
Verifying w-Regular Properties
for a Subclass of Linear Hybrid Systems

Ahmed Bouajjani Riadh Robbana

VERIMAG, Miniparc-Zirst, Rue Lavoisier 38330 Montbonnot St-Martin, France.
Ahmed. Bouaj jani@ imag. fr, Riadh. Robbana@ imag. Ir

Abs t r ac t . We address the problem of verifying untimed w-regular prop-
erties for a subclass of linear hybrid systems, i.e., finite transition graphs
supplied with real-valued variables that change continuously with integer
rates at each control location. The systems we consider are systems with
two variables, one of them must be monotonic (e.g., with rates either 0
or 1) whereas the other One can have rates either -1 , O, or 1. We prove
that for these systems, the verification problem of w-regular properties is
decidable. For that, we show that these systems generate w-context-free
sets of state sequences.

1 I n t r o d u c t i o n

Hybrid systems are obtained as combinations of discrete and continuous systems.
They appear for instance in all the applications where some physical process is
controled by a computer.

Natural models of hybrid systems are au tomata supplied with real-valued
variables that change continuously at each control location [12, 2, 14]. The dis-
crete moves between control locations are conditioned by constraints on the vari-
ables of the system, and their execution may reset some of the variables. Linear
hybrid systems correspond to the case where all the variables evolve with integer
rates. Interesting particular cases of linear hybrid systems have been identified in
the l i terature by imposing some conditions on their discrete and/or continuous
dynamics. We mention for instance the timed graphs [1] where all the variables
are clocks, i.e., their rates are always 1, and integrator graphs [2, 11] where all
the variables (integrators) may have rates either 0 or 1; examples of linear hybrid
systems with restrictions on their discrete dynamics are the piecewise constant
derivative systems [3]. Timed graphs are widely used for the description of real-
t ime systems. They allow to constrain the t ime distance between two events.
Integrator graphs allow to reason about the more general notion of duration of
state properties [4]. The duration of a property in some computat ion segment is
the accmnulated t ime that this property holds in the computation.

In this paper, we address the verification problem of extended integrator
graphs (EIG's) , where the variables may have rates either - 1 , 0, or 1 ({ -1 , 0, 1}-
variables). The consideration of negative rates allows for instance to reason about
differences between durations.

The existing results on the verification of subclasses of linear hybrid systems
consider in their major i ty the case of invariance properties. The verification
problem for these properties reduces to (the complement of) the reachability

438

problem in the considered classes of systems. It has been shown that this problem
is undecidable even for integrator graphs with only one integrator (and many
clocks) [10]. As for EIG's, it suffices to consider the subclass of systems with one
clock and two {-1, 0, 1}-variables to simulate any 2-counter machine [11].

In this work, we consider the case of two dimentional EIG's (2-dim EIG's),
i.e., EIG's with two variables. We prove mainly that for 2-dim EIG's with one
integrator and one {-1, 0, 1}-variable (single-integrator 2-dim EIG's), the verifi-
cation problem of all untimed w-regular (Muller w-automata definable) proper-
ties is decidable. We obtain this result by proving that the sets of state sequences
(untimed traces) generated by these systems are w-context-free (pushdown w-
automata definable). Then, we use the fact that the inclusion problem of w-
context-free languages in w-regular ones is decidable [6].

To prove that single-integrator 2-dim EIG's generates w-context-free sets
of state sequences, we adopt a partition-based technique. We define an infinite
partition of the dense space of valuations of the variables (~2) which is boundedly
finite, i.e., finite on every bounded subplan of E~ 2, and we prove that starting
from every control location with two valuations in the same class, the same sets
of state sequences can be generated. In other words, the partition we consider
is compatible with trace equivalence, and despite the fact that it is infinite, it
is encodable using one counter. However, we show that this partition is not a
bisinmlation and cannot be used to reason about branching-time properties in
general. Moreover, we prove that there exist single-integrator 2-dim EIG's such
that there is no boundedly finite bisimulation on their transition graph.

The remainder of this paper is organized as-follows. In Section 2, we intro-
duce the EIG's. In Section 3, we recall the definition of w-automata. In Section
4, we introduce the logic ECTL* which is used to express linear-time as well
as branching-time untimed properties of EIG's. In Section 5, we show the re-
lation between behavioural equivalences as trace equivalence and bisimulation,
and logical equivalences corresponding to fragments of ECTL*. In Section 6, we
introduce some basic partitions of the 2-dim valuations (~2). Sections 7 and
8 concern the existence of property preserving boundedly finite partitions. In
Section 7, we consider the simple case of 2-dim integrator graphs, and in Section
8, we investigate the more general case of single-integrator 2-dim EIG's. Section
9 is dedicated to the verification problem. Finally, concluding remarks are given
in Section 10.

2 Extended Integrator Graphs
We introduce in this section models of hybrid'systems, we call extended integrator
graphs (EIG for short), that are particular cases of linear hybrid systems intro-
duced in [12, 2, 14]. Roughly speaking, they consist of control transition graphs
with finitely many locations, supplied with real valued variables that change
continuously at each control location with rates in (- 1 , 0, 1}. These models gen-
eralize the so-called timed graphs [1] where all the variables change with rate 1,
and integrator graphs where the variables may have rates in (0, 1} [2, 11].

Before giving the formal definition of EIG's, let us introduce simple linear
constraints that are used in their enabling guards. Let Y be a set of real valued

439

variables. A simple linear constraint over 1) is a boolean combina t ion of con-
s t ra in ts of the fo rm x ~ e where a: E P, e is an integer constant. (c E ~) , and

E {<,_<}; the symbols < and < represent the usual (strict and nonstr ict)
order ing rela t ions over reals. Let Coast(l;) be the set of s imple linear constraints
over 1~'. We use let ters f , g , . . . to range over the set Const(~;). A valuation over
17 is a funct ion in IV --~ ~] . A sat isfact ion relat ion is defined as usual between
va lua t ions and constraints . Given valuat ion u and f E Coast(I;), we denote by
u ~ f the fact t ha t u satisfies f , and for every X C_ 12, we denote by u[X ~ 0]
the va lua t ion which associates wi th each variable in X the value 0, and coincides
with u on all the other variables.

Now, let P be a finite set of a tomic proposi t ions and Z: = 2 ~'. We call state
any e lement of ~ , and state sequence any infinite sequence in L -w.

An extended in tegra tor g raph ~ /ove r Z' consists of the following components :

- X, a finite set of variables,
- s a finite set of control locations,
- E, a set of edges. Each edge is a tuple (g, g, X, gt) where g,g~ E L: are the

source and ta rge t locations, g E Const(X) is an enabl ing guard, and X C X
is the set of the reset variables,

- H , a funct ion in [1: --~ S] , associat ing a set of a tomic proposi t ions (a s ta te)
with each locat ion,

- 0, a funct ion in [s • X ~ { - 1 , 0 , 1}], associat ing with each location g and
var iable x, a ra te at which x changes continuously at g.

We say t ha t a var iable x is a clock (resp. integrator) if for every control
locat ion t , we have 0(~, x) = 1 (resp. O(g, x) E {0, 1}). Then, a timed graph (T G)
is an E I G such tha t all its variables are clocks, whereas an integrator graph (IG)
is an E IG such t h a t all its variables are integrators . Finally, for every n _> 1, an
n -d im E I G (resp. n -d im IG) is an E IG (resp. IG) with exact ly n variables.

We define hereaf ter the not ions of configuration, compu ta t i on sequence, and
s ta te sequence of an EIG.

A configuration of 7-/ is a pair (~,u) where s E s and u E IX ~ ~] is a
va lua t ion over X. We denote by Conf(7"l) the set of all possible configurations of
7{. A timed configuration of ~ is a tr iplet (g, u, t} where (g, u) is a configuration,
and t E 1R>0 is a t ime s t amp .

Given a va lua t ion u of the variables, a control location g, and t E 1R>0, we
denote by [u + t]e the va lua t ion u' such tha t Yx E 2(. u '(z) = u(x) + 0(~, z) . t,
i.e., the va lua t ion of the variables ob ta ined f rom u by s taying at location g for
an a m o u n t of t ime t. Then, a timed computation sequence of 7 / s t a r t i n g f rom a
configurat ion (g, u) is an infinite sequence of t imed configurations ((~i, ui, ti))ic~
such tha t (~, u, O) = (to, uo, to), Vi E w. ti+l >_ ti, l i m i _ ~ t i ---- oo, and Vi E w,

- either gi = gi+l and a + l = [ui + (ti+l - ti)]e,,
- or ti = ti+l and ~(t i , g ,X , gi+l) E ~. vi ~ g, and ui+l = ui[X ~-* 0].

Notice t ha t the condit ion l i m i _ ~ ti = ~ ensures tha t t ime can go beyong
any value; t imed c o m p u t a t i o n sequences are then called time diverging.

440

Every t imed computat ion sequence generates a computation sequence by ab-
stracting from time stamps: ((~i, ui, ti))ie~ generates ((/i, ui))i~,~. Then, given a
configuration ~ E Conf (~) , we denote by Comp(tr the set of computat ion
sequences generated by the t imed computat ions of "H starting from n.

Finally, every computat ion sequence ((gi, vi))ie~ generates a state sequence
(/1(e~))~e~,. Given a configuration to, We denote by T(tc, 'H) the s e t o f state
sequences generated by the computat ion sequences in Comp(g,'H).

3 M u l l e r w - a u t o m a t a

We recall in this section the definition of Muller w-automata [13] and some basic
results concerning them which are relevant to this paper.

Let V be a finite alphabet. A Muller w-automaton over V is a tuple ,4 =
(Q, qI, 6, 9 c) where Q is a finite set of control states, q1 E Q is the initial control
state, 6 C Q • V • Q is a labelled transition relation, and 5 c C 2 Q is a collection
of repet'ition sets. Given a sequence r = (s i) i ~ E V ~, a run of ,4 over c~ is an
infinite sequence p -= (qi)ie~ such that qo = ql, and Vi E w. (qi, si, qi+l) E 6.

Moreover, the run p over o" is accepting if {q E Q : 3 i E w. qi --= q} E 5 r . Then,
a sequence a E V ~' is accepted by the au tomaton .4 if it has an accepting run in
A. We denote by L(A) the set of sequences accepted by A. Muller w-automata
definable sets are called w-regular la~lguages. It is well known that the class of w-
regular languages is closed under all boolean operations, and that the emptiness
problem of w-regular languages is decidable [17].

The definition above can be extended staightforwardly (as for au tomata on
finite words) to 1-counter Muller ~ - a u t o m a t a and Pushdown Muller w-automata,
the formers being obviously particular cases of the latters. Pushdown Muller w-
au toma ta define ~-context-free languages. It has been shown that the problem
whether some w-context-free language is included in some w-regular one is de-
cidable; this is due to the fact that the intersection of an w-context-free language
with an w-regular language is an w-context-free language, and that the emptiness
problem of w-context-free languages is decidable [6].

4 The logic ECTL*
We introduce in this section the branching-time extended temporal logic ECTL*
[7, 16]. This logic is defined as the union of stratified logics ECTL~ for every
n E w. The set of formulas of ECTL~ is simply the set of atomic propositions P ,
and for every n >_ 1, the set of formulas of ECTL~ is the smallest set of formulas
such that:

- ECTL~_ 1 _C ECTL*,
- if ~ E ECTL~, then ~ E ECTL~,
- if ~1, ~2 E ECTL~, then !zl V ~2 E ECTL*
- if~5 is a finite set of E C T L * 1 formulas, and y)(~5) is an w-regular language

over the alphabet 2 ~, then 3$2(~) E ECTL~.

We consider as abbreviations the usual boolean connectives as conjunction
(A) and implication (=:~), as well as Vtg(O) = -~3~(~) where ~ (r = 2 r - $2(~).

441

Let 7-/be an EIG. Then, formulas of ECTL* are interpreted as sets of configu-
rations of ~ . Intuitively, the formulas ~/2(~) represents the set of configurations
from which there exists a computation sequence (n i) i ~ satisfying the path con-
s t ra in t /2 (~) , i.e., the sequence in (2~) ~ corresponding to the subsets of r that
are satisfied successively by the tci's belongs to the language Y2(~5). The inter-
pretation of ECTL* formulas is defined inductively in the following manner:

- ~P]={ (g ,u) EConf(Tl) : P E / / (g) } ,
- [- ~ = {,~ ~ C o n y (U) : ~ r i ~] } ,

where, for every i E ,z, T~(g i) = {~ E ~) : gi E [~]]}.

It is easy to see that the branching-time temporal logics CTL [5] and CTL*
[8] are less expressive than ECTL*. For every n E w, let CTLn and CTL n be
the fragments of ECTL~ corresponding respectively to CTL and CTL* formulas
with at most n nested path quantifiers (B's).

It can be observed also that ECTL* can express all linear-time w-regular
properties. Indeed, these properties correspond to ECTL~ formulas of the form
V~(Tv). Hence, ECTL~ subsumes linear-time temporal logics as PTL [15] and
ETL [19], as well as the linear-time p-calculus [18].

5 B e h a v i o u r a l vs . L o g i c a l E q u i v a l e n c e s

We present in this section results relating bisimulation-based behavioural equiv-
alences with the equivalences induced by the logic ECTL* and its fragments
ECTL,~, for every n E w.

First of all, we introduce the notion of transition graph associated with an
EIG. Let us fix an EIG 7-/. We consider the transition relation between the
configurations ofT-/defined by: (g, u) I> (t', u') iffeither g = E and 3t E ~_>0- u~ =
[u + t]e, or 3(t, g, X, if) E g. u ~ g and u' = u[X ~-. 0]. Then, the transition
graph associated with ?-I is ~n = (Conf(7"l), I>).

Intuitively, the relation I> represents either time progress transitions at a
same location or discrete transitions between control locations. Notice that for
every computation sequence (([i, ui))i~,~, Vi E a~. (gi, ui) I> (gi+l, ~i+1).

A bisimulation over ~74 is any symetric binary relation R between configu-
rations of 7-/such that (el, ul}R([~, u2) iff

-- /7(~1) : rf(~2) , and
-- (~1, /]1) D g l implies that 392. ([2, u2) I> g2 and tqRg2.

We denote by ,,~ the greatest bisimulation over G~. It can be easily verified that
--~ is an equivalence. The relation -~ can be extended pointwisely to computation
sequences. The following lemma relates bisimilarity between configurations and
bisimilarity between computation sequences.

L e m m a 5.1 gtr ~' E Conf(Tl) , ~r ~ x' implies that V(gl)iew E Comp(tr
3 (, ~) i ~ . ~ Co,np(,r such that Vi ~ w. ,r ~ ,~.

442

Using Lemma 5.1, the following preservation result can be proved by induc-
tion on the structure of ECTL* formulas.

P r o p o s i t i o n 5.1 For every configurations tr and ~', and every ECTL* formula
~ , ~ ~ ~-' i , n p l i e ~ that ~ C M i ff ~' E M "

Now, we introduce a decreasing family (,.~,~),e~ of equivalences between con-
figurations, and show that for every n E w, ~,~ is compatible with (included in)
the equivalence induced by ECTL*. The family ("~-),~e~ is defined by:

- (e, u} "0 (e', u') iff H (0 = H(f') ,
-- Vn E r ~;1 "~n+l K2 iff

�9 V(n~)ie~ E Comp(~ ' ,T t) .3 (n i) ie~ E Comp(~,7-l).Vi E w. ~i "~, ~ .

It can be verified that for every n E a~, ~ . is indeed an equivalence. Notice
that for every configurations n and ~', ~ "~1 ~' iff T(~ , 7/) = T(~ ' , 7-l), i.e., "~1
corresponds to trace equivalence.

We can prove similarly to Proposition 5.1, using induction on natural num-
bers, that for every n E ~, the equivalence ,.~,~ preserves the formulas of ECTL~.

P r o p o s i t i o n 5.2 For every n E w , every configurations ~ and n', and every
ECTL,*~ f o rm , la ~, ~ ..~,~ ~' implies lhat ~ E ~[~]] iff n' G [[~.

6 B a s i c P a r t i t i o n s

We focus ill the sequel on the case of 2-dim EIG's. Let 7-/be such a system, and
let x and y be the its two variables.

We introduce here some basic equivalences on [{x,y} ~ /R] that will be
combined in the next sections to define compatible equivalences with fragments
of ECTL*. These basic equivalences are parametrized by a natural number n;
they correspond to slicing the plan ~ 2 w.r.t, the unit 1/2", either according to
horizontal or to vertical lines, or according to positive or to negative diagonals.

Let us first define the horizontal slicing. For every n E w, we define an
equivalence ---~,. between valuations in the following manner: Vu, u' E [{~, y}
/R], u ---*,~ u' if Vk E 2g,

- u(y) = k/2" iff u'(y) = k/2", and
- k/2 ~ < . (y) < (k + 1)12" i f ~/2" < . '(~) < (k + 1)/2".

The vertical slicing is defined in a similar way. For that, we introduce, for
every n E w, an equivalence between valuations denoted by T,~ and which is
defined as the relation --*. above by considering the variable x instead of y.

Now, let us define the slicing according to positive diagonals. It corresponds
to an equivalence/~n which is defined, for every n E w, in the following manner:
W,, u' E [{~, y} - - /R] , u / ~ u' if Vk E 2g,

- u(y) - u(x) = k /2" iff u'(y) - u ' (x) = k /2" , and

443

- k / 2 n < u (y) -- u(x) < (k + 1) / 2 n i f f k / 2 n < u'(y) - u ' (x) < (k + 1) / 2 n.

The slicing according to negative diagonals corresponds to an equivalence
"N, which is defined, for every n E w, as the relation /~n above by replacing
"u(y) - u(x)" (resp. " l / (y) - u'(x)") by "u(y) + u(x)" (resp. "u'(y) + u ' (x)") .

We define other basic equivalences obtained from the ones above by intro-
ducing a constraint which determines the subplan where the slicing is applied.
L e t ~ s t a n d s for either ~ , 1 , /~ , or "x.~. Then, given f E Const({x , y}), we have
Vu, u' E [{x, y} ~ / ~] , u - -~ u' if (u ~ f iff u' ~ f , and if u ~ f then u ~.~,~ u').

7 A s i m p l e c a s e : 2 - d i m i n t e g r a t o r g r a p h s

We start by considering the relatively simple case of 2-dim IG's. We show that
there exists a finite-index equivalence ~ on valuations which induces on the
configurations of any 2-dim IG an equivalence that preserves all the formulas of
ECTL*, i.e., such that configurations with the same location and ~-equivalent
valuations satisfy the same ECTL* formulas.

Let ~/ be a 2-dim IG, and let x and y be its integrators. First of all, let us
introduce some notations. Let z stands for x or y. Then, we denote by Cz the
greatest constant which is compared with z in the guards of 7-/, and we denote
by f : the constraint 0 < z < Cz.

Then, the equivalence ~ is defined by .~=--*~u ('1 ~{~ A / z { ,^]u. Notice
that ~ is actually the same equivalence considered in [1] to reason about t imed
graphs.

It can be seen that for every valuations u and u ~, and every guard g, if u ~ u ~
then u ~ g iff u' ~ g. This is due to the fact that variables are compared only
with integer constants, and that since the variables x and y are monotonic (never
decrease), all their values beyond the constants cx and e u respectively satisfy
the same guards. Then, it can be proved straightforwardly that ~ induces a
bisimulation over the transition graph g7 u.

L e m m a 7.1 For every locations g and ~, and every valuations u ,u t and fl,
u ~ u ~ implies that if (e, 1)) I> (s then there exists a valuation t d such that

Since .,~ is the greatest bisimulation over Gn, we deduce from Lemma 7.1
that if u .~ u', then (t~, u} --~ (~, u'} for every location g. Then, by Proposition 5.1,
we obtain the following result.

P r o p o s i t i o n 7.1 For every location g of 7-(, every valuations v and v', and
every ECTL* formula ~, u ~ u' implies that (~, u) E ~] if] {~, u') E ~] .

8 O n e i n t e g r a t o r a n d o n e n o n m o n o t o n i c v a r i a b l e

We consider now the case of 2-dim EIG's with one integrator and one { -1 , 0, 1}-
variable (single-integrator 2-dim EIG's). We prove that in general, there is no

444

partition of the set of valuations (1~ 2) that preserves ECTL*, and which is bound-
edly finite, i.e., finite on every bounded subplan of ~2 . Actually, we show that
this fact holds even if we only consider the fragment CTL~. Indeed, we exhibit
a system where CTL~ formulas can distinguish configurations with arbitrarily
close valuations (points in ~"~). On the other hand, we prove that there exists
a boundedly finite equivalence on valuations which preserves all the formulas in
ECTL~, for any system. This allows to consider all w-regular properties.

Let us fix for the remainder of this section a 2-dim EIG 7 /wi th two variables
x and y, and suppose that x is an integrator (y being any { -1 , 0, 1}-variable).

8.1 A f a m i l y o f p a r t i t i o n s

We introduce a decreasing family (---~)nE~ of equivalences on valuations defined
as follows:

_ . . . 0 = ~ 2

- Vn > 0 22,~+~ = =2,~ n ~ , ~ n [~ ,

The following picture represents some members of the family (2 n) , ~

""1 ~---2

/ \ X>(
~'3 ~'~4

Notice that each equivalence ___,~ is boundedly finite. For every n E w, we
call 2,,-boundary region may equivalence class of 2,~ which is either a point or a
line. Notice that, 21-boundary regions are equivalence classes of 22. Moreover,
observe that 21 is compatible with the equivalence induced by the guards of
7"/, i.e., for every valuations u and u', u ---1 u' implies that for every guard g
of 7-/, u ~ g iff u' ~ g. This is due to the fact that variables are tested with
integer constants, and also to the fact that all the values of x beyond cx satisfy"
the same guards because x is a monotonic variable. It is clear that we cannot
bound the parti t ion ---t in the dimension of y (as we do concerning z) since y is
nonmonotonic and unbounded.

8.2 A compatible partition for ECTL~
We show hereafter that 2 , induces on configurations an equivalence which is
included in "1 , and hence, it preseves ECTL~.

First of all, using the fact that 2--1 is compatible with the equivalence induced
by the guards of 7"/, and that _~l-boundary regions are equivalence classes of 22,
we can prove the following lemma.

Lemma 8.1 For every valuations u and u', if u 22 u' then, whenever (g, u) =
(e0, u0) I>.-. (era, u,,) I> (e', #) with Vi e {0,-. . , rn}. u ~-1 u~ and # is in some
~-l-boundary region, necessarily ([, u') = ([o, u~) l>.. . (gin, u~m} l> ([', #') where
Vi G {0, . . ' , m}. Vo ~-1 v~, and # 22 1 a'.

445

The following pictures illustrate Lemma 8.1 on some typical examples.

Notice that Lemma 8.1 does not hold when we consider a target configuration
(g, p) where p is not necessarily in some -~l-boundary region.

Nov,., let tr = (C, u) and tr ~ = (~, u ~) be two configurations such that u ~-2 u',
and consider a computation sequence p -- ((gi, ~i))ie~ starting from g. Let us
suppose without loss of generality that p is such that for every two configurations
(g~, u,.} and (gj, uj) with j > i, such that u~ and uj are in two different non ~_~-
boundary regions, there exists some configuration (gk, uk) with i < k < j , such
that uk is in some ~_l-boundary region. By the fact that time increases beyond
any integer in a computation sequence (they are genetared by time-divergent
t imed computation sequences), and since at any time, a variable with rate 1 or
- 1 will eventually take some integer value (unless it is reset, and then it becomes
integer), it can be seen that necessarily, either there exists an infinite sequence
of indices (i j) je~ such that Vj E w. uij is in some --1-boundary region, or a
finite sequence of indices " m (zj)j=l, such that Vj. 0 _< j _< m - 1. uij is in some
~_l-boundary region, uim(x) > c~, fract(ui , , (y)) 7k O, and Vi > ira-1, ui N1 Ui.,.
Using Lemma 8.1 and the fact that -1-equivalent valuations satisfy the same
guards, we can prove that in both cases, there exists a computation sequence of
~ which visits exactly the same locations, i.e., we have the following result.

L e m m a 8.2 For every location g, and every valuations u and u ~, u ~-2 u ~ implies
that V((ei, ud),:s,o ~ Comp((e, u) ,U) . 3((el, u[))ie~ ~ Comp((e, u'),V-t).

Notice that for every valuations u and u ~, and every location g, we have
trivially (t, u) N0 (e,u~). Then, using Lemma 8.2, we deduce that for every
valuations u and u I, u __: u' implies that (g, u} "~I (~, ul} for every location g.
In other words, ~2 is included in trace equivalence, i.e., u ~-2 u ~ implies that
T({g, u), 7t) = T((e, u~), 7-/). ttence, by Proposition 5.2, we deduce:

P r o p o s i t i o n 8.1 Let ~l be a 2-dim EIG where one of the variables (x) is an in-
tegrator. Then, for every location g, every valuations u and u I, and every ECTL~
formula ~, u ~-2 u' implies that (g, u) E [~] iff (t, u') E [~].

8.3 U n e o m p a t i b i l i t y w i t h CTL~

It Can be observed that, for every n E w, there exists a system where the equiv-
alence ~-n does not induce a bisimulation on its configurations. For instance, it
can be seen on the pictures illustrating Lemma 8.1 that from two ~_2-equivalent
points we can reach different __2-boundary regions through control locations

446

where y has the rate 0. Hence, each of the equivalences ~n is not suitable for
the verification of general branching-time properties.

We prove that actually, there is no boundedly finite partit ion of the set of
valuations which induces a bisimulation on the configurations of every system.
Indeed, we show that there exists a system ,9 and a family of CTL~ formulas
(~n)n_>2 such that, for every n _> 2, there are configurations of $ with ___n-
equivalent valuations which are distinguished by the formula 9 , .

The system $ is represented in the figure below. In this system, the variable
x is a clock, and hence, we omit its rate at each control location (it is always
equal to 1) and give only the rates of the variable y (when they are relevant).

~ x=l _ ~

y 0

Q ~2

go ~=l/x:=O
p _-_

y = l

el g4 ~5

Now, let us define the family of formulas (9n),>2. First, let us introduce the
CTL1 formulas r = 3((at-~lV at-gu)U at-~3), and r = 3((at-61V at-Q)U at-65).
Then, for every n > 2, we define the CTL~ formula ~ , = 3r where

- ~/'2 ---- r A 01),
- Vk > 1. r -- at-s163 A r
- Vk > 2. r = at-~l/4(at-~l A -~r A (at-~lUat-~0 A r

Let us see how the formula 92 distinguishes between configurations with
_~-equivalent valuations. First of all, consider the formulas 80 and r involved
in ~2. The formula b0 (resp. r is satisfied by the configurations from which,
without visiting 60, the configuration (t3, (1,0)) (resp. (6~, (1, 1))) is reachable.
Then, 00 (resp. 01) is satified by precisely the configurations that are either at
location gl and satisfying y + x < 1 (resp. y - x > 0), or at location ~2 (resp. t4)
and satisfying y + x = 1 (resp. y - x = 0).

The formula 42 corresponds to the configurations that can reach some config-
uration at 64 satisfying r (hence, satisfying y - x = 0), and all the intermediary
configurations satisfy (50 (hence, they must satisfy y + x < 1).

Consider the valuations u2 = (0, 0.7) and ~,~ = (0, 0.3). It is clear that u2 -~2
v ' . However, it can be seen that (~1, u2) does not satisfy ~2 since in order to
reach a configuration at 64 which satisfies r we have to wait at ~1 until the
point (0.7, 0.7) which does not satisfy r On the other hand, it is easy to see
that (CI, u~) satisfies ~2.

Now, let us consider the formula 93. This formula is satisfied by the configura-
tions at location t0 from which it is possible to reach ~i with some configuration

447

that satisfies ~2. Notice, that in the definition of ~3 above, we use (the path
formula) ~2 instead of (the state formula) ~2; it can be seen that this gives an
equivalent formula which is in CTL~ whereas the use of ~2 gives (unnecessarily) a
CTL~ formula. Then, consider the valuations u3 = (0.9, 0.8) and u~ = (0.7, 0.6).
These valuations are ~3-equivalent, however, it can be seen that (go, u3) does
not satisfy ~z3 whereas (t0, u~) does.

Finally, let us consider the formula ~4. It is satisfied by configurations which
are at gt, and by staying at gl until reaching some point where 01 is false,
i.e., where x > y, they can reach some configuration which satisfies ~3. Then,
consider the valuations u4 = (0, 0.8) and u~ = (0, 0.6). Again, it can be seen that
these valuations are ~4-equivalent but the configurations (el, u4) and <el, u~} are
distinguished by ~4- It is easy to see that this process can be repeated forever.
The following picture illustrates the discussion above.

,,4 . .x,, i
v; ::

!

%;'"i'"""

P r o p o s i t i o n 8.2 Vn > 2, there exist a location g in S (to or t l) and two valu-
atio,,s u,~ and J , such that un ~-,~ u~, (g, an) ~ [~n], and (g, p:~) E ~n] .

It can be seen that for every two points in [0, 1] 2, there exists n such that
these points are distinguished by _~,~. Hence, any finite partition of [0, 1] 2 is
included in some "~n. Thus, a consequence of Proposition 8.2 and Proposition
5.1 is that there is no boundedly finite equivalence on valuations which can
induce a bisimulation on the configurations of 8.

T h e o r e m 8.1 There exists a single-clock 2-dim EIG S such that, for every
boundedly finite equivalence ~ on valuations, there exists a location g in $ and
two valuations v and u' such that u ~- u ~ and (t, v) 7~ (g, u~).

9 T h e V e r i f i c a t i o n P r o b l e m

In this section, we present decidability results for the verification problem of sys-
tems we have considered in the previous sections. We prove mainly that the ver-
ification problem of w-regular properties (ECTL~ formulas) for single-integrator
2-dim EIG's is decidable. For that, we show that this problem can be reduced to
the inclusion problem of 1-counter w-context-free languages in w-regular ones.

Let us start with the simple case of 2-dim IG's. We show that in this case,
the verification problem of all ECTL* formulas is decidable. Indeed, by Propo-
sition 7.1, verifying ECTL* formulas for such a system 7/ can be done by a

448

considering the discrete transition graph 7~7~ obtained as the quotient of the
dense transition graph GT~ w.r.t, the equivalence on configurations induced by
~. Moreover, since the equivalence ~ is finite-index the graph ~ n is finite, it
corresponds exactly to the region graph which is used in [1] for the verification
of timed graphs. However, all the paths in T ~ does not correspond necessarily
to computation sequence since the latters must be generated by time-diverging
timed computations. Therefore, we define a path constraint (w-regular property)
nonZeno which is satisified by a path of ~ n if and only if it corresponds to a
computation sequence. The definition of nonZeno is explained later in the more
general case of single-integrator 2-dim EIG's. Then, given a formula ~ of ECTL*,
we consider the formula tnz which is obtained from ~ by replacing recursively
each subformula of the form ~t2 by the formula 3(nonZenotq f2). Then, a config-
uration (~, v / of?/satisfies the formula ~ if and only if the node (/?, [v]~) of 7~n,
where [v]= is the ~-equivalence class of t,, satisfies the formulas Tnz. Since the
verification problem of ECTL* for finite-state systems is decidable, we deduce
the following fact.

P r o p o s i t i o n 9.1 The verification problem of 2-dim IG's w.r.t. ECTL* formulas
is decidable.

Now, let us consider the case of single-integrator 2-dim EIG's, and let 7-/be
such a system. As in the previous case, by Proposition 8.1, reasoning about w-
regular properties (or ECTL~ properties) of single-integrator 2-dim EIG's can be
done by considering the quotient of the transition graph w.r.t, the equivalence
induced by ~-2. However, by contrast with the case of 2-dim IG's, this quotient is
infinite because _~.~ has an infinite number of classes. Nevetheless, this graph can
fold up on a 1-counter automaton An, the counter represents the integer part of
the {-1, 0, 1}-variable y (i.e., [yJ), and the finite set of control nodes corresponds
to the following informations: a control location of 7-/, is fract(y) = 0 or not, is
~: > ez or not, and in case x < e,, the interval [n, n] or (n, n + 1) (with integer
bounds) which contains z, and how fract(x) - fract(y) and fract(z) + fracl.(y)
are compared with 0 and 1 respectively.

It remains to guaranty that only paths corresponding to time diverging com-
putations are considered. For that, we introduce a Muller acceptance condition
which is described below.

First of all, we consider additional atomic propositions in order to take into
account, in the definition of the control nodes, of the additional information
whether a node corresponds to a _~l-boundary region and is the target of only
time progress transitions from nodes with non ~l-boundary regions. Nodes sat-
isfying this condition allow to observe the progress of time, Thus, a path which
visits infinitely often such a node must be accepted, and hence, any set which
contains such a node is considered as a repetition set.

However, there are two other kinds of paths that correspond to time diverging
computations. Indeed, there are time-diverging computations that do not cross
infinitly many times ~l-boundary regions using time progress transitions.

The first kind of path we must accept are those corresponding to compu-
tations that, after some point, stay forever at some unbounded ~-2 equivalence

449

class, i.e., where x > ca and y remains in some open interval (n , n + 1). For that,
we consider as repetition set any strongly connected set of nodes in the transi-
tion graph of the automaton .4~ such that all its nodes correspond to a same
such an unbounded class, and where, either there is some node correponding to
a location ~ with CO(g, y) = 0, or there are two nodes corresponding to locations
el and ~2 with CO(s = 1 and O(g2,y) = -1 . In both cases, we can indeed
construct a t ime diverging computation where from some point, the value of y is
either always the same (using the node where its rate is 0), or oscillates between
two fixed values that are small enough to stay in the same class (this is possible
since the considered class is open):

The other kind of paths we must accept are those corresponding for instance
to computations that, after some point, go from some configuration (g, u} such
that v(x) = 0 to a configuration (g',u'} where v(y) = u'(y) without visiting
any ~ l -boundary region, and then, reset the variable x and return back to the
configuration (g, v). Then, we consider as repetition set any strongly connected
set of nodes N in the transition graph of.An such that there exists a transition
between two nodes in N that reset x, and either there exists some node in N
corresponding to a location t with co(g,y) = 0, or there are two nodes in N
corresponding to locations gl and g2 with a(gl, y) = 1 and c0(g2, y) = -1 . We
consider also the case where y is reset, and there is a node in N with c0(t, x) = 0.
It can be seen that in such cases, we can construct a time diverging computation
which takes at each cycle, some fixed amount of time e.

Notice that the Muller condition defined above can be encoded, using addi-
tional atomic propositions (one for each repetition set) as an w-regular property
which corresponds to the property nonZeno mentioned above in the case of
2-dim IG's.

Then, a configuration (g, u) satisfies an w-regular property ~, i.e., (~, u) E
~[VD~ iff the w-context-free language recognized by r starting from (g, [v]_~)
is included in / ? . Since the inclusion problem between w-context-free languages
and w-regular ones is decidable, we deduce that the verification problem of w-
regular properties for single-integrator 2-dim EIG's is decidable. Then, by the
fact that ECTL~ formulas are boolean combinations of formulas of the form gf2,
we obtain the following decidability result.

T h e o r e m 9.1 The verification problem of single-integrator 2-dim EIG's w.r.t.
ECTL~ formulas is decidable.

10 C o n c l u s i o n

We have presented a decidability result for a subclass of linear hybrid systems
that are 2-dim EIG with one integrator and one {-1 , 0, 1}-variable. We have
established this result by showing that these systems generate a~-context-free
sets of state sequences.

Our work shows that there are hybrid systems whose verification problem
is decidable, but cannot be reduced to a verification problem on finite-state

450

systems, as it is usually the case. It shows also the relevance of the works on
infinite-state systems to the verification of hybrid systems.

Moreover, this work shows that there are hybrid systems whose linear-time
properties can be verified whereas there is no (boundedly) finite bisimulation on
their set of configurations. The systems we consider are always trace equivalent
to pushdown automata, but they are not necessarily bisimilar to them. Hence,
these systems cannot be handled using a finite bisimulations based approach [9].

A c k n o w l e d g m e n t We thank T. Henzinger, P. Kopke, and Y. Lakhnech for
interesting discussions and judicious comments.

References

1. R. Alur, C. Courcoubetis, and D. Dill. Model-Checking for Real-Time Systems.
In LICS'90. IEEE, 1990.

2. R. Alur, C. Courcoubetis, T. Henzinger, and P-H. Ho. Hybrid Automata: An Al-
gorithmic Approach to the Specification and Verification of Hybrid Systems. In
Hybrid Systems. LNCS 736, 1993.

3. E. Asarin, O. Maler, and A. Pnueli. Reachability Analysis of Dynamical Systems
Having Piecewise-Constant Derivatives. T.C.S., 138, 1995.

4. Z. Chaochen, C.A.R. Hoare, and A.P. Ravn. A Calculus of Durations. Information
Processing Letters, 40:269-276, 1991.

5. E. Clarke, A. Emerson, and P. Sistla. Automatic Verification of Finite State Con-
current. Systems using Temporal Logic Specifications: A Practical Approach. In
POPL '83, 1983.

6. R.S. Cohen and A.Y. Gold. Theory of w-Languages. I: Characterizations of w-
Context-Free Languages. I.C.S.S., 15:169-184, 1977.

7. E.Clarke, O. Griimberg, and R. Kurshan. A Synthesis of two Approaches for
Verifying Finite State Concurrent Systems. In CMU tech. rep., 1987.

8. E.A. Emerson and J. Y. Halpern. 'Sometimes' and 'Not Never' Revisited: On
Branching vs. Linear Time Logic. In POPL '83, 1983.

9. T. Henzinger. Hybrid Automata with Finite Bisimulations. In ICALP'95, 1995.
10. T.A. Henzinger, P.W. Kopke, A. Purl, and P. Varaiya. What's Decidable about

Hybrid Automata. In STOC'95, 1995.
11. Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Integration Graphs: A Class of

Decidable Hybrid Systems. In Hybrid Systems. LNCS 736, 1993.
12. O. Maler, Z. Manna, and A. Pnueli. From Timed to Hybrid Systems. In REX

workshop on Reed-Time: Theory and Practice. LNCS 600, 1992.
13. D.E. Muller. Infinite Sequences and Finite Machines. In 4th Syrup. on Switchin 9

Circuit Theory and Logical Design. IEEE, 1963.
14. X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. An Approach to the Description

and Analysis of Hybrid Systems. In Hybrid Systems. LNCS 736, 1993.
15. A. Pnueli. The Temporal Logic of Programs. In FOCS'77. IEEE, 1977.
16. W. Thomas. Computation Tree Logic and Regular w-Languages. LNCS 354, 1989.
17. W. Thomas. Automata on Infinite Objects. In Handbook of Theo. Comp. Sci.

Elsevier Sci. Pub., 1990.
18. M.Y. Vardi. A Temporal Fixpoint Calculus. In POPL'88, 1988.
19. P. Wolper. Temporal Logic Can Be More Expressive. Inform. and Cont., 56, 1983.

