
An Automata Theory Dedicated towards Formal

Circuit Synthesis

Dirk Eisenbiegler and Ramayya Kumar

Forschungszentrum Informatik
�Prof� Dr��Ing� D� Schmid�

Haid�und�Neu�Stra�e �	��
� �
��� Karlsruhe� Germany
e�mail� feisen�kumarg�fzi�de

Abstract We present a theory for automata in HOL� which is dedi�
cated towards formal hardware synthesis� The theory contains de�nitions
for formally representing and transforming automata� In this approach
hardware is represented by automata descriptions and formal synthesis
is performed by applying formally proven theorems� The approach pre�
sented is constructive � i�e� starting from speci�cations at higher levels
of abstractions� synthesis can be performed by repeated applications of
these transformations� Specialized re�nements and optimizations at the
RT and gate levels are discussed�

� Introduction

This paper is dedicated towards formal correctness in hardware design at the RT
�register transfer� and gate level� During RT and gate level synthesis the circuit
description is altered step by step using speci�c well known transformations such
as� state encoding� state minimization� boolean optimization� etc� Although these
basic synthesis steps conform to simple logical derivation steps� post�synthesis�
veri�cation is exacting� Post�synthesis�veri�cation techniques only have access
to a speci�cation and an implementation� i�e� the input and the output of the
synthesis process� Usually� there is a big gap between speci�cation and imple�
mentation� the state representation and the originally given partitioning may
have changed completely� As a major drawback� the information on how the
implementation was derived from the speci�cation is lost� Much of this informa�
tion is essential for veri�cation� How were the control states encoded	 Where is
which data stored	 Is a redundant data representation used �one�hot�encoding�
signed�digit�encoding etc��	 Which control states were eliminated because of un�
reachability� or have some �unreachable� control states been added in order to
get a more e
cient�testable implementation	 Which parts of the gate level im�
plementation belong to the control path�data path of the RT�level description	
etc�

This paper is part of our ongoing work for developing techniques to perform
formally correct synthesis of synchronous circuit descriptions� The automata
theory is intended to be used for simple synchronous circuit descriptions at the
gate and RT level �EiSK
��� The theory provides theorems describing the above



mentioned elementary RT� and gate level transformations �data encoding� state
minimization etc�� in a logical manner� The automata theory builds a basis for
formal synthesis programs where the entire process is described by a sequence of
re�nement steps within logic� As a result of the formal synthesis process� there
is not only the implementation of a given speci�cation but also the proof of
its correctness� In contrast to other approaches towards formal synthesis� this
approach is very close to conventional synthesis techniques� We do not intend
to invent new synthesis algorithms but implement conventional ones in a formal
manner�

The current state of the art about embedding automata in HOL is as fol�
lows� In �ScKK
�� a speci�c set of formulae named hardware formulae is used
for describing speci�cations and implementations of automata and appropriate
proof procedures are de�ned� Although such descriptions are very useful for post�
synthesis veri�cation� they do not allow a constructive approach for performing
formal synthesis� Similar to the approach taken in this paper� �Loew
�� Day
��
describe automata explicitly by means of expressions� This allows de�nitions
and derivations of general theorems about automata� However� they allow more
complex speci�cations such as non�deterministic automata and do not give con�
structive transformations which could lead to circuit implementations� In our
work we consider only deterministic automata whose formalization is purely
functional in nature and give transformations which can be used to perform re�
�nements and optimizations� especially at the RT and gate levels� The overall
theory can be regarded as a simple toolbox for formal synthesis algorithms at
the RT and gate levels�

The outline of this paper is as follows� starting from the functional in�
put�output de�nitions of the automata� we go on to describe the property of
reachability� In section �� we de�ne the transformations which correspond to
simple synthesis steps� state encoding� removal of unreachable states and the
elimination of redundant memory parts� In section �� we provide some encoding
theorems for a small set of data types which is followed by an example in section
��

� Automata Representation

Usually an automaton is represented by a ��tuple consisting of input alphabet�
output alphabet� set of states� output function� transition function and initial
state� In our approach� we use the concept of typed functions� available in HOL�
for representing automata� Given that �� � and � are the types corresponding
to the inputs� outputs and states� respectively� the output and the transition
function have been combined to a single function f � It is to be noted here� that
the types �� o and � can be compound � such as� tuples of basic data types�

The entire automata is represented by a pair �f� q�� where f has the type
�� � � ��� and q represents the initial state and has the type �� The various
manipulations that can be performed using such a representation is the chief
concern of this paper�



f and q unambiguously determine� how the automaton maps a time depen�
dent input signal inum�� to a time dependent output signal onum��� The con�
stant automaton maps a pair �f� q� to a function mapping i to o� the constant
automaton has the following type

��� � � � � � ��� �� � �num� ��� �num� ��

Figure ��� sketches� how some automaton�f� q� could be �implemented� using a
combinatorial component realizing f and a memory unit D q� which stores data
of type � and its initial value is q�

automaton�f� q� �num�����num���

�
num� �

f�������

�
num� �

�
D q�

�

Figure�� Automaton

The constant automaton will formally be de�ned by means of another con�
stant named automaton�� automaton� is similar to automaton except that the set
of states are also visible �see �gure ��� Hence the constant automaton� has the
type�

��� � � � � � ��� �� � �num� ��� �num� �� � ���

automaton��f� q� �num�����num�����

�
num� �

f�������

�

num� � � �

�
D q�

�

Figure�� Automaton�

automaton� is de�ned by means of primitive recursion over natural numbers�
which represent time� For a given inum��� the expression �automaton� �f� q� i�



denotes the output and the present state and �automaton� �f� q� i t� denotes the
output and the present state at some time t� The de�nition to follow is performed
by using primitive recursion over t�

The output and the next state for some time t can be obtained by applying
f to the pair of current input i�t� and current state s� In the beginning t is �
and the automata is in the initial state s � q� For all other times t � �SUC t���
the next state of the output is de�ned using the current input i�SUC t�� and the
current state s� Since �automaton��f� q� i t�� produces a pair corresponding to the
output and the state� the function SND is applied in order to extract the state
from this result�

�
�
automaton� �f� q� i � � f�i���� q�

�
�

�
automaton� �f� q� i �SUC t�� �
let

s� SND�automaton� �f� q� i t��
in

f�i�SUC t��� s�
�

���

Now automaton can be de�ned as

� automaton �f� q� i t � FST�automaton� �f� q� i t� ���

Example

A simple tra
c light controller is to be described based on the constant automaton�
The controller has two boolean inputs reset and up� So � becomes bool � bool�
There are three outputs named ron� yon and gon� Each corresponds to one single
light and determines whether this light is on or o�� All outputs are of type bool
and so � becomes bool� bool� bool�

To represent the state s of the tra
c light controller� a simple enumeration
type named ryg with values red� yellow and green is used� The type of the output
and transition function f is as follows�

��bool

��z�
reset

� bool

��z�
up� �z �

input

�� ryg

��z�
old s��z�

old state

� � ��bool

��z�
ron

� bool

��z�
yon

� bool

��z�
gon� �z �

output

�� ryg

��z�
new s� �z �

new state

�

The de�nitions of f and q are as follows�

q � green

f��F�F�� red� � ��T�F�F�� red� �
f��F�F�� yellow� � ��F�T�F�� yellow� �
f��F�F�� green� � ��F�F�T�� green� �
f��F�T�� red� � ��T�F�F�� yellow� �
f��F�T�� yellow� � ��F�T�F�� green� �
f��F�T�� green� � ��F�F�T�� red� �
f��T�F�� x� � ��T�F�F�� red� �
f��T�T�� x� � ��T�F�F�� red�



The expression automaton�f� q� has the following type�

�num

��z�
time

� �bool

��z�
reset

� bool

��z�
up� �z �

input

�� � �num

��z�
time

� �bool

��z�
ron

� bool

��z�
yon

� bool

��z�
gon� �z �

output

��

� Special Cases of Automata

As already mentioned� we intend to use automata to describe both combinatorial
and sequential circuits� We will now de�ne two constants named combinatorial block

�for purely combinatorial circuits� and memory block �for memory parts� and we
will explain� how they are related to the previously de�ned automaton�

A combinatorial cuircuit can unambiguously be de�ned by a function e���

mapping the current input to the current output� The constant combinatorial block

maps e to a function mapping some time dependent input inum�� to some time
dependent output onum�� with o�t� � e�i�t�� �see �gure ��� De�nition�

� combinatorial block e i t � e�i�t�� ���

combinatorial block�e� �num�����num���

�
num� � e���

�
num� �

Figure�� Combinatorial Circuits

Memory parts delay the input by one clock cycle� The initial state is given
as a parameter to the memory block constant�

� memory block init i � � init �
memory block init i �SUCt� � i�t�

���

One can represent a combinatorial circuit by an ordinary automaton� where the
type of the state is one� one is a HOL standard data type with only one element�
The constant oneone represents its unique element�

� combinatorial block e � automaton ����x� yone�� �e�x�� one��� one� ���

Memory parts can be represented by automata� where the input is directly con�
nected with the input of the internal memory and the output of internal memory
is connected with the output of the automaton�

� memory block init � automaton ����x� y�� �y� x��� init� ���



� Reachability of States

Using the de�nition of an automaton given in section �� we can de�ne the concept
of reachability� The constant reachable maps an automaton given by �f� q� onto
a predicate which indicates if some state s may be reached or not� reachable has
the following type�

���� � � � � ��� �� � � � bool

reachable is de�ned by means of a constant de�nition using automaton�� The
de�nition states that a state s is reachable i� there is some input sequence
inum�� and some time t such that the current state� i�e� SND�automaton��f� q� i t��
becomes s�

� reachable �f� q� s � ��i� t� SND�automaton� �f� q� i t� � s� ���

Theorem ��� states� that the initial state q is reachable� Theorem �
� states� that
if some s is reachable then so is any successor state SND�f�a� s�� for arbitrary
input x�

� reachable �f� q� q ���

� � reachable �f� q� s � � � �x� reachable �f� q� �SND�f�x� s��� � �
�

When encoding states of automata later on in this paper� we will have to �nd
subsets of states� that cover all reachable states� Given a predicate P��bool indi�
cating the chosen subset� we can prove the theorem� that P covers all reachable
states in an inductive manner using theorem �����

� �P��

P �q� �
��s� P �s� � ��x� P �SND�f�x� s������

�
�
�s��reachable �f� q� s� � P �s�

�

����

Theorem ���� states� that P covers all reachable states if

�� the initial state q is in the subset described by P � and
�� for all states s within this subset any succeeding state SND�f�x� s�� �for

arbitrary input x� is also in this subset�

� Transformations on Automata

Equivalence of automata means that for a given input� they produce the same
output� In other words� two automata �f� q� and � �f� �q� are called equivalent i�
automaton�f� q� � automaton� �f� �q��

An automaton �f� q� can be trivially turned into an equivalent automaton
by substituting f and q by equivalent terms �f � f and �q � q� All automata



achievable by such transformations have one thing in common� the states are
represented in the same way� In this section we will present automata transfor�
mations which go beyond this � namely those� where the states are represented
in a di�erent manner� the number of states di�ers� etc� �

In this section� we will �rst introduce a more general state encoding theorem�
then derive two corollaries to this theorem and �nally we introduce a theorem
for removing redundant memory parts�

��� The State Encoding Theorem

The general state encoding theorem has two technical applications� encoding the
data types of the state and elimination of unreachable states�

� ��s� �reachable �f� q� s� � h�g�s�� � s�
�
�
automaton �f� q� �
let
�f � ���v� x�����y� z�� �y� g�z����f�v� h�x���� and

�q � g�q�
in

automaton� �f� �q�
�

����

The left hand side of the implication states in theorem ����� that there functions
g and h ful�lling h�g�s�� � s for all reachable states� g maps a value of type �
to a value of some type �� and h maps this value back to the former one �see
�gure ���

reachable�f� q�

� ��
g

h

Figure�� Encoding from � to ��

The right hand side of theorem ���� states� that the automata automaton�f� q�
and automaton� �f� �q� are equivalent� �f and �q have been derived from f � q� g and



h� The new initial state �q has been obtained by encoding q� The new output and
transition function �f has been derived from f by encoding every state input and
decoding every state output�

Figure � illustrates� how the new automaton looks like� Theorem ���� states
that provided the above mentioned assumption� the automata in �gure � and �
are equivalent��

automaton� �f� �q�

�f���������

h����

�
num� �

f�������

�
num� �

g����

� �

��
D �q

�
�

��

Figure�� State Encoding

Corollary A Determining reachability can only be performed for small sized
automata and theorem ���� is applied to pure encoding problems� The following
corollary is convenient for this purpose�

� ��s� h�g�s�� � s�
�
�
automaton �f� q� �
let
�f � ���v� x�����y� z�� �y� g�z����f�v� h�x���� and

�q � g�q�
in

automaton� �f� �q�
�

����

� This automata encoding transformation with its pair of encoding�decoding functions
�g� h� resembles the type de�nition mechanism of HOL �Melh���� However� in state
encoding of automata� the new type may have some extra elements� Furthermore�
the subset of states to be encoded cannot be an arbitrary nonempty set as in type
de�nitions but must cover at least all reachable states of the automaton�



In contrast to theorem ��� theorem �� performs the state encoding for the entire
set of states � reachability need not be considered�

Before this corollary can be applied� an appropriate encoding in terms of h
and g has to be found and it has to be proven� that the encoding is correct� i�e�
�s� h�g�s�� holds� The quality of the synthesis result �size of combinatorial logic�
size of memory� etc�� very much depends on the encoding chosen� Usually there
are lots of di�erent encodings� and there already exist di�erent techniques for
determining good encodings according to di�erent optimization criteria�

For types with a huge cardinality� proving �s� h�g�s�� may become exacting�
Besides explicitly proving the correctness of a given encoding� it is also possible
to derive a correct encoding in a systematic manner� We will present an approach
in section ��

Example

In our tra
c light example� symbolic values were used to describe the state
the controller� To convert this RT�level circuit description into a gate level de�
scription� states have to be encoded using boolean values� We will describe to
di�erent implementation alternatives� automaton�f�� q�� and automaton�f��� q����
Both automaton�f�� q�� and automaton�f��� q��� are equivalent to automaton�f� q��
They are derived by means of state encoding using the encodings �g�� h�� and
�g��� h���� respectively�

�g�� h�� is a minimal bit encoding� where only two bits are used�

g��red� � �F�F� �
g��yellow� � �F�T� �
g��green� � �T�F�

h��F�F� � red �
h��F�T� � yellow �
h��T�F� � green �
h��T�T� � red

Obviously� the state �T�T� remains unused and h��g� s� is ful�lled no matter how
the result of h� is de�ned for �T�T�� Besides red� every other value could have
been chosen� and it would also be possible to leave this decision open at this
moment and instantiate the value later on during boolean optimizations�

Applying the �g�� h�� state encoding leads to

� automaton�f� q� � automaton�f�� q��

with�



q� � �T�F�

f���F�F�� �F�F�� � ��T�F�F�� �F�F�� �
f���F�F�� �F�T�� � ��F�T�F�� �F�T�� �
f���F�F�� �T�F�� � ��F�F�T�� �T�F�� �
f���F�T�� �F�F�� � ��T�F�F�� �F�T�� �
f���F�T�� �F�T�� � ��F�T�F�� �T�F�� �
f���F�T�� �T�F�� � ��F�F�T�� �F�F�� �
f���T�F�� �x� y�� � ��T�F�F�� �F�F�� �
f���T�T�� �x� y�� � ��T�F�F�� �F�F��

�g��� h��� is a one hot encoding� For the one hot encoding three bits are re�
quired but only the states �F�F�T�� �F�T�F� and �T�F�F� are used� Since the
outputs also correspond to the control states� this approach helps minimizing
the combinatorial logic required for the implementation�

g���red� � �F�F�T� �
g���yellow� � �F�T�F� �
g���green� � �T�F�F�

h���F�F�T� � red �
h���F�T�F� � yellow �
h���T�F�F� � green �
h���F�F�F� � red �
h���F�T�T� � red �
h���T�F�T� � red �
h���T�T�F� � red �
h���T�T�T� � red

Applying the �g��� h��� state encoding leads to

� automaton�f� q� � automaton�f��� q���

with�

q�� � �T�F�

f����F�F�� �F�F�T�� � ��T�F�F�� �F�F�T�� �
f����F�T�� �F�T�F�� � ��F�T�F�� �F�T�F�� �
f����F�T�� �T�F�F�� � ��F�F�T�� �T�F�F�� �
f����F�T�� �F�F�T�� � ��T�F�F�� �F�T�F�� �
f����F�T�� �F�T�F�� � ��F�T�F�� �T�F�F�� �
f����F�T�� �T�F�F�� � ��F�F�T�� �F�F�T�� �
f����T�F�� �x� y� z�� � ��T�F�F�� �F�F�T�� �
f����T�T�� �x� y� z�� � ��T�F�F�� �F�F�T��

Corollary B Corollary B to theorem ���� is dedicated to pure state reduction
problems� It is assumed� that one has divided � into �� � ��� where all the
reachable states are in ��� In this situation� the state representation can be cut



down to �� using the following pair of encoding�decoding functions gB and hB �
gB is introduced by means of a constant speci�cation� The variable z may be
instantiated in an arbitrary manner to derive some �concrete� gB �

� �z� �gB�INL x� � x� � �gB�INR y� � z�y��
� hB � INL

Remark� It is not demanded� that �� represents exactly the set of all reachable
states� It must cover all reachable states� but there may also be some unreachable
states�

� � ��s� �reachable �f� q� s�� � ISL�s� �
�
�
automaton �f� q� �
let
�f � ���v� x�����y� z�� �y� gB�z����f�v� hB�x���� and

�q � gB�q�
in

automaton� �f� �q�
�

����

Usually � does not have the form �� � �� with all reachable states being on the
left hand side� Conversions based on corollary A can be used to reach such a
representation�

��� Elimination of Redundant Memory Parts

The last theorem to be introduced describes� how parts of the memory can be
omitted if these parts are of no importance for the output and transition function
f � This theorem can be used for removing �ip�ops with unconnected outputs
from a synchronous circuit description�

Let us assume� that the type of the states � is a scalar product of two types
�� � �� and that f is ���x� �s�� s���� f ��x� s��� for some f �� In other words� f
depends on the input and on the left hand side of the pair �s�� s������� repre�
senting the state but not on the right hand side� Theorem ���� states� that this
automata �f� q� is equivalent to the automaton �f �� q���

� let

f � ���x� �s�� s���� f ��x� s��� and

q � �q�� q��
in

automaton�f� q�
�
automaton�f �� q��

����



� Systematic Derivation of State Encodings

The automata theory provides several pairs of encoding�decoding functions for
the following set of data types useful for RT and gate level circuit descriptions�
These theorems are intended for pure encodings according to corollary B�

one � one

bool � T j F

num � � j SUC of num

���option � none j any of �

�� � � � of �� �

�� � � INL of � j INR of �

On the gate level� booleans shall also be used for representing signal values and
the scalar product shall be used for constructing compound signals� On the RT
level� more complex data types such as enumeration types� natural numbers�
records and variants can be used� Additionally� one� num � ���option and � � �

shall also be used for representing data types at the RT level�
The automata theory provides some theorems with pairs of correct encod�

ing�decoding functions for the data types mentioned above� They support con�
versions from RT level data type descriptions down to gate level data types� We
will explain� which are the types these conversions come from and go to� rather
then� explain them in detail�

We will use � 	 � to indicate� that there is some encoding from type � to
type � and we will use � 	
 � to indicate� that there are bijective encodings� i�e�
encodings from � to � and viceversa� Table � lists some useful encoding theorems
and describes which types they are related to�

The theorems NUM BOOL and NUM PROD can be used to convert natural
numbers with a limited range to tuples of booleans� NUM PROD is used to
split a boolean from a natural number and to halve the size of the number� and
NUM BOOL is used for encoding natural numbers less than ��

Theorem OPTION SUM states� that ���option can be encoded by means of
� and one� Theorem BOOL NEG states� that there is an encoding from booleans
to booleans �turning T to F and viceversa��

option� � and � are all type operators� The theorems OPTION TRANS�
SUM TRANS and PROD TRANS derive encodings for these type operators�
i�e� under the assumptions that there are encodings for their parameters � let
us say some � 	
 �� and � 	
 �� � the encoding for the entire type expressions
���option� �� � and �� �� respectively� can be derived�

The binary type operators � and � are commutative and associative in
the sense that there are bijective encodings between such type expressions �see
theorems SUM ASSOC� SUM COM� PROD ASSOC and PROD COM��

All the encodings described until now� are bijective encodings� The encodings
in the theorems OPTION EXTEND� SUM EXTEND and PROD EXTEND are

�� � only for natural numbers � �
��� under the assumption that � �	 �� and 
 �	 
�



Theorem Names Encoding�Decoding

NUM BOOL�� num �	 bool

NUM PROD num �	 num� bool

OPTION SUM ���option �	 one� �

OPTION TRANS��� ���option �	 ����option

OPTION EXTEND � � ���option

SUM ASSOC ��� 
� � � �	 �� �
 � ��

SUM COM �� 
 �	 
 � �

SUM TRANS��� �� 
 �	 �� � 
�

SUM EXTEND � � � � 


SUM PROD �� � �	 bool� �

PROD ASSOC ��� 
�� � �	 �� �
 � ��

PROD COM �� 
 �	 
 � �

PROD NEUTRAL �� one �	 �

PROD TRANS��� �� 
 �	 �� � 
�

PROD EXTEND � � � � 


BOOL NEG bool �	 bool

Table�� Encodings For Simple Data Types

applicable only in one direction� They all lead to �bigger� types in the sense that
the new type contains some extra elements�

� Algorithms for Deriving Correct Encodings

��� The Task

We have applied the automata theory to formally describe behavioural circuit
descriptions of a synchronous VHDL subset� For a given behavioural description�
we extracted the automata description in terms of its initial state q and the
output and transition function f � In these automata derived from synchronous
VHDL� the state � � �c � �d consists of two parts� control state �c and data
state �d� This section addresses the encoding of the control state part using the
encodings given in the previous section�

The set of controller states is �nite� To represent them� we used type expres�
sions built with one� option and �� To derive a representation on the gate level�
these types have to be mapped by tuples of booleans� i�e� data types bool and
�� There usually is a broad range of correct encodings� Let us assume� that only
the number of bits is to be minimized and that every possible representation
with a minimum number of bits is an appropriate encoding�



Each control state represents either the starting point or one of the wait�
statement positions in the VHDL program� We will not go into the detail of how
these type expressions have resulted� Here is just a brief hint on their meaning�

� one is used to represent single wait statement positions�

� � � � is used to represent the control states of a compound statement �se�
quence� if�then�else� consisting of two parts where � represents the set of
wait�statement positions in the �rst part and � is used to represent the
wait�statement positions of the second part�

� ���option is used for expressing positions before or after �compound� state�
ments� While any�s� is used to represent wait�statement positions within a
statement� none is used to indicate either the position before the statement
or �in another context� the position immediately after the statement�

��� Derivation of a Minimal Bit Encoding

We will illustrate the minimal bit encoding algorithm by an example� Let us
assume� that �c is as follows�

�one� �one�option�option� �one� one� �I�

Substitution of option In the �rst step all occurances of ���option are replaced
by one��� Theorem OPTION SUM is used to perform this encoding step� The
type reached after the encoding�

�one� �one� �one� one��� � �one� one� �II�

Balancing Now the type expression consists of the type constant one and the
binary type operator � only� The cardinality of a set represented by such a type
expression equals the number of one occurences� Such type expressions can be
seen as binary trees� whose depth corresponds to the number of bits needed for
encoding�

In this step� the depth of the tree is reduced by applying SUM ASSOC� The
algorithm balances the tree in a bottom up fashion� Let � � � be some node
where the cardinalities of � and � are j�j and j�j� respectively� If j�j � � � j�j
holds� then SUM ASSOC is applied and if j�j � �� j�j holds� then SUM ASSOC
is applied in the inverse direction�

In our example� there is only one position� where the tree has to be balanced�
the subexpression �one � �one � �one � one���� Here the cardinality of the left
hand side is � and the cardinality of the right hand side is �� So SUM ASSOC
is applied in the inverse direction� We obtain�

��one� one� � �one� one�� � �one� one� �III�



Extension Until now� the cardinality of the entire type has been left unchanged�
In order to reach a symmetric tree and to be able to encode the type by
scalar products of booleans� we will now add some redundant states� Theorem
SUM EXTEND is applied to encode one by one � one whenever one is a leaf
with a depth less than the maximum depth of the tree�

In our example� there were � states� After the extension� there are �� In the
automaton the two extra states which have been added during the extension are
unreachable�

��one� one� � �one� one�� � ��one� one� � �one� one�� �IV�

Substitution of � and one Now the type expression tree is symmetric� i�e� in
every node the left hand side equals the right hand side� Theorem SUM PROD
is now applied repeatedly applied in a top down fashion�

bool� �bool� �bool� one�� �V�

Finally SUM NEUTRAL is applied to encode bool� one by bool�

bool� �bool� bool� �VI�

��	 Derivation of a One Hot Encoding

We use the same example �c as in the minimal bit encoding example�

�one� �one�option�option� �one� one� �I�

Substitution of option As in the previous example� the option type operator
is eliminated using OPTION SUM�

�one� �one� �one� one��� � �one� one� �II�

Flattening Applying SUM ASSOC repeatedly leads to�

one� �one� �one� �one� �one� one���� �III�

Substitution of � and one Combining the encodings SUM TRANS �in for�
ward direction�� ONE EXTEND and SUM PROD leads to the following com�
pound encoding�

�� one 	 bool� �

Applying this compound encoding encodes each repeatedly produces�

bool� �bool� �bool� �bool� �bool� bool���� �IV�

The previous type expression consisted of � states� where each of them corre�
sponds to one one�subexpression�



� Conclusion and Future Work

We have introduced a theory for automata representation and transformation�
The transformations de�ned are constructive and hence lead to re�nements and
optimizations on the automata through di�erent levels of abstraction� An illus�
tration of how state encodings can be derived in a formal synthesis fashion was
also given� The state encoding algorithm presented is similar to conventional
synthesis algorithms except that correctness is guaranteed implicitly� since the
algorithm is based on HOL�

Such formal synthesis algorithms o�er an alternative to the conventional
synthesis�veri�cation approach� We believe� that in general formal synthesis can
be much more e
cient than synthesis combined with an extra veri�cation step�
The result of a non�formal synthesis is just the implementation� the information
on how the implementation is derived gets lost and cannot be used during the
post�synthesis veri�cation step�

We believe� that formal synthesis algorithms can also be exploited in other
areas of hardware synthesis such as boolean optimization� scheduling� system
level synthesis� The automata theory will be a basis for circuit descriptions on
the algorithmic and system level�

References

�Day��� Nancy Day� A comparison between statecharts and state transition assertions�
In �hug���� pages �
���
��

�EiSK��� D� Eisenbiegler� K� Schneider� and R� Kumar� A functional approach for
formalizing regular hardware structures� In �hug���� pages �	����
�

�hug��� Luc Claesen and Michael Gordon� editors� Higher Order Logic Theorem Prov�

ing and Its Applications� Leuven� Belgium� November ����� North�Holland�
�hug��� Je�rey J� Joyce and Carl�Johan H� Seger� editors� Higher Order Logic The�

orem Proving and Its Applications� Vancouver� B�C�� Canada� August �����
Springer�

�Loew��� Paul Loewenstein� A formal theory of simulations between in�nite automata�
In �hug���� pages �����

�

�Melh��� F� Melham� Automating recursive type de�nitions in higher order logic�
Technical Report �
	� University of Cambridge Computer Laboratory� �����

�ScKK��� R� Kumar K� Schneider and Thomas Kropf� Alternative proof procedures
for �nite�state machines in higher�order logic� In �hug���� pages ������
�

This article was processed using the LATEX macro package with LLNCS style


