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Abstract� Given a planar graph G� the planar �biconnectivity� augmen�
tation problem is to add the minimum number of edges to G such that the
resulting graph is still planar and biconnected� Given a nonplanar and
biconnected graph� the maximum planar biconnected subgraph problem
consists of removing the minimum number of edges so that planarity is
achieved and biconnectivity is maintained� Both problems are important
in Automatic Graph Drawing� In �JM�	
� the minimum planarizing k�
augmentation problem has been introduced� that links the planarization
step and the augmentation step together� Here� we are given a graph
which is not necessarily planar and not necessarily k�connected� and
we want to delete some set of edges D and to add some set of edges
A such that jDj � jAj is minimized and the resulting graph is planar�
k�connected and spanning� For all three problems� we have given a poly�
hedral formulation by de�ning three di
erent linear objective functions
over the same polytope� namely the ��node connected planar spanning
subgraph polytope � �NCPLS�Kn�� We investigate the facial structure
of this polytope for k � �� which we will make use of in a branch and
cut algorithm� Here� we give the dimension of the planar� biconnected�
spanning subgraph polytope for G � Kn and we show that all facets
of the planar subgraph polytope PLS�Kn� are also facets of the new
polytope � �NCPLS�Kn�� Furthermore� we show that the node�cut con�
straints arising in the biconnectivity spanning subgraph polytope� are
facet�de�ning inequalities for � �NCPLS�Kn�� We give �rst computa�
tional results for all three problems� the planar ��augmentation problem�
the minimum planarizing ��augmentation problem and the maximum
planar biconnected �spanning� subgraph problem� This is the �rst time
that instances of any of these three problems can be solved to optimality�

� Introduction

Many algorithms work only for biconnected graphs� A graph that does not satisfy
this condition� has to be augmented by adding a set of edges such that the
resulting graph is biconnected� In general� the problem of augmenting a graph
by a minimum number of edges so that it meets certain edge or node connectivity
requirements given by k � Z is called augmentation problem� We will consider
node connectivity requirements with k � ��
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The �node�	connectivity ��G	 of a graph G is the minimum number of nodes
whose removal together with its incident edges results in a disconnected or trivial
graph� A graph is said to be k�node�connected� or k�connected� if ��G	 � k� The
problem of 
nding the minimum cost k�node connected spanning subgraph in a
general graph is proven to be NP�hard even for k � � and uniform edge costs
�GJ�
�� Garg� Santosh and Singla have given a ����approximation algorithm
for k � � and uniform edge costs �GSS
��� whereas Ravi and Williamson have
given a �H�k	�approximation algorithm for general k and general costs� where
H�k	 � �� �

�
� � � �� �

k
�RW
��� For G � Kn� the complete graph on n vertices�

Harary has given a polynomial time algorithm for constructing a minimum k�
vertex connected spanning subgraph for k � N �Har����

Another type of connectivity problems are augmentation problems� Here� the
given graph has to be augmented in a minimum way to a k�connected graph�
The problem of augmenting a given graph by the minimum number of edges in
order to obtain a k�node connected graph seems still to be open� whereas there
are polynomial time algorithms for k � � and k � � �RG���HR
��WN
��� In the
case that the augmented edges have general edge costs� the problem is NP�hard
even for k � � �ET����

The planar �k��augmentation problem has been brought up by Kant� and
consists of adding a minimum number of edges to a planar graph in order to
obtain a k�connected graph� which is still planar� Kant showed that this problem
is NP�hard for k � �� and gives a linear time approximation algorithm which
adds at most � times the minimum required number of edges �Kan
���

The planar augmentation problem has a wide application in Automatic
Graph Drawing� Here� many algorithms for drawing planar graphs work only
for biconnected or even triconnected graphs� In order to use these algorithms
for a simple connected graph there are two possibilities� Either to draw the bi�
connected parts of the graph separately� or to augment it to biconnectivity and
draw the resulting graph while suppressing the augmented edges� In general� the
second approach leads to nicer drawings�

Since there are many graph drawing algorithms for planar graphs and only
a few algorithms for nonplanar graphs� Tamassia� Batini and Di Battista sug�
gested a method using planarization �TBB���� Here� the maximum planar sub�
graph P of a given nonplanar graph is determined� and either P is drawn and
the deleted edges are inserted again� or the deleted edges are reinserted before
the drawing step� and the produced crossings are substituted by arti
cial nodes
in order to obtain a planar graph� In the former case� it is often required that
the found maximum planar subgraph is biconnected� Requiring this condition
and the condition that the subgraph should be spanning leads to the maximum
planar biconnected �spanning� subgraph problem� Goldschmidt and Takvorian
showed that even 
nding a biconnected spanning planar subgraph of a bicon�
nected nonplanar graph is NP�hard �GT
���

For the application in Automatic Graph Drawing it is� indeed� advantageous
to link the planarization step and the augmentation step together �see �JM
��	�
This leads to the minimum planarizing k�augmentation problem� Given a graph



G � �V�E	� we like to delete a set of edges D � E and to add a set of edges
A � �V � V 	 n E such that jDj � jAj is minimum and the resulting graph is
planar� spanning and k�connected�

All three problems� the planar k�augmentation problem� the maximum pla�
nar k�connected spanning subgraph problem and the minimum planarizing k�
augmentation problem can be formulated as an optimization problem of a linear
objective function over a single polytope� The planar k�connected �spanning�
subgraph polytope k �NCPLS�G�	 is de
ned to be the convex hull over all in�
cidence vectors of planar� k�connected and spanning subgraphs of a graph G��

For a given graph G � �V�E	� we choose G� � �V�� E�	 to be the complete
graph on the vertex set V� � V and consider the optimization problem

maxfwTx j x � k �NCPLS�G�	g�

Depending on the value of the vector w � RE� we can formulate all three prob�
lems�

In order to solve the planar k�augmentation problem we set we � �� for
e � E� n E and we � M for e � E� where M � jE� nEj � �� By setting we � �
for e � E and we � �M � for e � E�nE with M � � jEj��� we can formulate the
maximum planar k�connected spanning subgraph problem� The natural setting
of c occurs for the minimum planarizing k�augmentation problem� Here� we � �
for e � E and we � �� for e � E� nE� Maximizing wTx leads to taking as many
edges of G as possible and as few edges of G� � G as possible� This way� the
di�erence between the given graph G and the new graph will be minimized�

Hence� we are interested in the facial structure of the planar k�connected
�spanning� subgraph polytope k �NCPLS�Kn	� The integer points of this poly�
tope are identical to the integer points in the intersection of two well studied
polytopes� namely the planar subgraph polytope PLS�G	 for the maximum
planar subgraph problem �JM
�� and the k�node�connected spanning subgraph
polytope k �NCS�G	 for the network�survivability problem �Sto
��� Since the
polyhedral approach for both problems seems to be promising� i�e�� the opti�
mum solution can be found by branch and cut algorithms within a few seconds
for graphs of moderate sizes� our hope is to obtain similar results for all three
problems using the polyhedral approach�

The outline of the paper is as follows� In Section � we give some mathematical
background in polyhedral combinatorics and recall the most important classes of
facet�de
ning inequalities for the planar subgraph polytope� A short introduction
into the k�connected subgraph polytope is given in Section �� New results of the
structure of the planar biconnected spanning subgraph polytope are contained
in Section �� Recall that we restrict our consideration to k � �� since many
applications require biconnectivity� Moreover� in the second part of Section �
we restrict ourselves to k �NCPLS�G�	 for G� � Kn� the complete graph on
n vertices� which is not really a restriction� since all three problems can be
formulated over k �NCPLS�Kn	� In Section � we show how these theoretical
results can be useful in practice� We describe our branch and cut algorithm
which has been used in our computational experiments given in Section ��
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Fig� �� shows some Kuratowski graphs� i�e�� a subdivision of K� and K��

� The Planar Subgraph Polytope

Given a graph G � �V�E	 with edge weights we � R for all e � E� let PG be the
set of all planar subgraphs of G� For each planar subgraph P � �V �� F 	 � PG�
we de
ne its incidence vector �F � RE by setting �Fe � � if e � F and �Fe � �
if e �� F � The planar subgraph polytope PLS�G	 of G is de
ned as the convex
hull over all incidence vectors of planar subgraphs of G� The problem of 
nding
a planar subgraph P � �V �� F 	 of G with weight w�P 	 �

P
e�F we as large as

possible can be written as the linear program maxfwTx j x � PLS�G	g� since
the vertices of the polytope PLS�G	 are exactly the incidence vectors of the
planar subgraphs of G� Kuratowski characterized the minimal nonplanar graphs
to be exactly the subdivisions ofK� and K���� Hence we get the following integer
programming formulation for the maximum planar subgraph problem�

maximize wTx
subject to � � xe � �� for all e � E� ��	

x�K	 � jKj � �� for all Kuratoski subgraphs �V ��K	� K � E ��	
xe integral� for all e � E ��	

Since integer programming is NP�hard� we drop the integer constraints� In or�
der to apply linear programming techniques to solve this linear program one
has to represent PLS�G	 as the solution of an inequality system� Due to the
NP�hardness of our problem� we cannot expect to be able to 
nd a complete
description of PLS�G	 by linear inequalities� But even a partial description of
the facial structure of PLS�G	 by linear inequalities is useful for the design of a
�branch and cut��algorithm� because such a description de
nes a relaxation of
the original problem� Such relaxations can be solved within a branch and bound
framework via cutting plane techniques and linear programming in order to pro�
duce tight bounds� An irredundant description of PLS�G	 by linear inequalities
contains only inequalities which describe proper faces of maximal dimension of
PLS�G	� so�called facet�de
ning inequalities�

For e�ciency� also in a partial description by inequalities� we concentrate on
those valid inequalities for PLS�G	 which are facet�de
ning� For ease of notation�
we de
ne x�F 	 �

P
e�F xe for F � E� In �JM
�� we state the following
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Fig� ���a� The generalized Petersen graph P ����� and the �b� s�chorded cycle graph G�n�s�t�
for n 	 � and s 	 �

Theorem � �JM
��� The dimension of the planar subgraph polytope PLS�G	 of
G � �V�E	 is jEj� so it is full dimensional�
For all edges e � E the inequalities xe � � and xe � � de�ne facets of PLS�G	�
For all subdivisions G� � �V ��K	 of K� or K��� contained in G the inequality
x�K	 � jKj � � de�nes a facet of PLS�G	�
For all cliques �V �� F 	 �or complete bipartite subgraphs� contained in G� the Euler
inequalities x�F 	 � �jV �j�� �or x�F 	 � �jV �j��� respectively� are facet�de�ning
for PLS�G	�

The following class of graphs� called s�chorded cycle graphs� has been introduced
in �Mut
�b�� This class of graphs can be derived from the generalized Petersen
graphs by the contraction of certain edges �see Figure �	� The s�chorded cy�
cle graphs give rise to huge classes of inequalities generalizing the Kuratowski
inequalities�

For the rest of this section all sums of integers representing nodes of graphs
G � �V�E	� which are greater than n � jV j are to be taken modulo n�

De�nition � For s� n� r� t � N� s � �� n � st� r� � � r � s� the s�chorded cycle
graph G�n�s�t� � �V�E	 is de
ned via

V � f�� �� � � �� ng and
E � Cn �Dn� where

Cn is a cycle of length n� Cn � f�i� i� �	 j i � �� � � � � ng and
Dn is the set of s�chords of Cn� Dn � f�i� i� s	 j i � �� � � � � ng�

An s�chorded cycle graph gives rise to the de
nition of the corresponding s�
chorded cycle inequality� In �Mut
�b�� it is investigated for which values of s�



t and n the s�chorded cycle inequality induced by G�n�s�t� is valid� resp� facet�
de
ning for PLS�G�n�s�t�	�

Theorem � �Mut
�b�� Let G�n�s�t� � �V�E	 be a s�chorded cycle graph� i�e�
n � st � r for s� t� r � N and r � f�� �� � � �� s � �g� We de�ne

ce �

�
n� �t� s� if x � Cn
�� if x � Dn

and c�E	 ��
P

e�E ce�
If n� �t� s � �� the s�chorded cycle inequality

�n� �t� s	x�Cn	 � x�Dn	 � c�E	 � �n� �t	

is valid for PLS�G�n�s�t�	 if and only if �t � �� s � �� or �t � �� s � �� r � ���
If the s�chorded cycle inequality is valid for PLS�G�n�s�t�	� then it is facet�
de�ning for PLS�G�n�s�t�	 if r � ��
Let G�n�s�t� be an s�chorded cycle graph� which is a subgraph of G� If t � �� or
s � �� or r � b s�c and the corresponding s�chorded cycle inequality corresponding
to G�n�s�t� is facet�de�ning for PLS�G�n�s�t�	� then the s�chorded cycle inequality
is facet�de�ning for PLS�G	�

For n � � the ��chorded cycle inequality is identical to the Kuratowski inequality
for K�� So� the general s�chorded cycle inequalities are generalizations of the
Kuratowski inequality for K�� For the special case that n � �k � � and s � k�
the s�chorded cycle graphs give rise to another kind of inequality� the odd n�
ladder inequality� which is an alternative generalization of the K��inequality�

Theorem � �Mut
�b�� If G contains the k�chorded cycle graph G��k���k��� �
�V�E	 on �k � � nodes with E � C�k�� �D�k��� k � N� k � �� then the odd
n�ladder inequality

��k � �	 x�C�k��	 � x�D�k��	 � ��k � �	�

is facet�de�ning for PLS�G��k���k���	 and for PLS�G	�

In the special case s � k and n � �k� the k�chorded cycle graphs G��k�k��� contain
multiple edges� If we take each diagonal only once� we obtain a M�obius�ladder�
which gives rise to an inequality which is a generalization of Kuratowski�s K���

inequality�

De�nition � For k � N� k � �� we de
ne the �even	 M�obius�ladder to be the
graph GM � �V�E	 with

V � f�� �� � � � � �kg and
E � C�k �Dk � where

C�k is a cycle of length �k� C�k � f�i� i� �	 j i � �� � � � � �kg�
Dk is the set of longest chords of C�k� Dk � f�i� i� k	 j i � �� �� � � � � kg�



Theorem � �Mut
�b�� For the M�obius�ladder graph GM � �V�E	 with E �
C�k �Dk and k � � the M�obius�ladder inequality

�k � �	 x�C�k	 � x�Dk	 � ��k � �	�

is facet�de�ning for PLS�GM 	� Moreover� the M�obius ladder inequality is facet�
de�ning for PLS�G	 whenever GM is a subgraph of G�

A complete overview of the currently known structure of the planar subgraph
polytope can be found in �Mut
�a��

� The k�connected Subgraph Polytope k �NCS�G�

Given a k�connected graph G � �V�E	� we are interested in the set of all k�
connected spanning subgraphs of G� For each k�connected spanning subgraph
K � �V� F 	 of G we de
ne its incidence vector �F � RE by setting �Fe � �
if e � F and �Fe � � if e �� F � The k�connected �spanning� subgraph polytope
k �NCS�G	 is de
ned as the convex hull over all incidence vectors of k�connected
spanning subgraphs of G� In order to solve the minimum k�connected subgraph
problem for a given k�connected graph G � �V�E	� we de
ne the weight we for
an edge e � E to be �� The problem of determining a k�connected subgraph of
G with the minimum number of edges� can be formulated as the linear program
minfwTx j x � k �NCS�G	g� If we like to solve the k�augmentation problem for
a given graph G� we choose G� � �V�E�	 �� Kn� de
ne the weight we for an
edge to be �M � if e � E and � if e �� E� where M � jE� n Ej � �� and solve
minfwTx j x � k �NCS�G�	g�

The k�connected subgraph polytope was already studied by Stoer in a more
general form �Sto
��� For k � �� the computational results in �Sto
�� are promis�
ing�

Theorem � �Sto	�
� The integer points of k �NCS�G	 are characterized by the
following system of inequalities�

� � xe � �� for all e � E ��	
x�	G�Y �W 		 � �� for all Y � V � jY j � k � �� W � V n Y ��	
xe integral� for all e � E ��	

The inequalities ��	 essentially say that if a node set Y � V of size k � � is
removed� the resulting graph must still be connected�



� Intersecting PLS�G� and k �NCS�G�

In this section we are interested in the integer points contained in the polytope
k �NCPLS�G	 for k � �� They are identical to the integer points contained in
the intersection of the polytopes � �NCS�G	 and PLS�G	� We already gave a
system of inequalities characterizing the integer points for both polytopes� So�
the integer points of the new polytope k �NCPLS�G	 are de
ned by the system
of inequalities given by ��	� ��	� ��	 and ��	�

One of the 
rst questions occuring in connection to a polytope is its dimen�
sion� For general graphs G� the dimension of � �NCPLS�G	 is unlikely to be
determined� Even for biconnected graphs � �NCPLS�G	 may be empty� like� for
example� for the Kuratowski graph shown in Figure ��a	� If we restrict our atten�
tion to G � Kn� the complete graph on n nodes� we will see that � �NCPLS�Kn	
has full dimension�

Theorem � The dimension of the planar biconnected spanning subgraph polytope
� �NCPLS�Kn	 for Kn � �V�E	� the complete graph on n � jV j vertices� is jEj�

Proof� We will show that there are jEj� � a�nely independent elements in RE

that are incidence vectors of planar� biconnected and spanning subgraphs of Kn�
For simplicity let the vertices be numbered by �� �� � � � � n� Let P consist of the
Hamiltonian cycle C � ���� �	� ��� �	� � � � � �n��� n	� �n� �		 together with the edge
e � ��� �	� Adding any of the edges ei � E n �C�feg	 gives P i� i � �� �� � � � � jEj�
n � �� Removing the edge �u� u � �	� resp� �n� �	� and adding the edges �u� v	�
�v� u� �	� resp� �n� v	� �v� �	� for any v �� �u� ��u� �� gives Pj� j � �� �� � � � � n�
Let P � be equal to P n f��� �	g� Then P � P i for i � �� �� � � � � jEj � n � �� Pj for
j � �� �� � � � � n� and P � induce planar� biconnected and spanning subgraphs of
Kn� Moreover� all the jEj�� incidence vectors �P � �P

i

for i � �� �� � � �� jEj�n���
�Pj for j � �� �� � � �� n� and �P

�

are linearly independent� ut

The natural question occurs whether known facets of the planar subgraph poly�
tope are also facets for the planar biconnected spanning subgraph polytope�
Suppose cTx � c� is a facet of PLS�G	� It will also be a facet of � �NCPLS�G	
if d � dim�� �NCPLS�G		 a�nely independent incidence vectors of subgraphs
P � G exist that are planar� biconnected� spanning and satisfy the equation
cT�P � c�� The following theorem answers the question whether the support
graph of a facet�de
ning inequality for PLS�Kn	 is biconnected� The support
graph of an inequality cTx � c�� resp� cTx � c�� is induced by the edge set
fe � E j ce �� �g�

Theorem 
 Let cTx � c� be a facet of the planar subgraph polytope PLS�Kn	�
Then either the inequality cTx � c� is identical with xe � � or xe � �� or the
support graph of cTx � c� is biconnected�

Proof� Let SG denote the edge set of the support graph of cTx � c�� and suppose
that G�SG� is not biconnected with jSGj � �� Then� let a be an articulation point



of SG that separates the blocks induced by K� from K� �� SG nK�� At least one
of the blocks induced byK� andK� is nonplanar �sayK�	� since SG is nonplanar�
We have fx � PLS�G	 j cTx � c�g � fx � PLS�Kn	 j cT� x � cT� x � c�� � c��g�
where ci denotes the vector of coe�cients for block Ki for i � �� �� We have that
fx � PLS�Kn	 j cTx � c�g 	 fx � PLS�Kn	 j cT� x � c��g� since otherwise we
would have cT� x � c�� or cT� x � c��� both of which are nonvalid inequalities for
PLS�Kn	� Moreover� we have fx � PLS�Kn	 j cTx � c�g �� fx � PLS�Kn	 j
cT� x � c��g� Hence the inequality c

Tx � c� can not be facet�de
ning for PLS�Kn	�
which is a contradiction� ut

In general� biconnectivity of the support graph of a facet�de
ning inequality
cTx � c� for PLS�G	 is not su�cient to guarantee that it is also a facet for
� �NCPLS�G	� Consider� for example� the subdivision S of K� shown in Fig�
ure ��a	� The Kuratowski inequalities that are facets for PLS�S	� are not facets
for � �NCPLS�S	� since removing any edge of S leads to a graph that is not bi�
connected� Fortunately� for complete graphs the situation is promising� We can
show the following theorem�

Theorem � Let ��� cTx � c� be a facet of the planar subgraph polytope
PLS�Kn	� Then cTx � c� is also a facet of the planar� biconnected and spanning
subgraph polytope � �NCPLS�Kn	�

Proof� Let Kn � �V�E	� From Theorem � we know that either the inequality
cTx � c� is identical with xe � � or xe � �� or the support graph of cTx � c� is
biconnected� For the inequalities xe � � and xe � � we give a direct proof similar
to the one for Theorem �� For simplicity the nodes are numbered by �� �� � � � � n�
We 
rst show that xe � � is a facet�de
ning inequality for � �NCPLS�Kn	�
Without any restriction let e � ��� �	� Consider the graphs induced by the edge
sets P � P i for i � �� �� � � �jEj � n � � and Pj for j � �� �� � � �� n de
ned in the
proof to Theorem �� All of them are planar� biconnected and spanning� satisfy
xe � � and their incidence vectors are linearly independent� Next� removing the
edge e � ��� �	 from P � P i for i � �� �� � � �jEj � n� � and Pj for j � �� �� � � �� n
gives us still jEj planar� biconnected and spanning subgraphs of Kn� satisfying
xe � �� Moreover� their incidence vectors are a�nely independent�

Now we will show the facet�de
ning properties of those inequalities cTx � c�
which are facet�de
ning for PLS�Kn	 and have biconnected support� There are
su�ciently many planar subgraphs satisfying ��	 with equality that can be used
in an indirect proof to show the facet�de
ning property of ��	 for PLS�Kn	�
That is� suppose there exists an inequality aTx � a� with fx � PLS�Kn	 j
cTx � c�g � fx � PLS�Kn	 j aTx � a�g� From this it follows that cT � aT

and c� � a�� If all these planar subgraphs are biconnected and spanning� we
have already found enough a�nely independent points of � �NCPLS�Kn	 in
fx � � �NCPLS�Kn	 j cTx � c�g� Suppose� some of these subgraphs are not
biconnected and spanning� Then we claim that we can augment them to planar�
biconnected and spanning subgraphs ofKn by adding a set F � E� with c�F 	 � �
and a�F 	 � �� With the new set of independent points in fx � � �NCPLS�Kn	 j



cTx � c�g we can proceed as in the indirect proof for the facet�de
ning property
of ��	 for PLS�G	�

Let P be the edge set of a planar subgraph used in the indirect proof for
PLS�Kn	� that is not biconnected nor spanning with cT�P � c�� Let a be an
articulation point of P separating the blocks induced by K� from K� �� P nK��
Let vi be a vertex next to a at the outer face of a planar embedding of block Ki�
i � �� �� Adding the edge e � �v�� v�	 to P still maintains a planar subgraph P��
where a does not anymore separate component K� from K�� Moreover� we have
c� � cT�P� � cT�P � ce � c� � ce� hence ce � � that implies ae � �� Repeating
this iteration subsequently for all articulation points in P leads to a biconnected
planar subgraph Pk with Pk � P � F with c�F 	 � � and a�F 	 � �� If Pk is not
spanning� we add the edges �z� u	� �z� w	 for �u�w	 � Pk and all vertices z that
are not contained in Pk� Now the new edge set P �

k � Pk � F
� is spanning� while

planarity and biconnectivity is maintained� Using the same arguments as before
gives c�F �	 � a�F �	 � �� ut

Our investigations concerning the facet�de
ning inequalities arising from bicon�
nectivity conditions lead to the following theorem� For k � �� inequalities ��	
reduce to the ones given in Theorem 
�

Theorem 	 Let Kn � �V�E	 be the complete graph on n nodes� Furthermore�
let z � V � and a set W � V nfzg with 
 �� W �� V nfzg� The node�cut constraint

x�	G�fzg�W 		 � � ��	

de�nes a facet of � �NCPLS�Kn	�

Proof� We will prove it indirect� Let cTx � c� denote inequality ��	� Suppose
there exists an inequality aTx � a� with fx � � �NCPLS�Kn	 j cTx � c�g �
fx � � �NCPLS�Kn	 j aTx � a�g� We will show that then cT � 
aT and c� �

a� for 
 � �� For any 
xed z � V and 
xed set W � V n fzg� 
 �� W �� V n fzg
let U � V n fW � zg� We will construct a planar� biconnected and spanning
subgraph of G induced by the edge set P � E� P consists of the edge sets of an
Hamiltonian cycle HW in W and HU in U � resp� an Hamiltonian Path HW if
jW j � � orHU if jU j � �� the edge �u�w	 for u � U � w �W � and the edges �u� z	�
�u�� z	� �z� w	 and �z� w�	 for u �� u� � U � if jU j � �� w �� w� � W if jW j � ��
Obviously� P is the edge set of a planar� biconnected and spanning subgraph of
G satisfying inequality ��	 by equality� hence also aT�P � a��

Substituting in P the edge �u�w	 by any of the edges �u��� w��	� u�� � U � w�� �
W still yields a planar� biconnected spanning subgraph P� satisfying c

T�P� � c�
with equality� hence also aT�P� � a�� We have � � cT�P � cT�P� � aT�P �
aT�P� � a�u�w�� a�u���w���� hence a�u�w� � a�u���w��� for all u� u

�� � U � w�w�� �W �
By adding any edge contained in the complete graph induced by W to HW

the required properties are still satis
ed� hence ae � � for all e � G�W nHW �� If
jW j � �� then by choosing a di�erent Hamiltonian cycle in G�W �� we get ae � �
for all e � G�W �� In the case that jW j � �� we can remove the edge e � �w�w�	



from P without loosing biconnectivity� hence we get ae � � for all e � G�W ��
The same arguments hold for the set U � so we have ae � � for all e � G�U ��

Moreover� adding any of the edges �z� w��	� w�� � W n fw�w�g to P still
yields a planar� biconnected spanning subgraph of G satisfying inequality ��	
with equality� Hence a�z�w� � � for w � W and� because of symmetry reasons�
a�z�u� � � for u � U � Hence we have shown ae � 
ce� and a� � 
c� for all
e � E� ut

� Algorithm

In �JM
�� we give a branch and cut algorithm for the maximum planar sub�
graph problem using facet�de
ning inequalities for PLS�G	 as cutting planes�
We have to change and to add only a few routines in order to get a branch
and cut algorithm for solving the three problems� the minimum planarizing ��
augmentation problem� the planar ��augmentation problem and the maximum
planar biconnected spanning subgraph problem�

In a cutting plane algorithm� a sequence of relaxations is solved by linear
programming� After the solution x of some relaxation is found� we must be able
to check whether x is the incidence vector of a planar� biconnected and spanning
subgraph �in which case we have solved the problem	 or whether any of the
known facet�de
ning inequalities are violated by x� If no such inequalities can
be found� we cannot tighten the relaxation and have to resort to branching�
otherwise we tighten the relaxation by all facet�de
ning inequalities violated by
x which we can 
nd� Then the new relaxation is solved� etc� The process of

nding violated inequalities �if possible	 is called �separation� or �cutting plane
generation��

The cutting plane generation as well as the lower bound heuristic for the
planarity part are based on a planarity testing algorithm of Hopcroft and Tarjan
�HT���� At the beginning we solve the Linear Program �LP	 consisting of the
trivial inequalities xe � �� xe � � and the inequality x�E	 � �jV j � �� Let x be
an LP�solution produced in the cutting plane procedure applied in some node
of the enumeration tree� For � � � � � we de
ne E� � fe � E j xe � �� �g and
consider G� � �V�E�	� For the unweighted graph G� the linear planarity testing
algorithm of Hopcroft and Tarjan is called� The algorithm stops if it 
nds an edge
set F which is not planar� In case the inequality x�F 	 � jF j � � is violated� we
reduce it to a facet�de
ning inequality before we add it to the constraints of the
current LP� We also use a heuristic which searches for violated Euler�inequalities
and inequalities given by some classes of s�chorded cycle graphs�

The cutting plane generation for achieving biconnectivity makes use of the
facet�de
ning inequalities given in ��	� For k � �� the inequalities reduce to
the ones given in ��	� Given an LP�solution x produced in the cutting plane
procedure� we are able to give a node z � V and a set W � 
 �� W 	 V n fzg
violating inequality ��	 or guaranteeing that all the inequalities in ��	 are satis
ed
by x� This can be done in polynomial time by the following separation routine�
For all nodes z � V construct the graph G� �� G�fzg � �V �� E�	 and search for



a
b

c

d

e

f

(a) (b)
Fig� �� shows two of the instances used for the computations� For the graph shown in �a� the
approach� 
rst to determine a maximum planar subgraph may lead to removing the edges a
and b� In order to augment the graph to biconnectivity� we have to add at least three edges�
whereas the optimum solution of the minimum planarizing ��augmentation problem removes
the edges e and f � The graph shown in �b� has been given by Kant� The heuristic he suggests
adds � new edges to the graph in order to obtain a planar biconnected graph� whereas the
optimum solution is to add � edges�

the minimum cut in G� with edge values xe for all e � E�� Let y be the value of
this minimum cut� If y � �� all inequalities of the type ��	 for the speci
c node
z are satis
ed� Otherwise� the inequality x�	G�fzg�W 		 � � is violated for the
set W determined by the minimum cut 	�W 	�

Although the vectors x coming up as solutions of LP�relaxations in the above
outlined process have fractional components in general� they are often useful to
obtain information on how a high�valued planar subgraph might look like� We
exploit this idea with a greedy type heuristic with respect to the solution values
of the edges� Starting from the empty graph� a planar subgraph is constructed by
adding the edges in order of decreasing values if they do not destroy planarity�
In a second phase this planar subgraph is augmented to a biconnected� spanning
and planar subgraph by a trivial heuristic� So� in addition to the upper bounds
wTx on the value of a maximum planar biconnected spanning subgraph� we also
obtain a lower bound wTx from the incidence vector x of the planar� biconnected
and spanning subgraph derived heuristically from x�

	 Computational Experiments

The computational experiments were run on a Solbourne �E����� For our
�
rst� experiments we used the above described algorithm� Our current prelim�
inary implementation does not yet contain a procedure that tries to 
nd good
feasible solutions whose objective function values constitute lower bounds� How�
ever� in all examples discussed here� the optimum solution was found by cutting
planes� i�e� the LP�solution x turned out to be the incidence vector of a planar�
biconnected and spanning subgraph�



Table 
� Computational Results for graphs from the literature

Problemname jV j jEj �Var Del
 Add
 Tim
 Del� Add� Tim� Del� Tim�
Jaya������ 
� �� �� � � 
 � � � � 

Beck������ 

 �
 �� 
 
 � 
 
 � � �

JueMut������ 
� �� �
 � � 
 � � � � 

JueMut������ 
� �� 
�� � � 
 � � � � 

Kant������ 
� �� 
�� � � � � � � � �

EadMar����	� �� �� 
�� � � 
� � � 
 � 
�
Harel����	� �� �� 
�� � � 

 � 
 � � �
Martin�	���� �� �� ��� � � 
� � � � � �
Hims�	���� �� �� ��
 � � ��� � � 
�� � �
Kant����
� �� �� ��� � � ��
 � � 
� � ��

Hims������ �� �� 
��� � 
 �� � � �� � �
Cim������� �� 
�� 
��� 
 � 
� 
 � 
� 
 ��

Table � shows computational results for some graphs in the �LAYOUT�LIB��
a library for benchmark sets in Automatic Graph Drawing� The columns show
the problem name� the number of nodes and edges of the given graph G� and the
number of variables� Moreover� it shows the solution of the minimum planarizing
��augmentation problem� i�e� the number of edges removed from G and added to
G� and the solution time in seconds� Columns � �� show the solution� when 
rst
a maximum planar subgraph is determined and then the planar ��augmentation
problem is been solved� Surprisingly� the total time for solving both problems�
the maximum planar subgraph problem and the planar ��augmentation problem�
is in many cases much less than the time for solving the minimum planarizing
��augmentation problem� Moreover� the solutions found by the two di�erent
methods are in most cases identical� We do not have a code for augmenting a
nonplanar graph to biconnectivity� Hence� we only give the results of the third
approach� 
rst augmenting the graph to biconnectivity and then solving the
maximum planar biconnected subgraph problem� for the graphs that are already
biconnected�

Consider the graph shown in Figure � �JueMut������	� In the run for solving
the minimum planarizing ��augmentation problem� �� violated node�cut con�
straints have been found� �� Kuratowski�inequalities and � Euler�inequality� It
took �� LP�s with � branch and cut nodes in ���� seconds� At the end� the
two edges e and f have been deleted� This solution is identical to the solution
for the maximum planar biconnected subgraph problem� Solving 
rst the max�
imum planar subgraph problem leads to removing the edges a and b �using ��
Kuratowski inequalities and � Euler inequality� � LP�s in the root node in ����
seconds	� Solving the planar ��augmentation problem on the obtained planar
subgraph leads to adding three new edges� In this case � violated node�cut in�
equalities were detected� �� Kuratowski inequalities and � Euler inequality� The
computation took �� LP�s and � branching nodes in ���� seconds�

This is the 
rst time that these problems have been solved to optimality� We
think that we will be able to solve even bigger instances in the near future�
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