Skip to main content

Amortization results for chromatic search trees, with an application to priority queues

  • Invited Presentation
  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 955))

Included in the following conference series:

Abstract

The intention in designing data structures with relaxed balance, such as chromatic search trees, is to facilitate fast updating on shared-memory asynchronous parallel architectures. To obtain this, the updating and rebalancing have been uncoupled, so extensive locking in connection with updates is avoided.

In this paper, we prove that only an amortized constant amount of rebalancing is necessary after an update in a chromatic search tree. We also prove that the amount of rebalancing done at any particular level decreases exponentially, going from the leaves towards the root. These results imply that, in principle, a linear number of processes can access the tree simultaneously.

We have included one interesting application of chromatic trees. Based on these trees, a priority queue with possibilities for a greater degree of parallelism than in previous proposals can be implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adel'son-Vel'skii, G. M., Landis, E. M.: An Algorithm for the Organisation of Information. Dokl. Akad. Nauk SSSR 146 (1962) 263–266 (In Russian. English translation in Soviet Math. Dokl. 3 (1962) 1259–1263)

    Google Scholar 

  2. Aho, A. V., Hopcroft, J. E., Ullman, J. D.: Data Structures and Algorithms. Addison-Wesley (1983)

    Google Scholar 

  3. Bayer, R.: Symmetric Binary B-Trees: Data Structure and Maintenance Algorithms. Acta Inform. 1 (1972) 290–306

    Article  Google Scholar 

  4. Bayer, R., McCreight, E.: Organization and Maintenance of Large Ordered Indexes. Acta Inform. 1 (1972) 173–189

    Article  Google Scholar 

  5. Biswas, J., Browne, J. C: Simultaneous Update of Priority Structures. Proc. 1987 Intl. Conf. on Parallel Processing (1987) 124–131

    Google Scholar 

  6. Boyar, J., Fagerberg, R., Larsen, K. S.: Chromatic Priority Queues. Department of Mathematics and Computer Science, Odense University. Preprint 15 (1994)

    Google Scholar 

  7. Boyar, J. F., Larsen, K. S.: Efficient Rebalancing of Chromatic Search Trees. Journal of Computer and System Sciences 49 (1994) 667–682

    Google Scholar 

  8. Guibas, L. J., Sedgewick, R.: A Dichromatic Framework for Balanced Trees. 19th IEEE FOCS (1978) 8–21

    Google Scholar 

  9. Hopcroft, J. E.: Unpublished work on 2–3 trees. (1970)

    Google Scholar 

  10. Huddleston, S., Mehlhorn, K.: A New Data Structure for Representing Sorted Lists. Acta Inform. 17 (1982) 157–184

    Article  Google Scholar 

  11. Jones, D. W.: An Empirical Comparison of Priority-Queue and Event-Set Implementations. Comm. ACM 29 (1986) 300–311

    Article  Google Scholar 

  12. Jones, D. W.: Concurrent Operations on Priority Queues. Comm. ACM 32 (1989) 132–137

    MathSciNet  Google Scholar 

  13. Larsen, K. S.: AVL Trees with Relaxed Balance. Proc. 8th Intl. Parallel Processing Symposium. IEEE Computer Society Press (1994) 888–893

    Google Scholar 

  14. Larsen, K. S., Fagerberg, R.: B-Trees with Relaxed Balance. (To appear in the proceedings of the 9th International Parallel Processing Symposium 1995)

    Google Scholar 

  15. Nurmi, O., Soisalon-Soininen, E.: Uncoupling Updating and Rebalancing in Chromatic Binary Search Trees. ACM PODS (1991) 192–198

    Google Scholar 

  16. Nurmi, O., Soisalon-Soininen, E., Wood, D.: Concurrency Control in Database Structures with Relaxed Balance. ACM PODS (1987) 170–176

    Google Scholar 

  17. Rao, V. N., Kumar, V.: Concurrent Access of Priority Queues. IEEE Trans. Computers 37 (1988) 1657–1665

    Article  Google Scholar 

  18. Williams, J. W. J.: Algorithm 232: Heapsort. Comm. ACM 7 (1964) 347–348

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Selim G. Akl Frank Dehne Jörg-Rüdiger Sack Nicola Santoro

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boyar, J., Fagerberg, R., Larsen, K.S. (1995). Amortization results for chromatic search trees, with an application to priority queues. In: Akl, S.G., Dehne, F., Sack, JR., Santoro, N. (eds) Algorithms and Data Structures. WADS 1995. Lecture Notes in Computer Science, vol 955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60220-8_69

Download citation

  • DOI: https://doi.org/10.1007/3-540-60220-8_69

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60220-0

  • Online ISBN: 978-3-540-44747-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics