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Abstract. Given a planar graph G, the planar (biconnectivity) augmen-
tation problem is to add the minimum number of edges to G such that the
resulting graph is still planar and biconnected. Given a nonplanar and
biconnected graph, the maximum planar biconnected subgraph problem
consists of removing the minimum number of edges so that planarity is
achieved and biconnectivity is maintained. Both problems are important
in Automatic Graph Drawing. In [JM95], the minimum planarizing k-
augmentation problem has been introduced, that links the planarization
step and the augmentation step together. Here, we are given a graph
which is not necessarily planar and not necessarily k-connected, and
we want to delete some set of edges D and to add some set of edges
A such that |D| + |A| is minimized and the resulting graph is planar,
k-connected and spanning. For all three problems, we have given a poly-
hedral formulation by defining three different linear objective functions
over the same polytope, namely the 2-node connected planar spanning
subgraph polytope 2-ANCPLS(K,). We investigate the facial structure
of this polytope for & = 2, which we will make use of in a branch and
cut algorithm. Here, we give the dimension of the planar, biconnected,
spanning subgraph polytope for G = K, and we show that all facets
of the planar subgraph polytope PLS(K,) are also facets of the new
polytope 2-NCPLS(K,). Furthermore, we show that the node-cut con-
straints arising in the biconnectivity spanning subgraph polytope, are
facet-defining inequalities for 2-ACPLS(K,). We give first computa-
tional results for all three problems, the planar 2-augmentation problem,
the minimum planarizing 2-augmentation problem and the maximum
planar biconnected (spanning) subgraph problem. This is the first time
that instances of any of these three problems can be solved to optimality.

1 Introduction

Many algorithms work only for biconnected graphs. A graph that does not satisfy
this condition, has to be augmented by adding a set of edges such that the
resulting graph is biconnected. In general, the problem of augmenting a graph
by a minimum number of edges so that it meets certain edge or node connectivity
requirements given by k£ € Z is called augmentation problem. We will consider
node connectivity requirements with k& = 2.
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fiziente Algorithme fur diskrete Probleme und thre Anwendungen”



The (node-)connectivity «(G) of a graph G is the minimum number of nodes
whose removal together with its incident edges results in a disconnected or trivial
graph. A graph is said to be k-node-connected, or k-connected, if x(G) > k. The
problem of finding the minimum cost k-node connected spanning subgraph in a
general graph is proven to be NP-hard even for £ = 2 and uniform edge costs
[GI79]. Garg, Santosh and Singla have given a 3/2-approximation algorithm
for £ = 2 and uniform edge costs [GSS93], whereas Ravi and Williamson have
given a 2H(k)-approximation algorithm for general k and general costs, where
H(k) =1+ % 4.+ % [RW95]. For G = K,,, the complete graph on n vertices,
Harary has given a polynomial time algorithm for constructing a minimum k-
vertex connected spanning subgraph for k € N [Har62].

Another type of connectivity problems are augmentation problems. Here, the
given graph has to be augmented in a minimum way to a k-connected graph.
The problem of augmenting a given graph by the minimum number of edges in
order to obtain a k-node connected graph seems still to be open, whereas there
are polynomial time algorithms for k¥ = 2 and k = 3 [RG77,HR91,WN93]. In the
case that the augmented edges have general edge costs, the problem is NP-hard
even for k = 2 [ET76].

The planar (k-)augmentation problem has been brought up by Kant, and
consists of adding a minimum number of edges to a planar graph in order to
obtain a k-connected graph, which is still planar. Kant showed that this problem
is NP-hard for & = 2, and gives a linear time approximation algorithm which
adds at most 2 times the minimum required number of edges [Kan93].

The planar augmentation problem has a wide application in Automatic
Graph Drawing. Here, many algorithms for drawing planar graphs work only
for biconnected or even triconnected graphs. In order to use these algorithms
for a simple connected graph there are two possibilities. Either to draw the bi-
connected parts of the graph separately, or to augment it to biconnectivity and
draw the resulting graph while suppressing the augmented edges. In general, the
second approach leads to nicer drawings.

Since there are many graph drawing algorithms for planar graphs and only
a few algorithms for nonplanar graphs, Tamassia, Batini and Di Battista sug-
gested a method using planarization [TBB88]. Here, the maximum planar sub-
graph P of a given nonplanar graph is determined, and either P is drawn and
the deleted edges are inserted again, or the deleted edges are reinserted before
the drawing step, and the produced crossings are substituted by artificial nodes
in order to obtain a planar graph. In the former case, it is often required that
the found maximum planar subgraph is biconnected. Requiring this condition
and the condition that the subgraph should be spanning leads to the maximum
planar biconnected (spanning) subgraph problem. Goldschmidt and Takvorian
showed that even finding a biconnected spanning planar subgraph of a bicon-
nected nonplanar graph is NP-hard [GT94].

For the application in Automatic Graph Drawing it is, indeed, advantageous
to link the planarization step and the augmentation step together (see [JM95]).
This leads to the minimum planarizing k-augmentation problem. Given a graph



G = (V, E), we like to delete a set of edges D C F and to add a set of edges
A C (V x V)\ E such that |D| + |4| is minimum and the resulting graph is
planar, spanning and k-connected.

All three problems, the planar k-augmentation problem, the maximum pla-
nar k-connected spanning subgraph problem and the minimum planarizing k-
augmentation problem can be formulated as an optimization problem of a linear
objective function over a single polytope. The planar k-connected (spanning)
subgraph polytope k-NCPLS(Gy) is defined to be the convex hull over all in-
cidence vectors of planar, k-connected and spanning subgraphs of a graph G.

For a given graph G = (V, E), we choose Gy = (Vo, Eg) to be the complete
graph on the vertex set V; = V and consider the optimization problem

max{wTz | z € k-NCPLS(Go)}.

Depending on the value of the vector w € R¥° we can formulate all three prob-
lems.

In order to solve the planar k-augmentation problem we set w, = —1 for
e € Eg\ F and w, = M for e € E, where M = |Ey\ E| + 1. By setting w, = 1
fore € F and w, = —M’ for e € Eo\ E with M' = |E|+ 1, we can formulate the
maximum planar k-connected spanning subgraph problem. The natural setting
of ¢ occurs for the minimum planarizing k-augmentation problem. Here, w, = 1
for e € E and w, = —1 for e € Ey\ E. Maximizing w” z leads to taking as many
edges of G as possible and as few edges of Gg — G as possible. This way, the
difference between the given graph G and the new graph will be minimized.

Hence, we are interested in the facial structure of the planar k-connected
(spanning) subgraph polytope k-NCPLS(K,). The integer points of this poly-
tope are identical to the integer points in the intersection of two well studied
polytopes, namely the planar subgraph polytope PLS(G) for the maximum
planar subgraph problem [JM95] and the k-node-connected spanning subgraph
polytope k-NCS(G) for the network-survivability problem [Sto92]. Since the
polyhedral approach for both problems seems to be promising, i.e., the opti-
mum solution can be found by branch and cut algorithms within a few seconds
for graphs of moderate sizes, our hope is to obtain similar results for all three
problems using the polyhedral approach.

The outline of the paper is as follows. In Section 2 we give some mathematical
background in polyhedral combinatorics and recall the most important classes of
facet-defining inequalities for the planar subgraph polytope. A short introduction
into the k-connected subgraph polytope is given in Section 3. New results of the
structure of the planar biconnected spanning subgraph polytope are contained
in Section 4. Recall that we restrict our consideration to & = 2, since many
applications require biconnectivity. Moreover, in the second part of Section 4
we restrict ourselves to k-ANCPLS(Gy) for Go = K, the complete graph on
n vertices, which is not really a restriction, since all three problems can be
formulated over k—NCPLS(Kn). In Section 5 we show how these theoretical
results can be useful in practice. We describe our branch and cut algorithm
which has been used in our computational experiments given in Section 6.
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Fig. 1. shows some Kuratowski graphs, i.e., a subdivision of K5 and K33

2 The Planar Subgraph Polytope

Given a graph G = (V, E) with edge weights w, € R for all e € E, let Pg be the
set of all planar subgraphs of G. For each planar subgraph P = (V', F) € Pg,
we define its incidence vector x¥ € RZ by setting x7 = 1ifec Fand x'' =0
if e ¢ F. The planar subgraph polytope PLS(G) of G is defined as the convex
hull over all incidence vectors of planar subgraphs of G. The problem of finding
a planar subgraph P = (V', F) of G with weight w(P) = }_ . w, as large as
possible can be written as the linear program max{wTz | z € PLS(G)}, since
the vertices of the polytope PLS(G) are exactly the incidence vectors of the
planar subgraphs of G. Kuratowski characterized the minimal nonplanar graphs
to be exactly the subdivisions of K5 and K3 3. Hence we get the following integer
programming formulation for the maximum planar subgraph problem:

maximize w’z

subject to 0 < z, < 1, foralle € F, (1)
z(K) < |K| -1, for all Kuratoski subgraphs (V', K), K C E (2)
z. integral, foralle € F (3)

Since integer programming is NP-hard, we drop the integer constraints. In or-
der to apply linear programming techniques to solve this linear program one
has to represent PLS(G) as the solution of an inequality system. Due to the
NP-hardness of our problem, we cannot expect to be able to find a complete
description of PLS(G) by linear inequalities. But even a partial description of
the facial structure of PLS(G) by linear inequalities is useful for the design of a
“branch and cut”-algorithm, because such a description defines a relaxation of
the original problem. Such relaxations can be solved within a branch and bound
framework via cutting plane techniques and linear programming in order to pro-
duce tight bounds. An irredundant description of PLS(G) by linear inequalities
contains only inequalities which describe proper faces of maximal dimension of
PLS(G), so-called facet-defining inequalities.

For efficiency, also in a partial description by inequalities, we concentrate on
those valid inequalities for PLS(G) which are facet-defining. For ease of notation,
we define z(F) = > .p . for F C E. In [IM94] we state the following
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Fig. 2.(a) The generalized Petersen graph P(7,3) and the (b) s-chorded cycle graph G(n,s,t)
forn=7and s =3

Theorem 1 [TM94]. The dimension of the planar subgraph polytope PLS(G) of
G = (V,E) is |E|, so 4t s full dimensional.

For all edges e € E the tnequalities z. > 0 and z. < 1 define facets of PLS(G).
For all subdivisions G' = (V', K) of Ky or K33 contained in G the inequality
z(K) < |K|—1 defines a facet of PLS(G).

For all cliques (V', F) (or complete biparitte subgraphs) contained in G, the Euler
inequalities ¢(F) < 3|V'|—6 (or z(F) < 2|V'|—4, respectively) are facet-defining
for PLS(G).

The following class of graphs, called s-chorded cycle graphs, has been introduced
in [Mut94b]. This class of graphs can be derived from the generalized Petersen
graphs by the contraction of certain edges (see Figure 2). The s-chorded cy-
cle graphs give rise to huge classes of inequalities generalizing the Kuratowski
inequalities.

For the rest of this section all sums of integers representing nodes of graphs
G = (V, E), which are greater than n = |V| are to be taken modulo .

Definition 1 For s,n,r,t € N, s> 2, n=st+r, 0 <r < s, the s-chorded cycle
graph G, ¢) = (V, E) is defined via

vV ={1,2,...,n} and
E=C,uUD,, where

C,, is a cycle of length n, C,={(,i+1)]¢=1,...,n} and
D,, is the set of s-chords of C,,, D, ={(¢,¢+s)|i=1,...,n}.

An s-chorded cycle graph gives rise to the definition of the corresponding s-
chorded cycle inequality. In [Mut94b], it is investigated for which values of s,



t and n the s-chorded cycle inequality induced by G, ;) is valid, resp. facet-
defining for PLS(G(n,s.1))-

Theorem 2 [Mut94b]. Let G, 1) = (V, E) be a s-chorded cycle graph, i.e.
n=st+r for s,t,r€ N andr € {0,1,...,5 —1}. We define

o — n—2t—s, ifzecC,
S if z € D,

and c(E) 1=, cpcCe-
Ifn—2t—s >0, the s-chorded cycle tnequality

(n—2t—8)z(Cp) + z(Dyn) < c(E) — (n— 2t)

is valid for PLS(G(n,s,1)) if and only if (t>3,5>3) or (t=2,5>3,r>2).
If the s-chorded cycle inequality s valid for PLS(G(n,s,1)), then it is facet-
defining for PLS(G(n,s,1)) of 7 > 0.

Let G(n,s,t) be an s-chorded cycle graph, which 1s a subgraph of G. Ift = 2, or
s =3, orr > |5| and the corresponding s-chorded cycle inequality corresponding
to G(n,s,t) 15 facet-defining for PLS(G(n,s,1)), then the s-chorded cycle inequality
18 facet-defining for PLS(G).

For n = 5 the 2-chorded cycle inequality is identical to the Kuratowski inequality
for Ks. So, the general s-chorded cycle inequalities are generalizations of the
Kuratowski inequality for K5. For the special case that n = 2k + 1 and s = &,
the s-chorded cycle graphs give rise to another kind of inequality, the odd n-
ladder inequality, which is an alternative generalization of the Ks-inequality.

Theorem 3 [Mut94b]. If G contains the k-chorded cycle graph G(apy1,k,2) =
(V, E) on 2k 4+ 1 nodes with E = Capq41 U Dapy1, k € N, k > 2, then the odd
n-ladder inequality

(2k — 3) ©(Car+1) + 2(Dax+1) < (2k - 1)?
15 facet-defining for PLS(G (2141,1,2)) and for PLS(G).
In the special case s = k and n = 2k, the k-chorded cycle graphs G(o;, 1, 2) contain
multiple edges. If we take each diagonal only once, we obtain a Mobius-ladder,

which gives rise to an inequality which is a generalization of Kuratowski’s K3 3
inequality.

Definition 2 For k € N, k > 3, we define the (even) Mébius-ladder to be the
graph Gy = (V, E) with

vV ={1,2,...,2k} and
E=Cs5,UDy , where

Csy, 1s a cycle of length 2k, Cor ={(4,i+1)|i=1,...,2k},
Dy, is the set of longest chords of Ca,, Dy = {(¢,i+k)|:=1,2,...,k}.



Theorem 4 [Mut94b]. For the Mdbius-ladder graph Gy = (V,E) with E =
Ca, U Dy, and k > 3 the Mébius-ladder tnequality

(k —2) 2(Cat) + 2(Dy) < 2(k — 1)?

18 facet-defining for PLS(G ). Moreover, the Mébius ladder inequality is facet-
defining for PLS(G) whenever Gy s a subgraph of G.

A complete overview of the currently known structure of the planar subgraph
polytope can be found in [Mut94a).

3 The k-connected Subgraph Polytope k-NCS(G)

Given a k-connected graph G = (V, E), we are interested in the set of all k-
connected spanning subgraphs of G. For each k-connected spanning subgraph
K = (V,F) of G we define its incidence vector x¥ € RZ by setting xF =1
if e € F and xI = 0if e ¢ F. The k-connected (spanning) subgraph polytope
k-NCS(G) is defined as the convex hull over all incidence vectors of k-connected
spanning subgraphs of G. In order to solve the minimum k-connected subgraph
problem for a given k-connected graph G = (V, E), we define the weight w, for
an edge e € E to be 1. The problem of determining a k-connected subgraph of
G with the minimum number of edges, can be formulated as the linear program
min{wTz | z € k-NCS(G)}. If we like to solve the k-augmentation problem for
a given graph G, we choose Go = (V, Ep) := K, define the weight w,. for an
edge to be —M,if e € F and 1if e ¢ E, where M = |Eg \ E|+ 1, and solve
min{wTz | z € k-NCS(Go)}.

The k-connected subgraph polytope was already studied by Stoer in a more
general form [St092]. For k = 2, the computational results in [Sto92] are promis-
ing.

Theorem 5 [Sto92]. The integer points of k-NCS(G) are characterized by the
following system of inequalities:

0<z, <1, forallec E (4)
:c(éG—Y(W))le fOT a’llYng |Y|:k_11WgV\Y (5)
z. integral, forallec E (6)

The inequalities (5) essentially say that if a node set ¥ C V of size k — 1 is
removed, the resulting graph must still be connected.



4 Intersecting PLS(G) and k-NCS(G)

In this section we are interested in the integer points contained in the polytope
k-NCPLS(G) for k = 2. They are identical to the integer points contained in
the intersection of the polytopes 2-ANCS(G) and PLS(G). We already gave a
system of inequalities characterizing the integer points for both polytopes. So,
the integer points of the new polytope k-NCPLS(G) are defined by the system
of inequalities given by (1), (2), (3) and (5).

One of the first questions occuring in connection to a polytope is its dimen-
sion. For general graphs G, the dimension of 2-NCPLS(G) is unlikely to be
determined. Even for biconnected graphs 2-NCPLS(G) may be empty, like, for
example, for the Kuratowski graph shown in Figure 1(a). If we restrict our atten-
tion to G = K,,, the complete graph on n nodes, we will see that 2-NCPLS(K,,)
has full dimension.

Theorem 6 The dimension of the planar biconnected spanning subgraph polytope
2-NCPLS(K,) for K,, = (V, E), the complete graph on n = |V| vertices, is |E|.

Proof. We will show that there are |E| + 1 affinely independent elements in R?
that are incidence vectors of planar, biconnected and spanning subgraphs of K.
For simplicity let the vertices be numbered by 1,2,...,n. Let P consist of the
Hamiltonian cycle C = ((1,2),(2,3),...,(n—1,n), (n, 1)) together with the edge
e = (1,3). Adding any of the edges e; € E\ (CU{e}) gives P*, i =1,2,...,|E|—
n — 1. Removing the edge (u, v+ 1), resp. (n, 1), and adding the edges (u,v),
(v,u+ 1), resp. (n,v), (v,1), for any v ¢ [u — 1;u+ 2] gives P;, j = 1,2,...,n.
Let P’ be equal to P\ {(1,3)}. Then P, P* for: =1,2,...,|E|—n—1, P; for

Jj =1,2,...,n, and P’ induce planar, biconnected and spanning subgraphs of
K. Moreover, all the | E|+1 incidence vectors x¥, x¥ fori=1,2,...,|E|-n—1,
xPifor j=1,2,...,n, and x* are linearly independent. O

The natural question occurs whether known facets of the planar subgraph poly-
tope are also facets for the planar biconnected spanning subgraph polytope.
Suppose cT'z < cq is a facet of PLS(G). It will also be a facet of 2-NCPLS(G)
if d = dim(2-NCPLS(G)) affinely independent incidence vectors of subgraphs
P C @ exist that are planar, biconnected, spanning and satisfy the equation
cTx? = ¢g. The following theorem answers the question whether the support
graph of a facet-defining inequality for PLS(K,) is biconnected. The support
graph of an inequality ¢’z < co, resp. ¢z > cq, is induced by the edge set
{e€ E|c. #0}.

Theorem 7 Let cTz < ¢y be a facet of the planar subgraph polytope PLS(K,,).
Then either the inequality Tz < ¢y is identical with z. > 0 or ., < 1, or the
support graph of ¢Tx < ¢o 1s biconnected.

Proof. Let S denote the edge set of the support graph of cTz < ¢¢, and suppose
that G[S¢] is not biconnected with |S¢| > 2. Then, let a be an articulation point



of S¢ that separates the blocks induced by K; from K5 := S¢ \ K;. At least one
of the blocks induced by K; and K3 is nonplanar (say K), since S¢ is nonplanar.
We have {z € PLS(G) | Tz = co} = {z € PLS(K,) | Tz + Tz = cf + 5},
where ¢; denotes the vector of coefficients for block K; for : = 1, 2. We have that
{z € PLS(K,) | Tz = co} C {z € PLS(K,) | Tz = ¥}, since otherwise we
would have ¢z > ¢ or ¢Tz > ¢f, both of which are nonvalid inequalities for
PLS(K,). Moreover, we have {z € PLS(K,) | Tz = co} # {z € PLS(K,) |
cTz = c2}. Hence the inequality Tz < ¢q can not be facet-defining for PLS(K,,),
which is a contradiction. O

In general, biconnectivity of the support graph of a facet-defining inequality
Tz < co for PLS(G) is not sufficient to guarantee that it is also a facet for
2-NCPLS(G). Consider, for example, the subdivision S of K5 shown in Fig-
ure 1(a). The Kuratowski inequalities that are facets for PLS(S), are not facets
for 2-NCPLS(S), since removing any edge of S leads to a graph that is not bi-
connected. Fortunately, for complete graphs the situation is promising. We can
show the following theorem.

Theorem 8 Let (7) cTz < co be a facet of the planar subgraph polytope
PLS(K,). Then cTx < cq 15 also a facet of the planar, biconnected and spanning
subgraph polytope 2-NCPLS(K,).

Proof. Let K,, = (V, E). From Theorem 7 we know that either the inequality
cTz < ¢q is identical with z, > 0 or z, < 1, or the support graph of cTz < ¢ is
biconnected. For the inequalities z, > 0 and z, < 1 we give a direct proof similar
to the one for Theorem 6. For simplicity the nodes are numbered by 1,2,...,n.
We first show that z. < 1 is a facet-defining inequality for 2-NCPLS(K,,).
Without any restriction let e = (1, 3). Consider the graphs induced by the edge
sets P, PP fori = 1,2,...|E|—n—1and P; for j = 1,2,...,n defined in the
proof to Theorem 6. All of them are planar, biconnected and spanning, satisfy
z, = 1 and their incidence vectors are linearly independent. Next, removing the
edge e = (1,3) from P, P fori=1,2,...|E|—n—1and P for j = 1,2,...,n
gives us still | F| planar, biconnected and spanning subgraphs of K,,, satisfying
ze = 0. Moreover, their incidence vectors are affinely independent.

Now we will show the facet-defining properties of those inequalities ¢z < ¢
which are facet-defining for PLS(K,,) and have biconnected support. There are
sufficiently many planar subgraphs satisfying (7) with equality that can be used
in an indirect proof to show the facet-defining property of (7) for PLS(K,).
That is, suppose there exists an inequality aTz < a¢ with {z € PLS(K,) |
Tz = ¢y} C{z € PLS(K,) | aTz = ag}. From this it follows that ¢ = a7
and ¢g = ag. If all these planar subgraphs are biconnected and spanning, we
have already found enough affinely independent points of 2-NCPLS(K,,) in
{z € 2-NCPLS(K,) | cTz = co}. Suppose, some of these subgraphs are not
biconnected and spanning. Then we claim that we can augment them to planar,
biconnected and spanning subgraphs of K,, by adding aset F C E, with ¢(F) =0
and a(F) = 0. With the new set of independent points in {z € 2-NCPLS(K,,) |



¢z = ¢} we can proceed as in the indirect proof for the facet-defining property

of (7) for PLS(G).

Let P be the edge set of a planar subgraph used in the indirect proof for
PLS(K,), that is not biconnected nor spanning with ¢ x¥ = co. Let a be an
articulation point of P separating the blocks induced by K; from K5 := P\ Kj.
Let v; be a vertex next to a at the outer face of a planar embedding of block K,
¢ = 1,2. Adding the edge e = (v1, v3) to P still maintains a planar subgraph P,
where a does not anymore separate component K; from K5. Moreover, we have
co > cT'xPr = cT'xP + ¢, = co + co, hence ¢, = 0 that implies a, = 0. Repeating
this iteration subsequently for all articulation points in P leads to a biconnected
planar subgraph P, with P, = P U F with ¢(F) = 0 and a(F) = 0. If P is not
spanning, we add the edges (z,u), (2, w) for (u,w) € Pj, and all vertices z that
are not contained in Pj;. Now the new edge set P; = P, U F' is spanning, while
planarity and biconnectivity is maintained. Using the same arguments as before
gives ¢(F') = a(F') = 0. |

Our investigations concerning the facet-defining inequalities arising from bicon-
nectivity conditions lead to the following theorem. For k = 2, inequalities (5)
reduce to the ones given in Theorem 9.

Theorem 9 Let K, = (V, E) be the complete graph on n nodes. Furthermore,
letz€V,and a set W C V\{z} with0 # W # V\{z}. The node-cut constraint

2(ba-{3(W)) 2 1 (8)
defines a facet of 2-NCPLS(K,).

Proof. We will prove it indirect. Let ¢cTz > c¢o denote inequality (8). Suppose
there exists an inequality aTz > ag with {z € 2-NCPLS(K,) | Tz = ¢} C
{z € 2-NCPLS(K,) | a¥z = ao}. We will show that then ¢ = AaT and ¢y =
Aap for A > 0. For any fixed z € V and fixed set W CV \ {2z}, 0 £ W £ V\{z}
let U = V\ {W U2z} We will construct a planar, biconnected and spanning
subgraph of G induced by the edge set P C E. P consists of the edge sets of an
Hamiltonian cycle Hy in W and Hy in U, resp. an Hamiltonian Path Hyy if
|W|=2or Hy if |U| = 2, the edge (u, w) foru € U, w € W, and the edges (v, z),
(v, 2), (z,w) and (z,w') foru A v € U, if |U| > 2, w #w' € Wif |W| > 2.
Obviously, P is the edge set of a planar, biconnected and spanning subgraph of
G satisfying inequality (8) by equality, hence also aTx = ao.

Substituting in P the edge (u, w) by any of the edges (v”, w"), v” € U, w" €
W still yields a planar, biconnected spanning subgraph P; satisfying ¢7 x* > ¢q
with equality, hence also a”x™* = ag. We have 0 = ¢Tx? — Ty = aTxF —
aTy Pt = Au,w) — Our ), NENCE Gy ) = Ay oy for all u, u” € U, w,w" € W.

By adding any edge contained in the complete graph induced by W to Hy
the required properties are still satisfied, hence a, = 0 for all e € G[W \ Hy/]. If
|W| > 4, then by choosing a different Hamiltonian cycle in G[W], we get a. = 0
for all e € G[W]. In the case that |W| = 3, we can remove the edge e = (w, w')



from P without loosing biconnectivity, hence we get a. = 0 for all e € G[W].
The same arguments hold for the set U, so we have a, = 0 for all e € G[U].
Moreover, adding any of the edges (z,w”), w” € W\ {w,w'} to P still
yields a planar, biconnected spanning subgraph of G satisfying inequality (8)
with equality. Hence a(; ,,) = 0 for w € W and, because of symmetry reasons,
a(zu) = 0 for u € U. Hence we have shown a, = Ac., and ag = Acg for all
ec k. O

5 Algorithm

In [TM94] we give a branch and cut algorithm for the maximum planar sub-
graph problem using facet-defining inequalities for PLS(G) as cutting planes.
We have to change and to add only a few routines in order to get a branch
and cut algorithm for solving the three problems, the minimum planarizing 2-
augmentation problem, the planar 2-augmentation problem and the maximum
planar biconnected spanning subgraph problem.

In a cutting plane algorithm, a sequence of relaxations is solved by linear
programming. After the solution z of some relaxation is found, we must be able
to check whether z is the incidence vector of a planar, biconnected and spanning
subgraph (in which case we have solved the problem) or whether any of the
known facet-defining inequalities are violated by z. If no such inequalities can
be found, we cannot tighten the relaxation and have to resort to branching,
otherwise we tighten the relaxation by all facet-defining inequalities violated by
z which we can find. Then the new relaxation is solved, etc. The process of
finding violated inequalities (if possible) is called “separation” or “cutting plane
generation”.

The cutting plane generation as well as the lower bound heuristic for the
planarity part are based on a planarity testing algorithm of Hopcroft and Tarjan
[HT74]. At the beginning we solve the Linear Program (LP) consisting of the
trivial inequalities z, > 0, z, < 1 and the inequality z(E) < 3|V| — 6. Let z be
an LP-solution produced in the cutting plane procedure applied in some node
of the enumeration tree. For 0 < ¢ < 1 we define E, ={e € E |z. > 1—¢} and
consider G, = (V, E.). For the unweighted graph G, the linear planarity testing
algorithm of Hopcroft and Tarjan is called. The algorithm stops if it finds an edge
set F' which is not planar. In case the inequality z(F') < |F|— 1 is violated, we
reduce it to a facet-defining inequality before we add it to the constraints of the
current LP. We also use a heuristic which searches for violated Euler-inequalities
and inequalities given by some classes of s-chorded cycle graphs.

The cutting plane generation for achieving biconnectivity makes use of the
facet-defining inequalities given in (5). For k¥ = 2, the inequalities reduce to
the ones given in (8). Given an LP-solution z produced in the cutting plane
procedure, we are able to give anode z € V and aset W, 0 £ W C V\ {z}
violating inequality (8) or guaranteeing that all the inequalities in (8) are satisfied
by z. This can be done in polynomial time by the following separation routine.
For all nodes z € V construct the graph G’ := G — {2z} = (V’, E’) and search for



(@) (b)

Fig. 3. shows two of the instances used for the computations. For the graph shown in (a) the
approach, first to determine a maximum planar subgraph may lead to removing the edges a
and b. In order to augment the graph to biconnectivity, we have to add at least three edges,
whereas the optimum solution of the minimum planarizing 2-augmentation problem removes
the edges e and f. The graph shown in (b) has been given by Kant. The heuristic he suggests
adds 5 new edges to the graph in order to obtain a planar biconnected graph, whereas the
optimum solution is to add 3 edges.

the minimum cut in G’ with edge values z. for all e € E’. Let y be the value of
this minimum cut. If y > 1, all inequalities of the type (8) for the specific node
z are satisfied. Otherwise, the inequality z(6¢_.3(W)) > 1 is violated for the
set W determined by the minimum cut §(W).

Although the vectors  coming up as solutions of LP-relaxations in the above
outlined process have fractional components in general, they are often useful to
obtain information on how a high-valued planar subgraph might look like. We
exploit this idea with a greedy type heuristic with respect to the solution values
of the edges. Starting from the empty graph, a planar subgraph is constructed by
adding the edges in order of decreasing values if they do not destroy planarity.
In a second phase this planar subgraph is augmented to a biconnected, spanning
and planar subgraph by a trivial heuristic. So, in addition to the upper bounds
wT z on the value of a maximum planar biconnected spanning subgraph, we also
obtain a lower bound w” Z from the incidence vector T of the planar, biconnected
and spanning subgraph derived heuristically from z.

6 Computational Experiments

The computational experiments were run on a Solbourne 5E/702. For our
“first” experiments we used the above described algorithm. Our current prelim-
inary implementation does not yet contain a procedure that tries to find good
feasible solutions whose objective function values constitute lower bounds. How-
ever, in all examples discussed here, the optimum solution was found by cutting
planes, i.e. the LP-solution « turned out to be the incidence vector of a planar,
biconnected and spanning subgraph.



Table 1. Computational Results for graphs from the literature

Problemname ||V| | |E| |#Var |Dell |Addl [Timl |Del2 |Add2 |Tim2 |Del3 |Tim3
Jaya.10.22 | 10 | 22 45 2 0 1 2 0 0
Beck.11.21 | 11 | 21 55 1 1 0 1 1 0 - -
Juellut.14.20 | 14 | 20 91 2 0 1 2 0 0 2 1
Juellut.16.22 | 16 | 22 120 2 0 1 2 3 2 2 1
Kant.15.20 | 15 | 20 105 0 3 0 0 3 0 - -
EadlMar.20.30 | 20 | 30 190 2 0 10 2 0 1 2 10
Harel.20.35| 20 | 35 190 3 0 11 2 1 0 3 4
Martin.30.56 | 30 | 56 435 3 3 19 3 3 6 - -
Hims.34.45 | 34 | 45 561 2 6 335 2 6 192 - -
Kant.45.85 | 45 | 85 990 3 0 231 3 0 15 3 421
Hims.46.64 | 46 | 64 | 1035 2 1 64 2 2 23 - -
Cim.60.166 | 60 |160 | 1770 1 0 17 1 0 17 1 32

Table 1 shows computational results for some graphs in the [LAYOUT-LIB],
a library for benchmark sets in Automatic Graph Drawing. The columns show
the problem name, the number of nodes and edges of the given graph G, and the
number of variables. Moreover, it shows the solution of the minimum planarizing
2-augmentation problem, i.e. the number of edges removed from G and added to
G, and the solution time in seconds. Columns 8—10 show the solution, when first
a maximum planar subgraph is determined and then the planar 2-augmentation
problem is been solved. Surprisingly, the total time for solving both problems,
the maximum planar subgraph problem and the planar 2-augmentation problem,
is in many cases much less than the time for solving the minimum planarizing
2-augmentation problem. Moreover, the solutions found by the two different
methods are in most cases identical. We do not have a code for augmenting a
nonplanar graph to biconnectivity. Hence, we only give the results of the third
approach, first augmenting the graph to biconnectivity and then solving the
maximum planar biconnected subgraph problem, for the graphs that are already
biconnected.

Consider the graph shown in Figure 3 (JueMut.16.22). In the run for solving
the minimum planarizing 2-augmentation problem, 14 violated node-cut con-
straints have been found, 14 Kuratowski-inequalities and 1 Euler-inequality. It
took 17 LP’s with 4 branch and cut nodes in 1.48 seconds. At the end, the
two edges e and f have been deleted. This solution is identical to the solution
for the maximum planar biconnected subgraph problem. Solving first the max-
imum planar subgraph problem leads to removing the edges a and b (using 10
Kuratowski inequalities and 1 Euler inequality, 6 LP’s in the root node in 0.54
seconds). Solving the planar 2-augmentation problem on the obtained planar
subgraph leads to adding three new edges. In this case 8 violated node-cut in-
equalities were detected, 34 Kuratowski inequalities and 1 Euler inequality. The
computation took 31 LP’s and 8 branching nodes in 2.33 seconds.

This is the first time that these problems have been solved to optimality. We
think that we will be able to solve even bigger instances in the near future.
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