Abstract
We show that several well-known computational geometry problems involving 3-dimensional convex polyhedra are NP-hard or NP-complete. One of the techniques we employ is a linear-time method for realizing a planar 3-connected triangulation as a convex polyhedron.
This research supported in part by NSF Grant CCR-9306822.
This research supported by the NSF under Grants IRI-9116843 and CCR-9300079.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
P. K. Agarwal and S. Suri. Surface approximation and geometric partitions. In Proc. Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, 1994.
A. Aggarwal, H. Booth, J. O'Rourke, S. Suri, and C. K. Yap. Finding minimal convex nested polygons. Inform. Comput., 83(1):98–110, October 1989.
A. Blum and R. L. Rivest. Training a 3-node neural net is NP-Complete. Neural Networks, 5:117–127, 1992.
H. Brönnimann and M. T. Goodrich. Almost optimal set covers in finite VC-dimension. In Proc. 10th Annu. ACM Sympos. Comput. Geom., pages 293–302, 1994.
K. L. Clarkson. Algorithms for polytope covering and approximation. In Proc. 3rd Workshop Algorithms Data Struct., volume 709 of Lecture Notes in Computer Science, pages 246–252, 1993.
G. Das. Approximation schemes in computational geometry. Ph.D. thesis, University of Wisconsin, 1990.
G. Das and D. Joseph. The complexity of minimum convex nested polyhedra. In Proc. 2nd Canad. Conf. Comput. Geom., pages 296–301, 1990.
G. Das and D. Joseph. Minimum vertex hulls for polyhedral domains. Theoret. Comput. Sci., 103:107–135, 1992.
D. P. Dobkin and D. G. Kirkpatrick. Fast detection of polyhedral intersection. Theoret. Comput. Sci., 27:241–253, 1983.
H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Heidelberg, West Germany, 1987.
M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math., 32:826–834, 1977.
M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York, NY, 1979.
M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems. Theoretical Computer Science, 1:237–267, 1976.
B. Grünbaum. Convex Polytopes. Wiley, New York, NY, 1967.
L. Hyafil and R. L. Rivest. Constructing optimal binary decision trees is NP-complete. Information Processing Letters, 5:15–17, 1976.
S. Judd. On the complexity of loading shallow neural networks. J. of Complexity, 4:177–192, 1988.
D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput., 12:28–35, 1983.
N. Megiddo. On the complexity of polyhedral separability. Discrete Comput. Geom., 3:325–337, 1988.
J. S. B. Mitchell and S. Suri. Separation and approximation of polyhedral surfaces. In Proc. 3rd ACM-SIAM Sympos. Discrete Algorithms, pages 296–306, 1992.
J. O'Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, New York, NY, 1987.
J. O'Rourke. Computational geometry column 4. SIGACT News, 19(2):22–24, 1988. Also in Computer Graphics 22(1988), 111–112.
C. B. Silio, Jr.. An efficient simplex coverability algorithm in E 2 with applications to stochastic sequential machines. IEEE Trans. Comput., C-28:109–120, 1979.
E. Steinitz and H. Rademacher. Vorlesungen über die Theorie der Polyeder. Julius Springer, Berlin, Germany, 1934.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Das, G., Goodrich, M.T. (1995). On the complexity of approximating and illuminating three-dimensional convex polyhedra. In: Akl, S.G., Dehne, F., Sack, JR., Santoro, N. (eds) Algorithms and Data Structures. WADS 1995. Lecture Notes in Computer Science, vol 955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60220-8_52
Download citation
DOI: https://doi.org/10.1007/3-540-60220-8_52
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-60220-0
Online ISBN: 978-3-540-44747-4
eBook Packages: Springer Book Archive