An Automata Theory Dedicated towards Formal
Circuit Synthesis

Dirk Eisenbiegler and Ramayya Kumar

Forschungszentrum Informatik
(Prof. Dr.-Ing. D. Schmid)
Haid—und-Neu—Strafle 10-14, 76131 Karlsruhe, Germany
e-mail: {eisen kumar}@Qfzi.de

Abstract We present a theory for automata in HOL, which is dedi-
cated towards formal hardware synthesis. The theory contains definitions
for formally representing and transforming automata. In this approach
hardware is represented by automata descriptions and formal synthesis
is performed by applying formally proven theorems. The approach pre-
sented is constructive — i.e. starting from specifications at higher levels
of abstractions, synthesis can be performed by repeated applications of
these transformations. Specialized refinements and optimizations at the
RT and gate levels are discussed.

1 Introduction

This paper is dedicated towards formal correctness in hardware design at the RT
(register transfer) and gate level. During RT and gate level synthesis the circuit
description is altered step by step using specific well known transformations such
as: state encoding, state minimization, boolean optimization, etc. Although these
basic synthesis steps conform to simple logical derivation steps, post-synthesis-
verification is exacting. Post-synthesis-verification techniques only have access
to a specification and an implementation, i.e. the input and the output of the
synthesis process. Usually, there is a big gap between specification and imple-
mentation: the state representation and the originally given partitioning may
have changed completely. As a major drawback, the information on how the
implementation was derived from the specification is lost. Much of this informa-
tion is essential for verification: How were the control states encoded? Where is
which data stored? Is a redundant data representation used (one-hot-encoding,
signed-digit-encoding etc.)? Which control states were eliminated because of un-
reachability, or have some (unreachable) control states been added in order to
get a more efficient/testable implementation? Which parts of the gate level im-
plementation belong to the control path/data path of the RT-level description?
etc.

This paper is part of our ongoing work for developing techniques to perform
formally correct synthesis of synchronous circuit descriptions. The automata
theory is intended to be used for simple synchronous circuit descriptions at the
gate and RT level [EiSK93]. The theory provides theorems describing the above

mentioned elementary RT- and gate level transformations (data encoding, state
minimization etc.) in a logical manner. The automata theory builds a basis for
formal synthesis programs where the entire process is described by a sequence of
refinement steps within logic. As a result of the formal synthesis process, there
is not only the implementation of a given specification but also the proof of
its correctness. In contrast to other approaches towards formal synthesis, this
approach is very close to conventional synthesis techniques. We do not intend
to invent new synthesis algorithms but implement conventional ones in a formal
manner.

The current state of the art about embedding automata in HOL is as fol-
lows: In [ScKK93] a specific set of formulae named hardware formulae is used
for describing specifications and implementations of automata and appropriate
proof procedures are defined. Although such descriptions are very useful for post-
synthesis verification, they do not allow a constructive approach for performing
formal synthesis. Similar to the approach taken in this paper, [Loew92, Day92]
describe automata explicitly by means of expressions. This allows definitions
and derivations of general theorems about automata. However, they allow more
complex specifications such as non-deterministic automata and do not give con-
structive transformations which could lead to circuit implementations. In our
work we consider only deterministic automata whose formalization is purely
functional in nature and give transformations which can be used to perform re-
finements and optimizations, especially at the RT and gate levels. The overall
theory can be regarded as a simple toolbox for formal synthesis algorithms at
the RT and gate levels.

The outline of this paper is as follows: starting from the functional in-
put/output definitions of the automata, we go on to describe the property of
reachability. In section 5, we define the transformations which correspond to
simple synthesis steps: state encoding, removal of unreachable states and the
elimination of redundant memory parts. In section 6, we provide some encoding
theorems for a small set of data types which is followed by an example in section
7.

2 Automata Representation

Usually an automaton is represented by a 6-tuple consisting of input alphabet,
output alphabet, set of states, output function, transition function and initial
state. In our approach, we use the concept of typed functions, available in HOL,
for representing automata. Given that ¢, w and o are the types corresponding
to the inputs, outputs and states, respectively, the output and the transition
function have been combined to a single function f. It is to be noted here, that
the types ¢, 0 and o can be compound — such as, tuples of basic data types.

The entire automata is represented by a pair (f,q), where f has the type
t X 0 = w X ¢ and ¢ represents the initial state and has the type o. The various
manipulations that can be performed using such a representation is the chief
concern of this paper.

f and ¢ unambiguously determine, how the automaton maps a time depen-
dent input signal i,,-, to a time dependent output signal o0,,,—w. The con-
stant automaton maps a pair (f,¢) to a function mapping i to o. the constant
automaton has the following type

(txo—=swxo)xo) = (num = 1) = (hum = w)

Figure (1) sketches, how some automaton(f, ¢) could be “implemented” using a
combinatorial component realizing f and a memory unit D9, which stores data
of type ¢ and its initial value is q.

automaton(f, ¢) (num—s.)— (num—sw)

Figurel. Automaton

The constant automaton will formally be defined by means of another con-
stant named automaton’. automaton’ is similar to automaton except that the set
of states are also visible (see figure 2). Hence the constant automaton’ has the

type:

(txo—=2wxo)xo) = (num =) = (num = (w X o))

aUtomaton,(ﬂ q) (num—2) = (num—w X)

fL><o'~>w><o' '—|—)

Figure2. Automaton’

automaton' is defined by means of primitive recursion over natural numbers,
which represent time. For a given i,,,,, the expression (automaton’ (f,q) i)

denotes the output and the present state and (automaton’ (f,q) i t) denotes the
output and the present state at some time ¢. The definition to follow is performed
by using primitive recursion over .

The output and the next state for some time ¢ can be obtained by applying
f to the pair of current input ¢(¢) and current state s. In the beginning ¢ is 0
and the automata is in the initial state s = ¢. For all other times ¢t = (SUC '),
the next state of the output is defined using the current input ¢(SUC¢') and the
current state s. Since (automaton'(f, ¢)it") produces a pair corresponding to the
output and the state, the function SND is applied in order to extract the state
from this result.

F (automaton’ (f,q) i 0 = f(i(0),q)) A (1)
(automaton’ (f,q) i (SUCH') =
let
8= SND(automaton’ (f,q) i t')
f@(suct),s))

Now automaton can be defined as

F automaton (f,q) i t = FST(automaton’ (f,q) it) (2)

Example

A simple traffic light controller is to be described based on the constant automaton.
The controller has two boolean inputs reset and up. So ¢ becomes bool x bool.
There are three outputs named ron, yon and gon. Each corresponds to one single
light and determines whether this light is on or off. All outputs are of type bool
and so w becomes bool X bool x bool.

To represent the state s of the traffic light controller, a simple enumeration
type named ryg with values red, yellow and green is used. The type of the output
and transition function f is as follows:

((bool x bool) x ryg) — ((bool x boolxbool) x ryg)

reset Uup old s ron yon gon new s
— ~—~— —~ ——
input old state output new state

The definitions of f and q are as follows:

q = green
f((F,F),red) = ((T,F,F),red) A
f((F,F),yellow) = ((F, T, F),yellow) A
f((F,F),green) = ((F,F,T),green) A
f((F,T),red) = ((T,F,F),yellow) A
f((F, T),yellow) = ((F, T,F), green) A
f((F,T),green) = ((F,F,T),red) A
f((T,F),x) = ((T,F,F),red) A
f((T,T),X) = ((TaFaF)vred)

The expression automaton(f, q) has the following type:

(num — (bool x bool)) — (num — (bool x bool x bool))

~—~ P ~— o M
time reset Uup time ron yon gon
——— —~
input output

3 Special Cases of Automata

As already mentioned, we intend to use automata to describe both combinatorial
and sequential circuits. We will now define two constants named combinatorial_block
(for purely combinatorial circuits) and memory_block (for memory parts) and we
will explain, how they are related to the previously defined automaton.

A combinatorial cuircuit can unambiguously be defined by a function e,
mapping the current input to the current output. The constant combinatorial_block
maps e to a function mapping some time dependent input i,,,—,, to some time
dependent output 0,,,—. with o(t) = e(i(t)) (see figure 3). Definition:

F combinatorial_block e i ¢ = e(i(t)) (3)

combinatorial _block(€) (num— 1) (rum—sw)

|
|
num — ¢ ! €—w > num — w
|
|

Figure3. Combinatorial Circuits

Memory parts delay the input by one clock cycle. The initial state is given
as a parameter to the memory_block constant.

F memory_block init i 0 = init A (4)
memory_block init i (SUCt) = i(t)

One can represent a combinatorial circuit by an ordinary automaton, where the
type of the state is one. one is a HOL standard data type with only one element.
The constant one,,. represents its unique element.

F combinatorial_block e = automaton ((A(x, y...). (e(z),one)), one) (5)

Memory parts can be represented by automata, where the input is directly con-
nected with the input of the internal memory and the output of internal memory
is connected with the output of the automaton.

F memory_block init = automaton ((A(x,y). (y,x)), init) (6)

4 Reachability of States

Using the definition of an automaton given in section 2, we can define the concept
of reachability. The constant reachable maps an automaton given by (f,q) onto
a predicate which indicates if some state s may be reached or not. reachable has
the following type:

(ltxoc—=swxo)xo) = o — bool

reachable is defined by means of a constant definition using automaton’. The
definition states that a state s is reachable iff there is some input sequence
fnum—s. and some time ¢ such that the current state, i.e. SND(automaton'(f, q)it),
becomes s.

F reachable (f,q) s = (3i,t. SND(automaton’ (f,q)it) =s) (7)

Theorem (8) states, that the initial state ¢ is reachable. Theorem (9) states, that
if some s is reachable then so is any successor state SND(f(a, s)) for arbitrary
input z.

F reachable (f,q) ¢ (8)
F (reachable (f,q) s) = (Vz.reachable (f,q) (SND(f(z,s)))) (9)

When encoding states of automata later on in this paper, we will have to find
subsets of states, that cover all reachable states. Given a predicate P,_,,,, indi-
cating the chosen subset, we can prove the theorem, that P covers all reachable
states in an inductive manner using theorem (10).

- VP (10)
Pg) A
(Vs. P(s) = (Vz. P(SND(f(x,s)))))
= (Vs.(reachable (f,q)s) = P(s))
Theorem (10) states, that P covers all reachable states if

1. the initial state ¢ is in the subset described by P, and
2. for all states s within this subset any succeeding state SND(f(z,s)) (for
arbitrary input x) is also in this subset.

5 Transformations on Automata

Equivalence of automata means that for a given input, they produce the same
output. In other words, two automata (f,q) and (f,q) are called equivalent iff
automaton(f, ¢) = automaton(f,).

An automaton (f,q) can be trivially turned into an equivalent automaton
by substituting f and ¢ by equivalent terms f = f and § = ¢. All automata

achievable by such transformations have one thing in common: the states are
represented in the same way. In this section we will present automata transfor-
mations which go beyond this — namely those, where the states are represented
in a different manner, the number of states differs, etc. .

In this section, we will first introduce a more general state encoding theorem,
then derive two corollaries to this theorem and finally we introduce a theorem
for removing redundant memory parts.

5.1 The State Encoding Theorem

The general state encoding theorem has two technical applications: encoding the
data types of the state and elimination of unreachable states.

F (Vs. (reachable (f,q) s) = h(g(s)) = s) (11)
=

(

automaton (f,q) =

let
f=A@,2).(\y,2). (y,9(2)))(f(v,h(z)))) and
0 =g(q)

automaton(f, §)

)

The left hand side of the implication states in theorem (11), that there functions
g and h fulfilling h(g(s)) = s for all reachable states. g maps a value of type o
to a value of some type o' and h maps this value back to the former one (see
figure 4).

reachable(f,)

Figure4. Encoding from o to o’

The right hand side of theorem (11) states, that the automata automaton(f, ¢)
and automaton(f, §) are equivalent. f and ¢ have been derived from f, ¢, ¢ and

h. The new initial state ¢ has been obtained by encoding ¢. The new output and
transition function f has been derived from f by encoding every state input and
decoding every state output.

Figure 5 illustrates, how the new automaton looks like. Theorem (11) states
that provided the above mentioned assumption, the automata in figure 1 and 5
are equivalent.*

automaton(f7 q)

| |
| |
| |
| |
num — ¢ 4 : ! num — w
[. fLXo'—»wXO’ |
I : - = I
| ho"—)cr —'_) _I_> Jo o' |
. ag a
[I e P |
| |
| |
| |
| |
| = |
| ’ D! ’ |
a a
| |
| |

Figure5. State Encoding

Corollary A Determining reachability can only be performed for small sized
automata and theorem (11) is applied to pure encoding problems. The following
corollary is convenient for this purpose:

F (Vs.h(g(s)) = s) (12)
=

(

automaton (f,q) =

let
f=A@,2).(\y,2). (y,9(2)))(f(v,h(z)))) and
1=9(q)

automaton(f, q)

)

* This automata encoding transformation with its pair of encoding/decoding functions
(g, h) resembles the type definition mechanism of HOL [Melh88]. However, in state
encoding of automata, the new type may have some extra elements. Furthermore,
the subset of states to be encoded cannot be an arbitrary nonempty set as in type
definitions but must cover at least all reachable states of the automaton.

In contrast to theorem 11, theorem 12 performs the state encoding for the entire
set, of states — reachability need not be considered.

Before this corollary can be applied, an appropriate encoding in terms of h
and ¢ has to be found and it has to be proven, that the encoding is correct, i.e.
Vs.h(g(s)) holds. The quality of the synthesis result (size of combinatorial logic,
size of memory, etc.) very much depends on the encoding chosen. Usually there
are lots of different encodings, and there already exist different techniques for
determining good encodings according to different optimization criteria.

For types with a huge cardinality, proving Vs. h(g(s)) may become exacting.
Besides explicitly proving the correctness of a given encoding, it is also possible
to derive a correct encoding in a systematic manner. We will present an approach
in section 7.

Example

In our traffic light example, symbolic values were used to describe the state
the controller. To convert this RT-level circuit description into a gate level de-
scription, states have to be encoded using boolean values. We will describe to
different implementation alternatives: automaton(f’,q’) and automaton(f’,q").
Both automaton(f',q’) and automaton(f’,q”) are equivalent to automaton(f,q).
They are derived by means of state encoding using the encodings (g, h’) and
(g",h"), respectively.
(g',h") is a minimal bit encoding, where only two bits are used:

g'(red) = (F,F) A
g'(yellow) = (F, T) A
g'(green) = (T,F)
h'(F,F) =red A
h'(F,T) = vyellow A
h'(T,F) =green A
h'(T, T) =red

Obviously, the state (T, T) remains unused and h’(g’s) is fulfilled no matter how
the result of h' is defined for (T, T). Besides red, every other value could have
been chosen, and it would also be possible to leave this decision open at this
moment and instantiate the value later on during boolean optimizations.

Applying the (g’,h’) state encoding leads to

I automaton(f,q) = automaton(f’, q")

with:

= (T,F)

< < <K <K<K <« <L

CrRFLFLL

.r.r_l_.r_l_.r_.r_.r
a2 U
P S
.r.r_l_.r_.r_l_.r_.r
.rT.r_.r_I_.r_.r_.r

[TR Thgy S T Thy Sy
e | R T

Dﬂﬂﬂﬂﬂww
.r.r_l_.rF_IXX

/|\/|\(\(\(

)))\l/\l/\l/\l/\l

LbbbkkFRFLE

TR TR TR TR TR Thy Sapy g

N

G- T T O T O T o

(T,F)

_.r_I_.r_.r_I_.r_I_I
T T e e

— N N e

~ = S~ S5 S~ =~ = =

ggg £ € c c c c c o

(g", h”) is a one hot encoding. For the one hot encoding three bits are re-
quired but only the states (F,F,T), (F,T,F) and (T,F,F) are used. Since the

outputs also correspond to the control states, this approach helps minimizing
I automaton(f,q) = automaton(f”’, q")

the combinatorial logic required for the implementation.

Applying the (g”,h") state encoding leads to

with:

<LK KKK LKL

il el ol o
_.r_l_.r_IF_.r_.r_.r
TR TIg STI S TI TR T

— N N N S S N

= < < . .=

L bbb
FTFFTFFF
[TR T S T T Sy

—_—
N N N

TFFTFF\T/\@
FTFFTF YY
.r.r_l_.r_.r_IXX

(((((((\

\l/))))))\l/

CFFFFRFRLE

.r.r_.r_.r_.r_.r_l_l

T X T T T T T T

G- T T O T O T o

reachable states are in o!. In this situation, the state representation can be cut

Corollary B Corollary B to theorem (11) is dedicated to pure state reduction
problems. It is assumed, that one has divided o into o' + o2, where all the

down to o! using the following pair of encoding/decoding functions g? and hE.

g? is introduced by means of a constant specification. The variable z may be

instantiated in an arbitrary manner to derive some “concrete” gZ.

F 3z (gP(INLz) = 2) A (gB(INRy) = 2(y))
F hP =INL

Remark: It is not demanded, that o! represents exactly the set of all reachable
states. It must cover all reachable states, but there may also be some unreachable
states.

F ((Vs. (reachable (f,q) s)) = ISL(s)) (13)
=

automaton (f,q) =

let
f=A,2).(My. 2)- (4,87 (2))) (f (v, h"()))) and
1=g"(q)

automaton(f, §)

)

Usually ¢ does not have the form o' + ¢ with all reachable states being on the
left hand side. Conversions based on corollary A can be used to reach such a
representation.

5.2 Elimination of Redundant Memory Parts

The last theorem to be introduced describes, how parts of the memory can be
omitted if these parts are of no importance for the output and transition function
f. This theorem can be used for removing flipflops with unconnected outputs
from a synchronous circuit description.

Let us assume, that the type of the states o is a scalar product of two types
ol x 0% and that f is (\(z, (s!,s?)). f'(x,s')) for some f’. In other words, f
depends on the input and on the left hand side of the pair (s', s?),1y,2 repre-
senting the state but not on the right hand side. Theorem (14) states, that this
automata (f,q) is equivalent to the automaton (f’,q").

Foolet (14)

automaton(f, q)

automaton(f’, ¢%)

6 Systematic Derivation of State Encodings

The automata theory provides several pairs of encoding/decoding functions for
the following set of data types useful for RT and gate level circuit descriptions.
These theorems are intended for pure encodings according to corollary B.

one = one
bool = T]F

num = 0 | SUC of num
(a)option = none | any of «
axf3 = ,of a=p

a+p = INL of a | INR of 8

On the gate level, booleans shall also be used for representing signal values and
the scalar product shall be used for constructing compound signals. On the RT
level, more complex data types such as enumeration types, natural numbers,
records and variants can be used. Additionally, one, num , (a)option and « + 3
shall also be used for representing data types at the RT level.

The automata theory provides some theorems with pairs of correct encod-
ing/decoding functions for the data types mentioned above. They support con-
versions from RT level data type descriptions down to gate level data types. We
will explain, which are the types these conversions come from and go to, rather
then, explain them in detail.

We will use @ — 3 to indicate, that there is some encoding from type a to
type 8 and we will use a = 3 to indicate, that there are bijective encodings, i.e.
encodings from « to 8 and viceversa. Table 1 lists some useful encoding theorems
and describes which types they are related to.

The theorems NUM_BOOL and NUM_PROD can be used to convert natural
numbers with a limited range to tuples of booleans. NUM_PROD is used to
split a boolean from a natural number and to halve the size of the number, and
NUM_BOOL is used for encoding natural numbers less than 2.

Theorem OPTION_SUM states, that (a)option can be encoded by means of
+ and one. Theorem BOOL_NEG states, that there is an encoding from booleans
to booleans (turning T to F and viceversa).

option, + and X are all type operators. The theorems OPTION_TRANS,
SUM_TRANS and PROD_TRANS derive encodings for these type operators,
i.e. under the assumptions that there are encodings for their parameters — let
us say some a = o’ and 3 = ' — the encoding for the entire type expressions
(a)option, a + 8 and a x 3, respectively, can be derived.

The binary type operators + and X are commutative and associative in
the sense that there are bijective encodings between such type expressions (see
theorems SUM_ASSOC, SUM_COM, PROD_ASSOC and PROD_COM).

All the encodings described until now, are bijective encodings. The encodings
in the theorems OPTION_EXTEND, SUM_EXTEND and PROD_EXTEND are

* %

— only for natural numbers < 2
*** under the assumption that « = o’ and 3 = 3

Theorem Names Encoding/Decoding

NUM_BOOL** num = bool
NUM_PROD num = num X bool
OPTION_SUM (a)option = one+ «
OPTION_TRANS***| («)option = (a')option
OPTION_EXTEND o — (a)option
SUM_ASSOC (a+B)+y=a+(B+7)
SUM_COM a+B = B+a
SUM_TRANS*** a+pB = o404
SUM_EXTEND o - a+p
SUM_PROD a+a = bool X «
PROD_ASSOC (axpB)xy=ax(Bx7y)
PROD_COM axf & (X«
PROD_NEUTRAL a X one = o
PROD_TRANS*** axfB = oxpg
PROD_EXTEND o - axf
BOOL_NEG bool = bool

Tablel. Encodings For Simple Data Types

applicable only in one direction. They all lead to “bigger” types in the sense that
the new type contains some extra elements.

7 Algorithms for Deriving Correct Encodings

7.1 The Task

We have applied the automata theory to formally describe behavioural circuit
descriptions of a synchronous VHDL subset. For a given behavioural description,
we extracted the automata description in terms of its initial state ¢ and the
output and transition function f. In these automata derived from synchronous
VHDL, the state 0 = 0° x 0 consists of two parts: control state o¢ and data
state o?. This section addresses the encoding of the control state part using the
encodings given in the previous section.

The set of controller states is finite. To represent them, we used type expres-
sions built with one, option and +. To derive a representation on the gate level,
these types have to be mapped by tuples of booleans, i.e. data types bool and
x. There usually is a broad range of correct encodings. Let us assume, that only
the number of bits is to be minimized and that every possible representation
with a minimum number of bits is an appropriate encoding.

Each control state represents either the starting point or one of the wait-
statement positions in the VHDL program. We will not go into the detail of how
these type expressions have resulted. Here is just a brief hint on their meaning;:

— one is used to represent single wait statement positions,

— a + [is used to represent the control states of a compound statement (se-
quence, if-then-else) consisting of two parts where a represents the set of
wait-statement positions in the first part and (8 is used to represent the
wait-statement positions of the second part.

— (a)option is used for expressing positions before or after (compound) state-
ments. While any(s) is used to represent wait-statement positions within a
statement, none is used to indicate either the position before the statement
or (in another context) the position immediately after the statement.

7.2 Derivation of a Minimal Bit Encoding

We will illustrate the minimal bit encoding algorithm by an example. Let us
assume, that ¢ is as follows:

(one + (one)option)option + (one + one) (1)

Substitution of option In the first step all occurances of (a)option are replaced
by one + a. Theorem OPTION_SUM is used to perform this encoding step. The
type reached after the encoding;:

(one + (one + (one + one))) + (one + one) (I1)

Balancing Now the type expression consists of the type constant one and the
binary type operator 4+ only. The cardinality of a set represented by such a type
expression equals the number of one occurences. Such type expressions can be
seen as binary trees, whose depth corresponds to the number of bits needed for
encoding.

In this step, the depth of the tree is reduced by applying SUM_ASSOC. The
algorithm balances the tree in a bottom up fashion. Let a 4+ 3 be some node
where the cardinalities of o and § are |a| and |3], respectively. If |a| > 2 % |3]
holds, then SUM_ASSOC is applied and if | 3| > 2% |a] holds, then SUM_ASSOC
is applied in the inverse direction.

In our example, there is only one position, where the tree has to be balanced:
the subexpression (one + (one + (one + one))). Here the cardinality of the left
hand side is 1 and the cardinality of the right hand side is 3. So SUM_ASSOC
is applied in the inverse direction. We obtain:

((one + one) + (one + one)) + (one + one) (IIT)

Extension Until now, the cardinality of the entire type has been left unchanged.
In order to reach a symmetric tree and to be able to encode the type by
scalar products of booleans, we will now add some redundant states. Theorem
SUM_EXTEND is applied to encode one by one + one whenever one is a leaf
with a depth less than the maximum depth of the tree.

In our example, there were 6 states. After the extension, there are 8. In the
automaton the two extra states which have been added during the extension are
unreachable.

((one + one) + (one + one)) + ((one + one) + (one + one)) (V)
Substitution of + and one Now the type expression tree is symmetric, i.e. in

every node the left hand side equals the right hand side. Theorem SUM_PROD
is now applied repeatedly applied in a top down fashion.

bool x (bool x (bool x one)) (V)
Finally SUM_NEUTRAL is applied to encode bool x one by bool.
bool x (bool x bool) (VI)

7.3 Derivation of a One Hot Encoding
We use the same example ¢¢ as in the minimal bit encoding example:

(one + (one)option)option + (one + one) (T)
Substitution of option As in the previous example, the option type operator
is eliminated using OPTION_SUM:

(one + (one + (one + one))) + (one + one) (1)

Flattening Applying SUM_ASSOC repeatedly leads to:
one + (one + (one + (one + (one + one)))) (TIT)
Substitution of + and one Combining the encodings SUM_TRANS (in for-

ward direction), ONE_EXTEND and SUM_PROD leads to the following com-
pound encoding:

a+one — bool X «
Applying this compound encoding encodes each repeatedly produces:
bool x (bool x (bool x (bool x (bool x bool)))) (Iv)

The previous type expression consisted of 6 states, where each of them corre-
sponds to one one-subexpression.

8 Conclusion and Future Work

We have introduced a theory for automata representation and transformation.
The transformations defined are constructive and hence lead to refinements and
optimizations on the automata through different levels of abstraction. An illus-
tration of how state encodings can be derived in a formal synthesis fashion was
also given. The state encoding algorithm presented is similar to conventional
synthesis algorithms except that correctness is guaranteed implicitly, since the
algorithm is based on HOL.

Such formal synthesis algorithms offer an alternative to the conventional
synthesis/verification approach. We believe, that in general formal synthesis can
be much more efficient than synthesis combined with an extra verification step.
The result of a non-formal synthesis is just the implementation, the information
on how the implementation is derived gets lost and cannot be used during the
post-synthesis verification step.

We believe, that formal synthesis algorithms can also be exploited in other
areas of hardware synthesis such as boolean optimization, scheduling, system
level synthesis. The automata theory will be a basis for circuit descriptions on
the algorithmic and system level.

References

[Day92] Nancy Day. A comparison between statecharts and state transition assertions.
In [hug92], pages 247-262.

[EiSK93] D. Eisenbiegler, K. Schneider, and R. Kumar. A functional approach for
formalizing regular hardware structures. In [hug93], pages 101-114.

[hug92] Luc Claesen and Michael Gordon, editors. Higher Order Logic Theorem Prov-
ing and Its Applications, Leuven, Belgium, November 1992. North-Holland.

[hug93] Jeffrey J. Joyce and Carl-Johan H. Seger, editors. Higher Order Logic The-
orem Proving and Its Applications, Vancouver, B.C., Canada, August 1993.
Springer.

[Loew92] Paul Loewenstein. A formal theory of simulations between infinite automata.
In [hug92], pages 227-246.

[Melh88] F. Melham. Automating recursive type definitions in higher order logic.
Technical Report 140, University of Cambridge Computer Laboratory, 1988.

[ScKK93] R. Kumar K. Schneider and Thomas Kropf. Alternative proof procedures
for finite-state machines in higher-order logic. In [hug93], pages 213-226.

This article was processed using the KTEX macro package with LLNCS style

