Abstract
We describe the first parallel algorithm with optimal speedup for constructing minimum-width tree decompositions of graphs of bounded treewidth. On n-vertex input graphs, the algorithm works in O((log n)2) time using O(n) operations on the EREW PRAM. We also give faster parallel algorithms with optimal speedup for the problem of deciding whether the treewidth of an input graph is bounded by a given constant and for a variety of problems on graphs of bounded treewidth, including all decision problems expressible in monadic second-order logic. On n-vertex input graphs, the algorithms use O(n) operations together with O(log nlog*n) time on the EREW PRAM, or O(log n) time on the CRCW PRAM.
This research was partially supported by the ESPRIT Basic Research Actions Program of the EU under contract No. 7141 (project ALCOM II).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
K. Abrahamson, N. Dadoun, D. G. Kirkpatrick, and T. Przytycka. A simple parallel tree contraction algorithm. J. Algorithms 10 (1989) 287–302.
S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree. SIAM J. Alg. Disc. Meth. 8 (1987) 277–284.
S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of graph reduction. J. ACM 40 (1993) 1134–1164.
H. L. Bodlaender. NC-algorithms for graphs with small treewidth. Proc. 14th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 1988), Springer-Verlag, LNCS vol. 344, pages 1–10.
H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth. In Proc. of the 25th Annual Symposium on Theory of Computing (STOC 1993), pages 226–234.
H. L. Bodlaender. On reduction algorithms for graphs with small treewidth. In Proc. 19th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 1993), Springer-Verlag, LNCS vol. 790, pages 45–56.
H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms for the pathwidth and treewidth of graphs. Techn. Rep. RUU-CS-93-27, Dept. of Computer Science, Utrecht University, Utrecht, the Netherlands, 1993. A preliminary version appeared in Proc. 18th International Colloquium on Automata, Languages and Programming (ICALP 1991), Springer-Verlag, LNCS vol. 510, pages 544–555.
R. B. Borie, R. G. Parker, and C. A. Tovey. Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica 7 (1992) 555–581.
N. Chandrasekharan and S. T. Hedetniemi. Fast parallel algorithms for tree decomposing and parsing partial k-trees. In Proc. 26th Annual Allerton Conference on Communication, Control, and Computing, Urbana-Champaign, Illinois, 1988.
R. Cole and U. Vishkin. Deterministic coin tossing with applications to optimal parallel list ranking. Inform. and Control 70 (1986) 32–53.
B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inform. and Comput. 85 (1990) 12–75.
A. V. Goldberg, S. A. Plotkin, and G. E. Shannon. Parallel symmetry-breaking in sparse graphs. SIAM J. Disc. Math. 1 (1988) 434–446.
T. Hagerup. Optimal parallel algorithms on planar graphs. Inform. and Comput. 84 (1990) 71–96.
T. Hagerup, M. Chrobak, and K. Diks. Optimal parallel 5-colouring of planar graphs. SIAM J. Comput. 18 (1989) 288–300.
T. Hagerup, J. Katajainen, N. Nishimura, and P. Ragde. Characterizations of k-terminal flow networks and computing network flows in partial k-trees. In Proc. 6th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1995), pages 641–649.
J. Lagergren. Efficient parallel algorithms for tree-decomposition and related problems. In Proc. 31st Annual Symposium on Foundations of Computer Science (FOCS 1990), pages 173–182.
J. Lagergren and S. Arnborg. Finding minimal forbidden minors using a finite congruence. In Proc. 18th International Colloquium on Automata, Languages and Programming, (ICALP 1991), Springer-Verlag, LNCS vol. 510, pages 532–543.
G. L. Miller and J. H. Reif. Parallel tree contraction and its application. In Proc. 26th Annual Symposium on Foundations of Computer Science (FOCS 1985), pages 478–489.
B. A. Reed. Finding approximate separators and computing tree width quickly. In Proc. 24th Annual Symposium on Theory of Computing, (STOC 1992), pages 221–228.
N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem. Manuscript, 1986.
R. A. Wagner and Y. Han. Parallel algorithms for bucket sorting and the data dependent prefix problem. In Proc. 1986 International Conference on Parallel Processing, pages 924–930.
E. Wanke. Bounded tree-width and LOGCFL. J. Algorithms 16 (1994) 470–491.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bodlaender, H.L., Hagerup, T. (1995). Parallel algorithms with optimal speedup for bounded treewidth. In: Fülöp, Z., Gécseg, F. (eds) Automata, Languages and Programming. ICALP 1995. Lecture Notes in Computer Science, vol 944. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60084-1_80
Download citation
DOI: https://doi.org/10.1007/3-540-60084-1_80
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-60084-8
Online ISBN: 978-3-540-49425-6
eBook Packages: Springer Book Archive