Skip to main content

Segmentation in scale space

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 970))

Included in the following conference series:

Abstract

A segmentation scheme based on tracing objects and borders through scale space is proposed. Scale space allows to create a hierarchical representation of input data which can be used to tessellate input space into objects with closed and orientable borders. For analyzing the structure of scale space, a neural network approach using synchronizing neural oscillators is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fu, K.S., Mui, J.K.: A Survey on Image Segmentation. Patt. Recog. 13 (1981) 3–16

    Google Scholar 

  2. Haralick, R.M., Shapiro, L.G.: Survey: Image segmentation techniques. CVGIP 29 (1985) 100–132

    Google Scholar 

  3. Koenderinck, J.J: The Structure of Images. Biol. Cybern. 50 (1993) 363–370

    Google Scholar 

  4. Kopell, N., Ermentrout, G.B: Phase Transitions and other Phenomena in Chains of Coupled Oscillators. SIAM J. Appl. Math. 50 (1990) 1014–1052

    Google Scholar 

  5. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer-Verlag, NewYork, 1984.

    Google Scholar 

  6. Lifshitz, L.M., Pizer, S.M.: A Multiresolution Hierarchical Approach to Image Segmentation Based on Intensity Extrema. IEEE PAMI 12 (1990) 529–540

    Google Scholar 

  7. Lindeberg, T.: Detecting Salient Blob-Like Image Structures and Their Scales with a Scale-Space Primal Sketch: A Method for Focus-of-Attention. Int. J. Comp. Vis. 11: 3 (1993) 283–318

    Google Scholar 

  8. Lumer, E.D., Huberman, B.A.: Hierarchical Dynamics in Large Assemblies of Interacting Oscillators. Physics Letters A 160 (1991) 227–232

    Google Scholar 

  9. Malsburg, C., Buhmann, J.: Sensory Segmentation with Coupled Neural Oscillators. Biol. Cybern. 67 (1992) 233–242

    Google Scholar 

  10. Niebur, E., Schuster, H.G., Kammen, D.M., Koch, C.: Oscillator-phase Coupling for Different Two-dimensional Network Connections. Physical Review a 44 (1991) 6895–6904

    Google Scholar 

  11. Reed, T.R., du Buf, J.M.H.: A Review of Recent Texture Segmentation and Feature Extraction Techniques. CVGIP 57 (1993) 359–372

    Google Scholar 

  12. Schuster, H.G., Wagner, P.: A Model for Neuronal Oscillations in the Visual Cortex. Biol. Cybern. 64 (1990) 77–82

    Google Scholar 

  13. Wiggers, W., Roth, G., Eurich, C., Straub, A.: Binocular Depth Perception Mechanism in Tongue-Projecting Salamanders. J. Comp. Physiol. A 176 (1995) (to appear)

    Google Scholar 

  14. Wilson, H.R., Cowan, J.D.: Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons. Biophys. J. 12 (1972) 1–24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Václav Hlaváč Radim Šára

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Henkel, R.D. (1995). Segmentation in scale space. In: Hlaváč, V., Šára, R. (eds) Computer Analysis of Images and Patterns. CAIP 1995. Lecture Notes in Computer Science, vol 970. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60268-2_278

Download citation

  • DOI: https://doi.org/10.1007/3-540-60268-2_278

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60268-2

  • Online ISBN: 978-3-540-44781-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics