Preview
Unable to display preview. Download preview PDF.
References
J. Almeida, Finite Semigroups and Universal Algebra, World Scientific (Series in Algebra, Volume 3), Singapore, 1995, 511 pp.
M. Arfi, Polynomial operations and rational languages, 4th STACS, Lecture Notes in Computer Science 247, (1987) 198–206.
M. Arfi, Opérations polynomials et hiérarchies de concaténation, Theoret. Comput. Sci. 91, (1991) 71–84.
F. Blanchet-Sadri, On dot-depth two, Informatique Théorique et Applications 24, (1990) 521–529.
F. Blanchet-Sadri, On a complete set of generators for dot-depth two, Discrete Appl. Math., 50, (1994) 1–25.
S. L. Bloom, Varieties of ordered algebras, J. Comput. System Sci. 13, (1976) 200–212.
J. A, Brzozowski, Hierarchies of aperiodic languages, RAIRO Inform. Théor. 10, (1976) 33–49.
D. Cowan, Inverse monoids of dot-depth 2, Int. Jour. Alg. and Comp. 3, (1993) 411–424.
S. Eilenberg, Automata, languages and machines, Vol. B, Academic Press, New York, 1976.
R. Knast, A semigroup characterization of dot-depth one languages, RAIRO Inform. Théor. 17, (1983) 321–330.
R. Knast, Some theorems on graph congruences, RAIRO Inform. Théor. 17, (1983) 331–342.
S. W. Margolis and J.E. Pin, Product of group languages, FCT Conference, Lecture Notes in Computer Science 199, (1985) 285–299.
R. McNaughton and S. Pappert, Counter-free Automata, MIT Press, 1971.
D. Perrin and J.E. Pin, First order logic and star-free sets, J. Comput. System Sci. 32, (1986) 393–406.
J.-E. Pin, Propriétés syntactiques du produit non ambigu. 7th ICALP, Lecture Notes in Computer Science 85, (1980) 483–499.
J.-E. Pin, Variétés de langages formels, Masson, Paris, 1984. English translation: Varieties of formal languages, Plenum, New-York, 1986.
J.-E. Pin, Logic, Semigroups and Automata on Words, Annals of Math. and Artificial Intelligence, to appear.
J.-E. Pin, A variety theorem without complementation, Izvestija vuzov. Matematika, to appear.
J.-E. Pin and H. Straubing, Monoids of upper triangular matrices, Colloquia Math. Soc. Janos Bolyai 39, Semigroups, Szeged, (1981) 259–272.
J.-E. Pin, H. Straubing and D. Thérien, Locally trivial categories and unambiguous concatenation, Journal of Pure and Applied Algebra 52, (1988) 297–311.
J.-E. Pin and P. Weil, Free profinite semigroups, Mal'cev products and identities, to appear.
J.-E. Pin and P. Weil, A Reiterman theorem for pseudovarieties of finite first-order structures, to appear.
J. Reiterman, The Birkhoff theorem for finite algebras, Algebra Universalis 14, (1982) 1–10.
M.P. Schützenberger, On finite monoids having only trivial subgroups, Information and Control 8, (1965) 190–194.
M.P. Schützenberger, Sur le produit de concaténation non ambigu, Semi-group Forum 13, (1976) 47–75.
I. Simon, Piecewise testable events, Proc. 2nd GI Conf., Lecture Notes in Computer Science 33, (1975) 214–222.
I. Simon, Factorization forests of finite height, Theoret. Comput. Sci. 72, (1990) 65–94.
I. Simon, The product of rational languages, Proceedings of ICALP 1993, Lecture Notes in Computer Science 700, (1993), 430–444.
J. Stern, Characterization of some classes of regular events, Theoret. Comput. Sci. 35, (1985) 17–42.
H. Straubing, Aperiodic homomorphisms and the concatenation product of recognizable sets, J. Pure Appl. Algebra 15 (1979) 319–327.
H. Straubing, Semigroups and languages of dot-depth two, Theoret. Comput. Sci. 58 (1988) 361–378.
H. Straubing and D. Thérien, Partially ordered finite monoids and a theorem of I. Simon, J. of Algebra 119, (1985) 393–399.
H. Straubing and P. Weil, On a conjecture concerning dot-depth two languages, Theoret. Comput. Sci. 104, (1992) 161–183.
W. Thomas, Classifying regular events in symbolic logic, J. Comput. System Sci. 25, (1982) 360–375.
P. Weil, Inverse monoids of dot-depth two, Theoret. Comput. Sci. 66, (1989), 233–245.
P. Weil, Some results on the dot-depth hierarchy, Semigroup Forum 46 (1993), 352–370.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pin, JE., Weil, P. (1995). Polynomial closure and unambiguous product. In: Fülöp, Z., Gécseg, F. (eds) Automata, Languages and Programming. ICALP 1995. Lecture Notes in Computer Science, vol 944. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60084-1_87
Download citation
DOI: https://doi.org/10.1007/3-540-60084-1_87
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-60084-8
Online ISBN: 978-3-540-49425-6
eBook Packages: Springer Book Archive