a
parallel program that fits in our formal model of computation.

SOR is a popular benchmark for parallel programming environments. A num-
ber of speedup results have been published for different implementations on var-
ious systems. Among these, several experiments were performed on workstation
clusters connected by a 10 Mb/s Ethernet, e.g., a SOR implementation in the
ORcA environment running on MC68030 processors [3] on top of Amoeba, one
in the AMBER environment running on DEC SRC Firefly shared-memory multi-
processor workstations on top of Topaz [6], and also a realization on top of the
CLOUDS operating system running on Sun3 workstations [1].



Interestingly, all these SOR implementations claim to have good scalability
properties, and in fact they achieved almost linear speedup. However, to obtain
such favorable results it is essential to ensure high availability of the processors
on which the program is executed. Under the conditions of an open workstation
cluster running a general-purpose operating system, the only way to exclude
noticeable time-outs is to run the application on an otherwise idle network.

SOR might be able to tolerate reduced availability provided that its behavior
corresponds to modell of our analysis. In fact, we inspected the (scarce) infor-
mation given in the literature, and we actually found that this was probably the
case for the benchmarks mentioned above. For instance, in all these systems a
single round of a 1000 x 500 SOR problem would have required at the order of
ten or more seconds of CPU time if executed sequentially on a single proces-
sor. This is substantially longer than the time-out periods that typically occur
in workstation clusters, even if we take into account that a parallelization on n
processors would reduce the round duration by a factor of 1/n. Consequently, for
reasonably small n these implementations can safely be assumed to correspond
to our first model which is not critical with respect to availability.

However, the situation radically changes with improved CPU speed. We im-
plemented SOR in our PANDA environment, running on top of SunOS. The
program was executed on lightly loaded SunSparc10 Model 20 workstations con-
nected by a 10 Mb/s Ethernet [2]. In this environment the time required to
compute one iteration of the SOR algorithm on one processor was only about
one second for a grid of 1000 x 500 points. That is, a single phase required less
than 500ms CPU time in the sequential case. An execution on 10 processors
would have reduced T to less than 50 ms. Note that this is close to the expected
duration of time-outs caused, e.g., by timeslicing. As a consequence, the program
closely resembled model Il and — with increasing load in the network — even
model Il of our analysis.

Compared to the previously mentioned realizations running on slower hard-
ware and belonging to classI, the absolute performance of our program was
considerably better, but we achieved only poor scalability due to a CPU avail-
ability of only about 95%. Even with an implementation based on optimized
message passing, the best result that we achieved for a 1000 x 500 problem was
a speedup of 4.0 on five processors. This is in accordance with the predictions
of modelsII and III.

The example shows that speedup and scalability of a program strongly de-
pend on the type of computation being executed. Therefore, in order to analyze
the properties of a runtime environment it is important to select benchmarks
which cover the different models. In modelI, the performance of a program is
probably dominated by the speed of the sequential parts (i.e., the local subtask
rounds) of the computation; a benchmark taken from this class mainly tests the
local support for efficient execution, and the system’s ability to achieve even load
distribution. In contrast to that, benchmarks of classes II-1II are very sensitive
to time-outs. Their performance is a good indicator for the efficiency of commu-
nication, global synchronization, and scheduling — relative to CPU speed.



5 Related Work

There are a number of analytical studies which indicate that — beyond current
technological bottlenecks — there are several fundamental reasons why multi-
threaded, tightly-coupled programs often have poor performance.

Eager et al. [4] relate the efficiency of a parallel execution, E(n) = S(n)/n, to
the inherent parallelism of the computation on the one hand, and to the available
number of processors on the other. In contrast to our study, Eager et al. assume
that time-outs are caused by a lack of conceptual and physical parallelism rather
than by processor preemption. They derive the optimal number of processors
required to maximize F(n)/T(n), leading to both good efficiency and reasonably
short completion time of the computation.

Multithreading has been advocated as a means to utilize intervals which are
otherwise lost because of communication or synchronization delays. Although
appealing in principle, the advantages of multithreading and its potential draw-
backs have to be weighed up. In [9], Saavedra-Barrera et al. show how context
switch costs, cache performance and communication latency affect the perfor-
mance of a multithreaded program execution. In accordance with our results
— but for different reasons — they argue that optimal performance is typically
achieved with only a small number of parallel threads of control per processor.

Multithreading may have a negative impact on performance because each
time slice that is given to a specific thread occurs as a time-out period to all the
others, thus reducing the effective availability that is observed by each competi-
tor. To overcome this difficulty, the system should try to ensure that a thread,
once activated, is not forced to wait for related, but currently preempted activ-
ities. Ideally, such latencies should be minimized by scheduling closely cooper-
ating groups of processes — so-called gangs — at the same time on different
processors, and by preempting the whole gang as soon as the first gang member
runs into a waiting condition. For short delays, busy waiting might be superior
to preemption as it may help to avoid premature context switching of the whole
gang. This is the basic approach discussed by Feitelson and Rudolph [7]. In their
paper, the authors analytically determine the relative performance gains of gang
scheduling, depending on the grain of synchronization. They reach the conclu-
sion that to some extent, rigorous global management of scheduling activities
may help to avoid (or at least to coordinate) the occurrence of time-outs caused
by busy waiting, and to eliminate their impact on the parallel computation.

Related results were obtained by Zahorjan et al. In [10] the authors discuss
the potential benefits of different scheduling disciplines in shared memory multi-
processor systems employing spin locks. Similar to our analysis, they show that
variations in thread execution times may cause substantial spinning overhead if
uncoordinated thread scheduling disciplines are used. They study the benefits
of various scheduling strategies, and they determine the conditions required to
obtain robust parallel execution characteristics.



6 Conclusions

Tightly-coupled parallel programs are notoriously difficult to implement so that
reasonable speedup is achieved. The underlying reasons, however, are still not
fully understood.

Traditionally, performance losses were mainly attributed to the lack of com-
munication and synchronization speed, particularly in distributed environments.
It was generally argued that tight coupling in the computation should be ade-
quately reflected by tightly-coupled hardware architectures — i.e., multicomput-
ers — to satisfactorily solve the problem. In this paper, we showed that such a
view is probably too optimistic. We found that certain types of programs are ex-
tremely sensitive to sporadic time-outs. They badly fail to achieve linear speedup
even if we assume perfect load balance and highly efficient hardware support for
communication and synchronization.

Compared with conventional workstation clusters, it is generally assumed
that multiprocessor systems offer a higher availability a ~ 1. For reasons of
cost effectiveness, however, there is a trend to employ multithreading and time-
sharing even for the CPUs of multiprocessor machines. While this may help to
better utilize idle times caused by communication latencies, it also increases the
probability of time-outs which reduces availability. To a certain degree, gang
scheduling may help to overcome the difficulties, but its potential is limited by
a bounded number of processors and by the general inability to identify the
members of dynamically changing gangs. This implies that the ongoing techno-
logical progress will probably not lead to a corresponding increase in speedup
for tightly-coupled computations. On the contrary: As processors become faster,
the duration of the sequential phases of a parallel computation will further de-
crease, and the impact of processor availability will gain importance, as our SOR
example illustrates.

A general guideline can be derived from our analysis. Runtime systems should
be designed so that computations of classes IT and III can be avoided. In order to
ensure that ¢t < T holds, preemptive multithreading should — where necessary
— be done at a fine granule, even if more frequent context switching leads to
more overhead. Furthermore, for memory management and garbage collection
on-the-fly strategies should be given preference over stop-and-collect approaches,
again even at the expense of increased complexity.
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