Skip to main content

An operator calculus approach to the evolution of dynamic data structures

  • Contributed Papers
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1995 (MFCS 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 969))

  • 933 Accesses

Abstract

In this paper, we present an original method based on operator calculus for the analysis of dynamic data structures applicable for Knuth's model as well as the Markovian model. Our approach uses techniques developed by the authors for the study of algebraic structures related to Lie groups. By this approach, we recover readily the average complexity of dynamic algorithms previously proved through analytical tools. Here, we indicate how to analyse the case of multiple files. Our operator calculus approach is suitable for investigating a variety of related problems in complexity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Feinsilver & R. Schott, Special Functions and Computer Science, Kluwer Academic Publishers, 1994.

    Google Scholar 

  2. P.Feinsilver & R. Schott, Krawtchouk polynomials and finite probability theory, Probability Measures on Groups X, Plenum, (1991) 129–135.

    Google Scholar 

  3. P. Feinsilver, Orthogonal polynomials and coherent states, Symmetries in Science V, Plenum Press, (1991) 159–172.

    Google Scholar 

  4. Ph. Flajolet, Analyse d'algorithmes de manipulation d'arbres et de fichiers, Cahiers du B.U.R.O., 34–35 (1981) 1–209.

    Google Scholar 

  5. Ph. Flajolet, J.FranÇon and J. Vuillemin, Sequence of operations analysis for dynamic data structures, J. of Algorithms, 1 (1981) 111–141.

    Google Scholar 

  6. Ph. Flajolet and J.S. Vitter, Average-case analysis of algorithms and data structures, Hand-book of Theoretical Computer Science, 1990 chapter 9, Elsevier Sc. Pub. B. V.

    Google Scholar 

  7. J. FranÇon, Combinatoire des structures de données, Thèse de doctorat d'Etat, Université de Strasbourg, 1979.

    Google Scholar 

  8. J. FranÇon, Histoires de fichiers, RAIRO Inf. Th., 12 (1978) 49–62.

    Google Scholar 

  9. J. FranÇon, B. Randrianarimanana and R. Schott, Analysis of dynamic algorithms in D.E. Knuth's model, T.C.S., 72, (1990) 147–167.

    Google Scholar 

  10. J. FranÇon, G. Viennot, and J. Vuillemin, Description and analysis of an efficient priority queue representation, Proceedings of the 19th Annual Symp. on Foundations of Computer Science, 1978, 1–7.

    Google Scholar 

  11. A. Jonassen and D.E. Knuth, A trivial algorithm whose analysis isn't, J. Comput. System Sci., 16 (1978) 301–332.

    Google Scholar 

  12. G.D. Knott, Deletion in binary storage trees, Report Stan-CS 75–491, 1975.

    Google Scholar 

  13. D.E. Knuth, Deletions that preserve randomness, IEEE Trans. Software Eng., SE-3, 5 (1977) 351–359.

    Google Scholar 

  14. G. Louchard, Random walks, Gaussian processes and list structures, T.C.S., 53, (1987) 99–124.

    Google Scholar 

  15. G. Louchard, B. Randrianarimanana and R. Schott, Probabilistic analysis of dynamic algorithms in D.E. Knuth's model, T.C.S., 93, (1992) 201–225.

    Google Scholar 

  16. R.S. Maier, A path integral approach to data structures evolution, Journal of Complexity, 7, 3, (1991) 232–260.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jiří Wiedermann Petr Hájek

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feinsilver, P., Schott, R. (1995). An operator calculus approach to the evolution of dynamic data structures. In: Wiedermann, J., Hájek, P. (eds) Mathematical Foundations of Computer Science 1995. MFCS 1995. Lecture Notes in Computer Science, vol 969. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60246-1_162

Download citation

  • DOI: https://doi.org/10.1007/3-540-60246-1_162

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60246-0

  • Online ISBN: 978-3-540-44768-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics