Skip to main content

Learning formal languages based on control sets

  • 1 Inductive Inference Theory
  • Chapter
  • First Online:
Algorithmic Learning for Knowledge-Based Systems

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 961))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Amar and G. Putzolu. On a family of linear grammars. Information and Control, 7:283–291, 1964.

    Google Scholar 

  2. D. Angluin. A note on the number of queries needed to identify regular languages. Information and Control, 51:76–87, 1981.

    Google Scholar 

  3. D. Angluin. Inference of reversible languages. Journal of the ACM, 29(3):741–765, 1982.

    Google Scholar 

  4. D. Angluin. Learning k-bounded context-free grammars. RR 557, YALEU/DCS, 1987.

    Google Scholar 

  5. D. Angluin. Learning regular sets from queries and counter-examples. Information and Computation, 75:87–106, 1987.

    Google Scholar 

  6. D. Angluin and C. H. Smith. Inductive inference: Theory and methods. ACM Computing Surveys, 15(3):237–269, 1983.

    Google Scholar 

  7. J. Dassow and G. Paun. Regulated Rewriting in Formal Language Theory, volume 18 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Berlin, 1989.

    Google Scholar 

  8. J. Earley. An efficient context-free parsing algorithm. Communications of the ACM, 13(2):94–102, 1970.

    Google Scholar 

  9. E. Gold. Language identification in the limit. Information and Control, 10:447–474, 1967.

    Google Scholar 

  10. R. C. Gonzalez and M. G. Thomason. Syntactic Pattern Recognition: An Introduction. Addison-Wesley, Reading, Mass., 1978.

    Google Scholar 

  11. O. H. Ibarra. Simple matrix languages. Information and Control, 17:359–394, 1970.

    Google Scholar 

  12. R. McNaughton. Parenthesis grammars. Journal of the ACM, 14(3):490–500, 1967.

    Google Scholar 

  13. L. Pitt. Inductive inference, DFAs, and computational complexity. In K. P. Jantke, editor, Proceedings of 2nd Workshop on Analogical and Inductive Inference, Lecture Notes in Artificial Intelligence, 397, pages 18–44. Springer-Verlag, 1989.

    Google Scholar 

  14. V. Radhakrishnan and G. Nagaraja. Inference of even linear grammars and its application to picture description languages. Pattern Recognition, 21(1):55–62, 1988.

    Google Scholar 

  15. A. L. Rosenberg. A machine realization of the linear context-free languages. Information and Control, 10:175–188, 1967.

    Google Scholar 

  16. Y. Sakakibara. Learning context-free grammars from structural data in polynomial time. Theoretical Computer Science, 76(2):223–242, 1990.

    Google Scholar 

  17. Y. Sakakibara. Efficient learning of context-free grammars from positive structural examples. Information and Computation, 97:23–60, 1992.

    Google Scholar 

  18. R. Siromoney. On equal matrix languages. Information and Control, 14:135–151, 1969.

    Google Scholar 

  19. Y. Takada. Grammatical inference for even linear languages based on control sets. Information Processing Letters, 28(4):193–199, 1988.

    Google Scholar 

  20. Y. Takada. Inferring parenthesis linear grammars based on control sets. Journal of Information Processing, 12(1):27–33, 1988.

    Google Scholar 

  21. Y. Takada. Learning equal matrix grammars and multitape automata with structural information. In Proceedings of the first Workshop on Algorithmic Learning Theory, 1990.

    Google Scholar 

  22. Y. Takada. Learning even equal matrix languages based on control sets. In M. Nivat, editor, Parallel Image Analysis, Lecture Notes in Computer Science, 654 Springer-Verlag, 1992.

    Google Scholar 

  23. Y. Takada. A hierarchy of language families learnable by regular language learners. To appear in Second International Colloquium on Grammatical Inference, 1994.

    Google Scholar 

  24. Y. Takada. Learning equal matrix grammars based on control sets. To appear in International Journal of Pattern Recognition and Artificial Intelligence, Vol.8, No.2, 1994.

    Google Scholar 

  25. L. G. Valiant. A theory of the learnable. Communications of the ACM, 27:1134–1142, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Klaus P. Jantke Steffen Lange

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Takada, Y. (1995). Learning formal languages based on control sets. In: Jantke, K.P., Lange, S. (eds) Algorithmic Learning for Knowledge-Based Systems. Lecture Notes in Computer Science, vol 961. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60217-8_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-60217-8_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60217-0

  • Online ISBN: 978-3-540-44737-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics