Abstract
In this paper, we present an original method based on operator calculus for the analysis of dynamic data structures applicable for Knuth's model as well as the Markovian model. Our approach uses techniques developed by the authors for the study of algebraic structures related to Lie groups. By this approach, we recover readily the average complexity of dynamic algorithms previously proved through analytical tools. Here, we indicate how to analyse the case of multiple files. Our operator calculus approach is suitable for investigating a variety of related problems in complexity analysis.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
P. Feinsilver & R. Schott, Special Functions and Computer Science, Kluwer Academic Publishers, 1994.
P.Feinsilver & R. Schott, Krawtchouk polynomials and finite probability theory, Probability Measures on Groups X, Plenum, (1991) 129–135.
P. Feinsilver, Orthogonal polynomials and coherent states, Symmetries in Science V, Plenum Press, (1991) 159–172.
Ph. Flajolet, Analyse d'algorithmes de manipulation d'arbres et de fichiers, Cahiers du B.U.R.O., 34–35 (1981) 1–209.
Ph. Flajolet, J.FranÇon and J. Vuillemin, Sequence of operations analysis for dynamic data structures, J. of Algorithms, 1 (1981) 111–141.
Ph. Flajolet and J.S. Vitter, Average-case analysis of algorithms and data structures, Hand-book of Theoretical Computer Science, 1990 chapter 9, Elsevier Sc. Pub. B. V.
J. FranÇon, Combinatoire des structures de données, Thèse de doctorat d'Etat, Université de Strasbourg, 1979.
J. FranÇon, Histoires de fichiers, RAIRO Inf. Th., 12 (1978) 49–62.
J. FranÇon, B. Randrianarimanana and R. Schott, Analysis of dynamic algorithms in D.E. Knuth's model, T.C.S., 72, (1990) 147–167.
J. FranÇon, G. Viennot, and J. Vuillemin, Description and analysis of an efficient priority queue representation, Proceedings of the 19th Annual Symp. on Foundations of Computer Science, 1978, 1–7.
A. Jonassen and D.E. Knuth, A trivial algorithm whose analysis isn't, J. Comput. System Sci., 16 (1978) 301–332.
G.D. Knott, Deletion in binary storage trees, Report Stan-CS 75–491, 1975.
D.E. Knuth, Deletions that preserve randomness, IEEE Trans. Software Eng., SE-3, 5 (1977) 351–359.
G. Louchard, Random walks, Gaussian processes and list structures, T.C.S., 53, (1987) 99–124.
G. Louchard, B. Randrianarimanana and R. Schott, Probabilistic analysis of dynamic algorithms in D.E. Knuth's model, T.C.S., 93, (1992) 201–225.
R.S. Maier, A path integral approach to data structures evolution, Journal of Complexity, 7, 3, (1991) 232–260.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Feinsilver, P., Schott, R. (1995). An operator calculus approach to the evolution of dynamic data structures. In: Wiedermann, J., Hájek, P. (eds) Mathematical Foundations of Computer Science 1995. MFCS 1995. Lecture Notes in Computer Science, vol 969. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60246-1_162
Download citation
DOI: https://doi.org/10.1007/3-540-60246-1_162
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-60246-0
Online ISBN: 978-3-540-44768-9
eBook Packages: Springer Book Archive