Skip to main content

Effective category and measure in abstract complexity theory

Extended abstract

  • Communications
  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 965))

Included in the following conference series:

  • 145 Accesses

Abstract

Strong variants of the Operator Speed-up Theorem, Operator Gap Theorem and Compression Theorem are obtained using an effective version of Baire Category Theorem. It is also shown that all complexity classes of recursive predicates have effective measure zero in the space of recursive predicates and, on the other hand, the class of predicates with almost everywhere complexity above an arbitrary recursive threshold has recursive measure one in the class of recursive predicates.

The work of the first author has been supported by Auckland University Research Grants A18/XXXXX/62090/3414012, A18/XXXXX/62090/F3414022. The second author has been partially supported by grants NSF-CCR-8957604, NSF-INT-9116781/JSPS-ENG-207 and NSF-CCR-9322513 and by the Romanian Department of Education and Science grant 4975-92.

A full version of this paper will appear in Theoret. Comput. Sc. (1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. Allender and M. Strauss. Measure on small complexity classes, with applications for BPP, FOCS'94, 1994, 807–818.

    Google Scholar 

  2. M. Blum. A machine-independent theory of the complexity of recursive functions, J. Assoc. Comput. Mach. 14(2) (1967), 322–336.

    Google Scholar 

  3. M. Blum. On effective procedures for speeding up algorithms, J. Assoc. Comput. Mach. 18(2) (1967), 257–265.

    Google Scholar 

  4. A. Borodin. Computational complexity and the existence of complexity gaps, J. Assoc. Comput. Mach. 19(1) (1972), 158–174.

    Google Scholar 

  5. D. S. Bridges. Computability—A Mathematical Sketchbook, Springer-Verlag, Berlin, 1994.

    Google Scholar 

  6. D. S. Bridges and C. Calude. On recursive bounds for the exceptional values in speed-up, Theoret. Comput. Sci. 132 (1994), 387–394.

    Google Scholar 

  7. C. Calude. Topological size of sets of partial recursive functions, Z. Math. Logik Grundlag. Math. 28(1982), 455–462.

    Google Scholar 

  8. C. Calude. Theories of Computational Complexity, North-Holland, Amsterdam, New York, Oxford, Tokyo, 1988.

    Google Scholar 

  9. C. Calude. Relativized topological size of sets of partial recursive functions, Theoret. Comput. Sci. 87 (1991), 347–352.

    Google Scholar 

  10. C. Calude, G. Istrate, and M. Zimand. Recursive Baire classification and speedable functions, Z. Math. Logik Grundlang. Math. 3 (1992), 169–178.

    Google Scholar 

  11. C. Calude, H. Jürgensen, and M. Zimand. Is independence an exception?, Applied Math. Comput. 66 (1994), 63–76.

    Google Scholar 

  12. C. Calude and M. Zimand. On three theorems in abstract complexity theory: A topological glimpse, Abstracts of the Second International Colloquium on Semigroups, Formal Languages and Combinatorics on Words, Kyoto, Japan, 1992, 11–12.

    Google Scholar 

  13. R. L. Constable. The operator gap, J. Assoc. Comput. Mach. 19(1) (1972), 175–183.

    Google Scholar 

  14. S. Fenner. Notions of resource-bounded category and genericity, Proc. 6th Structure in Complexity Theory, 1991, 347–352.

    Google Scholar 

  15. R. Freidzon. Families of recursive predicates of measure zero, J. Soviet Math. 6 (1976), 449–455.

    Google Scholar 

  16. M. A. Fulk. A note on a.e. h-complex functions, J. Comput. System Sciences 40 (1990), 444–449.

    Google Scholar 

  17. J. Hartmanis and J. E. Hopcroft. An overview of the theory of computational complexity, J. Assoc. Comput. Mach. 18(3) (1971), 444–475.

    Google Scholar 

  18. J. Helm and P. Young. On size vs. efficiency for programs admitting speed-ups, J. Symbolic Logic 36 (1971), 21–27.

    Google Scholar 

  19. J. Lutz. Category and measure in complexity theory, SIAM Journal Computing 19(6) (1990), 1100–1131.

    Google Scholar 

  20. J. Lutz. Almost everywhere high nonuniform complexity, J. Comput. System Sciences 44 (1992), 220–258.

    Google Scholar 

  21. J. Lutz. The quantitative structure of exponential time, Proceedings of the 8th Structure in Complexity Theory Conference, 1993, 158–175.

    Google Scholar 

  22. J. E. Hopcroft and J. D. Ullman. An Introduction to Automata Theory, Languages and Computation, Addison-Wesley, Reading, Mass., 1979.

    Google Scholar 

  23. M. Machtey and P. Young. An Introduction to the General Theory of Algorithms, North-Holland, Amsterdam, 1978.

    Google Scholar 

  24. E. Mayordomo. Almost every set in exponential time is p-bi-immune, Theoret. Comput. Sci., 136(1994), 487–506.

    Google Scholar 

  25. K. Mehlhorn. On the size of sets of computable functions, Annual IEEE Symp. on Switching and Automata Theory, Univ. Iowa, 1973, 190–196.

    Google Scholar 

  26. K. Melhorn. The almost all theory of subrecursive degrees is decidable, Proc. Second ICALP, Lecture Notes in Computer Science, Springer-Verlag, 1974, 1317–325.

    Google Scholar 

  27. A. R. Meyer and P. C. Fischer. Computational speed-up by effective operators, J. Symbolic Logic 37(1) (1972), 55–68.

    Google Scholar 

  28. E. McCreight and A. Meyer. Classes of computable functions defined by bounds on computation: preliminary report, Conf. Rec. ACM Symp. on Theory of Computing, 1965, 79–88.

    Google Scholar 

  29. A. R. Meyer and K. Winklman. The fundamental theorem of complexity theory, in J. W. de Bakker and J. van Leeuwen (eds.). Found. Comput. Sci. III Part 1: Automata, Data Structures, Complexity, Mathematical Centre Tracts, vol. 108, Amsterdam, 1979, 97–112.

    Google Scholar 

  30. M. Rabin. Degree of Difficulty of Computing a Function, Hebrew University, Jerusalem, Technical Report 2 (April 25), 1960.

    Google Scholar 

  31. H. Rogers. Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967.

    Google Scholar 

  32. C. P. Schnorr. Does the computational speed-up concern programming?, Proc. First Internat. Conf. on Automata, Languages and Programming, 1972, 589–596.

    Google Scholar 

  33. C. P. Schnorr. Process complexity and effective random tests, J. Comput. System Sciences 7 (1973), 376–388.

    Google Scholar 

  34. J. Seiferas. Machine-independent complexity theory, in J. van Leeuwen (ed.). Handbook of Theoretical Computer Science, vol. A, Elsevier, 1990, 165–186.

    Google Scholar 

  35. J. Seiferas and A. R. Meyer. Characterization of realizable space complexities, Annals of Pure and Applied Logic (to appear).

    Google Scholar 

  36. B. A. Trakhtenbrot. Complexity of Algorithms and Computations, Course Notes, Novosibirsk, 1967. (Russian)

    Google Scholar 

  37. P. van Emde Boas. Ten years of speed-up, Proceedings of the Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science #32, Springer-Verlag, Berlin, 1975, 232–237.

    Google Scholar 

  38. P. Young. Easy constructions in complexity theory: gap and speed-up theorems, Proc. Amer. Math. Soc. 37 (1973), 555–563.

    Google Scholar 

  39. M. Zimand. If not empty, NP is topologically large, Theoret. Comput. Sci. 119 (1993), 293–310.

    Google Scholar 

  40. M. Zimand. On the topological size of p-m-complete degrees, Theoret. Comput. Sci. (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Horst Reichel

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Calude, C., Zimand, M. (1995). Effective category and measure in abstract complexity theory. In: Reichel, H. (eds) Fundamentals of Computation Theory. FCT 1995. Lecture Notes in Computer Science, vol 965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60249-6_48

Download citation

  • DOI: https://doi.org/10.1007/3-540-60249-6_48

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60249-1

  • Online ISBN: 978-3-540-44770-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics