Abstract
The aim of this paper is the study of a procedure S given in [11, 13]. We prove that this procedure can compute the closure of the star of a closed recognizable set of words if and only if this closure is also recognizable. This necessary and sufficient condition gives a semi algorithm for the Star Problem. As intermediary results, using S, we give new proofs of some known results.
In the last part, we compare the power of S with the rank notion introduced by Hashigushi [9]. Finally, we characterize the recognizability of the closure of star of recognizable closed sets of words using this rank notion.
This work has been supported by Esprit Basic Research Actions ASMICS II.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A.V. Anisimov et D.E. Knuth, Inhomogeneous Sorting, Int. J. of Computer and Information Sciences, Vol 8, No 4, 1979.
P. Cartier et D. Foata, Problèmes combinatoires de commutation et réarrangements, Lecture Notes in Math. 85, 1969.
R. Cori and D. Perrin, Automates et commutations partielles, RAIRO Inform. Théor. 19, p 21–32, 1985.
S. Eilenberg, Automata, languages and machines, Academic Press, New York, 1974.
M. Fliess, Matrices de Hankel, J. Math Pures et Appl. 53, p197–224, 1974.
P. Gastin, E. Ochmański, A. Petit et B. Rozoy, Decidability of the star problem in A * ×{b} *, Inform. Process. Lett. 44, p65–71, 1992.
S. Ginsburg et E. Spanier, Semigroups, Presburger formulas and languages, Pacific journal of mathematics 16, p285–296, 1966.
S. Ginsburg et E. Spanier, Bounded regular sets, Proceedings of the AMS, vol. 17(5), p1043–1049, 1966.
K. Hashigushi, Recognizable closures and submonoids of free partially commutative monoids, Theoret. Comput. Sci. 86, p233–241, 1991.
A. Mazurkiewicz, Concurrent program schemes and their interpretations, Aarhus university, DAIMI rep. PB 78, 1977.
Y. Métivier, Contribution à l'étude des monoÏdes de commutations, Thèse d'état, université Bordeaux I, 1987.
Y. Métivier, On recognisable subsets of free partially Commutative Monoids, Theoret. Comput. Sci. 58, p201–208, 1988.
Y. Métivier et B. Rozoy, On the star operation in free partially commutative monoids, International Journal of Foundations of Computer Science 2, p257–265, 1991.
E. Ochmański, Regular behaviour of concurrent systems, Bulletin of EATCS 27, p56–67, 1985.
E. Ochmański, P.-A. Wacrenier, On Regular Compatibility of Semi-Commutations, Proceedings of ICALP'93, LNCS 700, p445–456, 1993.
G. Richomme, Some trace monoids where both the Star Problem and the Finite Power Property Problem are decidable, Proc. of MFCS'94, LNCS 841, p577–586, 1994.
G. Richomme, Equivalence decidability of the Star Problem and the Finite Power Property Problem in trace monoids, LaBRI internal report 835.94, 1994.
J. Sakarovitch, The “last” decision problem for rational trace languages, Proceedings of LATIN'92, LNCS 583, p460–473, 1992.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Métivier, Y., Richomme, G., Wacrenier, PA. (1995). Computing the closure of sets of words under partial commutations. In: Fülöp, Z., Gécseg, F. (eds) Automata, Languages and Programming. ICALP 1995. Lecture Notes in Computer Science, vol 944. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60084-1_64
Download citation
DOI: https://doi.org/10.1007/3-540-60084-1_64
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-60084-8
Online ISBN: 978-3-540-49425-6
eBook Packages: Springer Book Archive