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Abstract. In this paper, the problem of automatic visual inspection of 
textured surfaces is addressed. In particular, a technique for crack detection 
on both regularly and randomly textured images is presented. The technique 
is based on a new measure of texture anisotropy that allows an easy 
discrimination between defect pixels and defect-free ones. This technique 
was used to detect cracks on granite slabs. The reported results confirm its 
effectiveness. 

1 Introduction 

In manufacturing industries, the inspection of raw materials and end products is a very 
important task to attain the reliability of products and the customer's confidence. In 
this context, automatic visual inspection techniques can play a key role. 
In the literature, many techniques for detecting defects on regularly textured surfaces, 
such as textiles, have been proposed [1]. In particular, the detection of large defects 
has been extensively investigated. By contrast, the problem of  detecting very small 
defects (e.g., cracks or scratches) on randomly textured surfaces has not received much 
attention [2, 3]. 
In this paper, we address this problem and describe a new technique developed for the 
detection of cracks on textured images (both regular and random textures). The 
technique is aimed at crack detection, as it takes into account explicitly the 
characteristics of this kind of defect. Cracks usually occupy a very small percentage of 
a textured surface (1% or less) and exhibit dominant orientations. Therefore, they do 
not strongly affect "global" texture characteristics, but destroy texture mainly along 
their dominant orientations. In addition, an inspected texture is not affected along 
other orientations. Consequently, in order to detect cracks, we propose to analyze the 
behaviour of a texture along different orientations. Anomalous changes in the 
inspected texture in a particular direction should give a precise cue for crack detection. 
Such changes can be detected by measuring a new type of texture anisotropy that we 
called "conditional texture anisotropy". 

2 Conditional Texture Anisotropy 

Let us characterize the texture of an image along m different orientations (e.g., 0 ~ 
45 ~ 90 ~ and 135~ Moreover, let us assume to have a set of n textural features for 
each orientation. Then, the texture of each image pixel can be characterized as 
follows: 



744 

X = ( x l  ............ s~)  (1) 

where each x.. is defined as: 

~.  = fx i l , .  . . . . . . . . . .  x i . )  (2) 

To analyze the directional behaviour of the inspected texture, we use the concept of 
local texture anisotropy [4]. Anomalous changes in the texture along a particular 
orientation result in a determinate degree of local anisotropy. However, the classic 
definition of local anisotropy is not well suited to crack detection. In fact, the texture 
of a given kind of material can exhibit an intrinsic degree of texture anisotropy that is 
not related to the presence of a crack, To take into account the anisotropy of the 
inspected texture, we define a measure of local texture anisotropy "conditioned" by the 
inspected texture. Let us consider a set C={Cs ........ C#r of "N" kinds of texture to 
be inspected (i.e., a set of "N" classes of texture). Letp(X/XeCi) be the conditional 
density functions of the texture class Ci. As the texture is characterized along different 
orientations, we can define the conditional density of the texture class "Ci" along the 
"j" orientation (i.e., the function pj(~/xje Ci)). Then, we define a measure of 
conditional texture anisotropy (CTA) as follows: 

CTA(X)= Myax{pj(x_jlxj Ci) } (3) 

The values assumed by CTA(X) are affected by the presence of a crack, as a crack 
along the dominant "j" orientation strongly changes the function pj(xj/xj~Ci). In 
particular, py~xj/~ECi) decreases, as the crack makes the texture in the "f '  direction 
very different from the texture of the inspected class. The maximum value of CTA(X) 
(i.e., CTA(X)=I) is associated with a pattern containing a crack that causes 
pJ2Q/2QeCi)=O. On the other hand, when cracks are not present, CTA(X) decreases and 
its minimum value (i.e., CTA(X)=O) is reached when pj(~/xjeCi) is equal in all 
directions. Therefore, the properties of the CTA measure can be summarized as 
follows: 
a) CTA(X) takes on values in the range [0,1]; 
b) CTA(X)=O for an "ideal" texture without defects; 
c) CTA(X)=I for maximum anisotropy. 
To compute CTA(X), we must estimate the conditional probability pj~&/xje Ci) for 
each "f '  orientation by using a training image without defects that belongs to the 
texture class "Ci" to be inspected. To compute pj(&/xjeCi), we can use both 
parametric and non-parametric approaches. If an appropriate "parametric form" (e.g., a 
gaussian form) of pj(xJxje Ci) can be assumed, then parametric methods can be used 
[5]. Otherwise, non-parametric methods, such as the Parzen windows, have to be 
adopted [5]. 
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3 Experimental Results 

The effectiveness of the CTA measure was tested on images of granite slabs affected 
by cracks. An example of such images is given in Fig. 1. As textural features, we 
used the ones based on the Fourier Power Spectrum computed in four different spatial- 
frequency bands. Each feature was computed along four angular orientations (0 ~ 45 ~ 
90 ~ and 135~ We used a 16 • 16-pixel window to compute the resulting 16 textural 
features. 
Crack detection was performed in two steps: 
a) System training on a defect-free image. 
b) Classification of the test image to detect pixels belonging to cracks. 
By the first step, we computedp/,yqlg4~Ci) for each "j" direction by using a defect- 
free training image of the inspected texture. In particular, the computations were 
performed by assuming a gaussian form for the distributions. Then, we computed the 
Conditional Texture Anisotropy CTA(X) for each pixel X of the training image, and 
we derived the CTA statistical properties. For the sake of simplicity, we assumed a 
gaussian form of the CTA distribution. Finally, the classification process was carried 
out on the test image to detect "'defective pixels". The Mahalanobis distance din(X) 
between the CTA(X) of the pixel X and the ideal CTA distribution was computed. 
Defective pixels were detected by thresholding this distance. We fixed two thresholds, 
thl and th2 (with th2<th~), on the basis of the CTA distribution. Each pixel was 
classified as a "defect pixel" if dm(X)>thl, or as a "defect-free pixel" if dm(X)<th2. The 
pixels with th2.~lm(X)_<th 1, which were uncertain pixels, were analyzed at the end of 
the thresholding process. In particular, they were labelled as "defect pixels" if they 
were connected with other pixels already classified as defective ones; otherwise, they 
were classified as "defect-free pixels". The result of the crack-detection process is 
shown in Fig. 2. As can be noticed, the crack was well detected. In order to better 
assess the effectiveness of our approach, we carried out the interesting experiment of 
analyzing the behaviour of the CTA measure in the presence of a crack. Figure 3 
shows the profile of the CTA measure as a function of the row number along a fixed 
column in the test image shown in Fig. 1. The presence of a crack can be deduced 
from the very steep peak in the graph profile. 

4 Conclusions 

In this paper, we have presented a new technique aimed at detecting cracks in both 
regular and random textures. The technique is based on a new measure of texture 
anisotropy. In our experiments, the effectiveness of the proposed measure in 
detecting cracks on granite slabs was assessed. 
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Fig. 1. An inspected granite slab affected by a crack. 
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Fig. 2. Result of the crack-detection process. 
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Fig. 3. Values of the CTA measure as function of the row 

number along a fixed column in file image shown in Fig. 1. 


