Abstract
In this paper we analyze the benefits and limitations of dynamic partitioning across a wide range of parallel system environments. We formulate a general model of dynamic partitioning that can be fitted to measurement data to obtain a sufficiently accurate quantitative analysis of real parallel systems executing real scientific and/or commercial workloads. An exact solution of the model is obtained by employing matrix-geometric techniques. We then use this framework to explore the parallel system design space over which dynamic partitioning outperforms other space-sharing policies for a diverse set of application work-loads, quantifying the significant performance improvements within these regions. Our results show that these regions and the performance benefits of dynamic partitioning are heavily dependent upon its associated costs, the system load, and the workload characteristics. We also identify the regions of the design space over which dynamic partitioning performs poorly, quantifying the performance degradation and illustrating forms of unstable thrashing.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
S. Asmussen, O. Nerman, and M. Olsson. Fitting phase type distributions via the EM algorithm. Tech. Rep. 1994:23, Dept. Math., Chalmers Univ. Tech., 1994.
S. L. Brumelle. Some inequalities for parallel-server queues. Op. Res., 19:402–413, 1971.
S.-H. Chiang, R. K. Mansharamani, and M. K. Vernon. Use of application characteristics and limited preemption for run-to-completion parallel processor scheduling policies. In Proc. ACM SIGMETRICS Conf., 33–44, 1994.
K. Dussa, B. Carlson, L. Dowdy, and K.-H. Park. Dynamic partitioning in transputer environments. In Proc. ACM SIGMETRICS Conf., 203–213, 1990.
M. J. Faddy. Fitting structured phase-type distributions. Tech. Rep., Dept. Math., Univ. Queensland, Australia, 1994. To appear, Appl. Stock. Mod. Data Anal.
D. G. Feitelson and B. Nitzberg. Job characteristics of a production parallel scientific workload on the NASA Ames iPSC/860. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), Springer-Verlag, 1995. Lecture Notes in Computer Science Vol. 949.
G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W. Walker. Solving Problems on Concurrent Processors Volume I: General Techniques and Regular Problems. Prentice Hall, 1988.
D. Ghosal, G. Serazzi, and S. K. Tripathi. The processor working set and its use in scheduling multiprocessor systems. IEEE Trans. Soft. Eng., 17:443–453, 1991.
A. Gupta, A. Tucker, and S. Urushibara. The impact of operating system scheduling policies and synchronization methods on the performance of parallel applications. In Proc. ACM SIGMETRICS Conf., 1991.
L. Kleinrock. Queueing Systems Volume I: Theory. John Wiley and Sons, 1975.
L. Kleinrock. Queueing Systems Volume II: Computer Applications. John Wiley and Sons, 1976.
A. Lang. Parameter estimation for phase-type distributions, part I: Fundamentals and existing methods. Tech. Rep. 159, Dept. Stats., Oregon State Univ., 1994.
A. Lang and J. L. Arthur. Parameter estimation for phase-type distributions, part II: Computational evaluation. Tech. Rep. 160, Dept. Stats., Oregon State Univ., 1994.
S. T. Leutenegger and M. K. Vernon. The performance of multiprogrammed multi-processor scheduling policies. In Proc. ACM SIGMETRICS Conf., 226–236, 1990.
R. K. Mansharamani and M. K. Vernon. Properties of the EQS parallel processor allocation policy. Tech. Rep. 1192, Univ. Wisconsin, Comp. Sci. Dept., 1993.
C. McCann, R. Vaswani, and J. Zahorjan. A dynamic processor allocation policy for multiprogrammed shared-memory multiprocessors. ACM Trans. Comp. Syst., 11(2):146–178, 1993.
C. McCann and J. Zahorjan. Processor allocation policies for message-passing parallel computers. In Proc. ACM SIGMETRICS Conf., 19–32, 1994.
N. H. Naik, V. K. Naik, and M. Nicoules. Parallelization of a class of implicit finite difference schemes in computational fluid dynamics. Intl. J. High-Speed Comp., 5, 1993.
V. K. Naik. Performance effects of load imbalance in parallel CFD applications. In Proc. SIAM Conf. Par. Proc., 1992.
V. K. Naik. Scalability issues for a class of CFD applications. In Proc. Scal. High Perf. Comp. Conf., 268–275, 1992.
V. K. Naik, S. K. Setia, and M. S. Squillante. Performance analysis of job scheduling policies in parallel supercomputing environments. In Proc. Supercomputing '93, 824–833, 1993.
V. K. Naik, S. K. Setia, and M. S. Squillante. Scheduling of large scientific applications on distributed memory multiprocessor systems. In Proc. SIAM Conf. Par. Proc. Sci. Comp., 913–922, 1993.
R. D. Nelson and M. S. Squillante. The MAtrix-Geometric qUeueing model Solution package (MAGUS) user manual. Tech. Rep. RC, IBM Res. Div., 1994.
M. F. Neuts. Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. The Johns Hopkins Univ. Press, 1981.
E. Rosti, E. Smirni, L. W. Dowdy, G. Serazzi, and B. M. Carlson. Robust partitioning policies of multiprocessor systems. Perf. Eval., 19:141–165, 1994.
R. Schassberger. Insensitivity of steady-state distributions of generalized semi-Markov processes, part I. Ann. Prob., 5(1):87–99, 1977.
R. Schassberger. Insensitivity of steady-state distributions of generalized semi-Markov processes, part II. Ann. Prob., 6(1):85–93, 1978.
R. Schassberger. Insensitivity of steady-state distributions of generalized semi-Markov process with speeds. Advs. Appl. Prob., 10:836–851, 1978.
R. Schreiber and H. D. Simon. Towards the teraflops capability for CFD. In H. D. Simon, editor, Parallel CFD — Implementations and Results Using Parallel Computers. MIT Press, 1992.
S. K. Setia. Scheduling on Multiprogrammed, Distributed Memory Parallel Computers. PhD thesis, Dept. Comp. Sci., Univ. Maryland, College Park, MD, 1993.
S. K. Setia, M. S. Squillante, and S. K. Tripathi. Processor scheduling on multiprogrammed, distributed memory parallel computers. In Proc. ACM SIGMETRICS Conf., 158–170, 1993.
S. K. Setia, M. S. Squillante, and S. K. Tripathi. Analysis of processor allocation in multiprogrammed, distributed-memory parallel processing systems. IEEE Trans. Par. Dist. Syst., 5(4):401–420, 1994.
S. K. Setia and S. K. Tripathi. A comparative analysis of static processor partitioning policies for parallel computers. In Proc. MASCOTS '93, 1993.
K. C. Sevcik. Characterizations of parallelism in applications and their use in scheduling. In Proc. ACM SIGMETRICS Conf., 171–180, 1989.
K. C. Sevcik. Application scheduling and processor allocation in multiprogrammed parallel processing systems. Perf. Eval., 19:107–140, 1994.
M. S. Squillante. MAGIC: A computer performance modeling tool based on matrix-geometric techniques. In Proc. Intl. Conf. Mod. Tech. Tools Comp. Perf. Eval., 411–425, 1991.
M. S. Squillante. Analysis of dynamic partitioning in parallel systems. Tech. Rep. RC 19950, IBM Res. Div., 1995.
M. S. Squillante. On the benefits and limitations of dynamic partitioning in parallel computer systems. Tech. Rep. RC 19951, IBM Res. Div., 1995.
C. A. Thekkath and H. M. Levy. Limits to low-latency communication on high-speed networks. ACM Trans. Comp. Syst., 11(2):179–203, 1993.
A. Tucker and A. Gupta. Process control and scheduling issues for multiprogrammed shared-memory multiprocessors. In Proc. ACM Symp. Op. Syst. Prin., 159–166, 1989.
T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active messages: A mechanism for integrated communication and computation. In Proc. Intl. Symp. Comp. Arch., 256–266, 1992.
J. Zahorjan and C. McCann. Processor scheduling in shared memory multiprocessors. In Proc. ACM SIGMETRICS Conf., 214–225, 1990.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Squillante, M.S. (1995). On the benefits and limitations of dynamic partitioning in parallel computer systems. In: Feitelson, D.G., Rudolph, L. (eds) Job Scheduling Strategies for Parallel Processing. JSSPP 1995. Lecture Notes in Computer Science, vol 949. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60153-8_31
Download citation
DOI: https://doi.org/10.1007/3-540-60153-8_31
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-60153-1
Online ISBN: 978-3-540-49459-1
eBook Packages: Springer Book Archive