Skip to main content

Delayed choice for process algebra with abstraction

  • Session: Process Algebra II
  • Conference paper
  • First Online:
CONCUR '95: Concurrency Theory (CONCUR 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 962))

Included in the following conference series:

  • 142 Accesses

Abstract

The delayed choice is an operator which serves to combine linear time and branching time within one process algebra. We study this operator in a theory with abstraction, more precisely, in a setting considering branching bisimulation. We show its use in scenario specifications and in verification to reduce irrelevant branching structure of a process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. Aceto, B. Bloom, and F.W. Vaandrager. Turning SOS rules into equations. Information and Computation, 111(1):1–52, 1994.

    Google Scholar 

  2. J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and defining equations for an interrupt mechanism in process algebra. Fund. Inf., IX(2):127–168, 1986.

    Google Scholar 

  3. J.C.M. Baeten and S. Mauw. Delayed choice: an operator for joining Message Sequence Charts. In D. Hogrefe and S. Leue, editors, Formal Description Techniques, VII, pages 340–354. Chapman & Hall, 1995.

    Google Scholar 

  4. J.C.M. Baeten and C. Verhoef. Concrete process algebra, pages 149–268. Handbook of logic in computer science (Vol 4, Semantic modelling), eds. S. Abramsky, Dov. M. Gabbay and T.S.E. Maibaum. Clarendon press, Oxford, 1995.

    Google Scholar 

  5. J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical Computer Science 18. Cambridge University Press, 1990.

    Google Scholar 

  6. J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication. Information & Control, 60:109–137, 1984.

    Google Scholar 

  7. B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can't be traced: preliminary report. In Proc. 15th ACM symposium on Principles of Programming Languages, pages 229–239. San Diego, California, 1988.

    Google Scholar 

  8. S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating sequential processes. Journal of the ACM, 31(3):560–599, 1984.

    Article  Google Scholar 

  9. P. D'Argenio. τ-angelic choice for process algebra. Technical report, LIFIA, Dpto. de Informàtica, Fac. Cs. Exactas, UNLP, 1994.

    Google Scholar 

  10. P. D'Argenio and S. Mauw. Delayed choice for process algebra with abstraction. Report, Department of Computer Science, Eindhoven University of Technology, 1995. To appear.

    Google Scholar 

  11. R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimulation semantics (extended abstract). In G.X. Ritter, editor, Information Processing 89, pages 613–618. North-Holland, 1989.

    Google Scholar 

  12. J.F. Groote and F.W. Vaandrager. Structured operational semantics and bisimulation as a congruence. Information and Computation, 100:202–260, 1992.

    Article  Google Scholar 

  13. S. Kamin and J.-J. Lévy. Two generalizations of the recursive path ordering. Unpublished manuscript, 1980.

    Google Scholar 

  14. J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and T. Maibaum, editors, Handbook of Logic in Computer Science, volume II, pages 1–116. Oxford University Press, 1992.

    Google Scholar 

  15. C.P.J. Koymans and J.L.M. Vrancken. Extending process algebra with the empty process. Report LGPS 1, Dept. of Philosophy, University of Utrecht, 1985.

    Google Scholar 

  16. D.M.R. Park. Concurrency and automata on infinite sequence. In P. Deussen, editor, Proc. 5th. GI Conference, pages 167–183. LNCS 104, Springer-Verlag, 1981.

    Google Scholar 

  17. G.D. Plotkin. A structural approach to operational semantics. Report DAIMI-FN-19, Computer Science Department, University of Århus, 1981.

    Google Scholar 

  18. C. Verhoef. A congruence theorem for structured operational semantics with predicates and negative premises. In B. Jonsson and J. Parrow, editors, Proc. CONCUR '94, pages 433–448. Uppsala, Springer Verlag, 1994. LNCS 836.

    Google Scholar 

  19. C. Verhoef. A general conservative extension theorem in process algebra. In E.-R. Olderog, editor, Proc. PROCOMET'94, IFIP 2 Working Conference, pages 149–168. San Miniato, North-Holland, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Insup Lee Scott A. Smolka

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

D'Argenio, P.R., Mauw, S. (1995). Delayed choice for process algebra with abstraction. In: Lee, I., Smolka, S.A. (eds) CONCUR '95: Concurrency Theory. CONCUR 1995. Lecture Notes in Computer Science, vol 962. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60218-6_38

Download citation

  • DOI: https://doi.org/10.1007/3-540-60218-6_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60218-7

  • Online ISBN: 978-3-540-44738-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics