
An Automata-Theoretic Approach to
Presburger Arithmetic Constraints

(Extended Abstract)

Pierre Wolper and Bernard Boigelot⋆

Université de Liège, Institut Montefiore, B28, 4000 Liège Sart Tilman, Belgium.
Email : {pw,boigelot}@montefiore.ulg.ac.be

Abstract. This paper introduces a finite-automata based representa-
tion of Presburger arithmetic definable sets of integer vectors. The rep-
resentation consists of concurrent automata operating on the binary en-
codings of the elements of the represented sets. This representation has
several advantages. First, being automata-based it is operational in na-
ture and hence leads directly to algorithms, for instance all usual op-
erations on sets of integer vectors translate naturally to operations on
automata. Second, the use of concurrent automata makes it compact.
Third, it is insensitive to the representation size of integers. Our repre-
sentation can be used whenever arithmetic constraints are needed. To
illustrate its possibilities we show that it can handle integer program-
ming optimally, and that it leads to a new original algorithm for the
satisfiability of arithmetic inequalities.

1 Introduction

Making a case for the usefulness of arithmetic constraints in computer science
is hardly necessary. Indeed, beyond the many common problems that can be re-
duced to the satisfaction of constraints, constraints have been adopted as a cen-
tral formalism in a growing number of areas of computer science, for instance con-
straint databases [KKR90, KSW90], constraint programming languages [Hen89],
and the analysis of real-time systems [AH90, ACD90].

The usual view of an arithmetic constraint is as a formula involving constants,
variables, arithmetic operators (addition, multiplication), arithmetic predicates
(equality, order), and logical operators (boolean, quantification). The constraints
that can be expressed depend on the exact choice of constraint language, a typi-
cal example being conjunctions of linear inequalities, as used in integer program-
ming. Algorithms for solving constraint problems start from this representation
and use a variety of techniques [Sch86].

In this paper, we argue that a more operational description of arithmetic
constraints based on finite automata has distinct advantages and leads to inter-
esting algorithmic insights. Precisely, we consider finite automata that accept

⋆ “Aspirant” (Research Assistant) for the National Fund for Scientific Research
(Belgium).

the binary representations of integer vectors. Interestingly, results of Cobham
and of Semenov show that the sets of integer vectors whose encodings in any
base (other than unary) are recognizable by finite automata are exactly the Pres-
burger definable sets [Cob69, Sem77, BHMV94]. More sets are definable in any
particular base, for instance powers of 2 in binary, but the results of Cobham
and Semenov tell us that Presburger definable sets are those that are robustly
representable by automata operating on number encodings.

Also, as will not surprise hardware designers, the automata representing of
elementary arithmetic operations and predicates (e.g., addition and order) can
be designed to operate on encodings of any length and only require very few
states (see Section 3)2. Furthermore, by using concurrent automata, we are able
to preserve the compactness of the representation for a large class of constraint
formulas. For instance, systems of linear inequalities with bounded constants can
be translated linearly into concurrent automata.

A clear benefit of representing constraints by automata is that one can di-
rectly exploit algorithms from automata theory to obtain algorithms for con-
straint problems. For instance, obtaining a decision procedure for any first-order
constraint language whose atomic formulas are representable by finite automata
is immediate : represent the atomic formulas by automata; use the standard
constructions on finite automata for conjunction, disjunction, negation and pro-
jection; test the result for nonemptiness. This general technique is well known in
logic [BHMV94], but we believe that similarly to what has been done for modal
and temporal logic [VW86b, VW86a, BVW94, VW94], automata-theoretic tech-
niques for arithmetic can yield algorithmically interesting results for a variety of
formalisms.

To make this concrete, we first consider the case of linear inequalities over
the integers (integer programming). Checking for the existence of a solution
to a system of linear inequalities amounts to checking the nonemptiness of a
concurrent automaton, a PSPACE-complete problem. Since, as discussed above,
the size of the automaton is polynomial in the size of the constraint system,
this gives a PSPACE algorithm for solving the constraint problem. This does
not match the well known NP upper bound for this problem [Pap81], but if
one remembers that this bound is obtained by showing that linear inequalities
always have solutions with polynomially bounded encodings, one notices that
rather than checking general nonemptiness, one is checking nonemptiness over
words of polynomial length, which can be done in NP.

Finding a somewhat different algorithm for a well known NP problem might
appear as a mere curiosity. However, it is interesting to analyze the nature of
the algorithm that is obtained. The algorithm is a search through a bounded
depth state-space. Since we represent integers with their most significant bit
first, a depth-first search through this state space has the nature of a space
partitioning algorithm coupled with backtracking. Furthermore, the algorithm

2 Of course, multiplication cannot be represented, but it is not finite-state in any base
and is not Presburger definable. Multiplication by a constant, on the other hand, is
not problematic.

is still usable if one extends the class of constraints that are considered, for
instance to include periodicity constraints. Interestingly, it is the difficulty of
handling periodic sets of integer vectors bounded by linear constraints in the
context of a program verification application [BW94] that led us to explore the
representation of sets of integers by automata. We were also inspired by the
growing use of BDDs [Bry86, Bry92] for representing boolean constraints and
by their frequent inadequacy for representing integer constraints.

Since solving a constraint problem reduces to exploring a state-space, this
opens up the possibility of using the techniques that have been developed for
the latter problem. Possibilities (which we have not tested out) are partial-order
techniques [GW93] and symbolic techniques [BCM+92]. Another idea is that if,
for some restricted case, the state space can be searched without backtracking
then we would obtain an efficient polynomial-time algorithm. Interestingly, this
happens for systems of arithmetic inequalities [Klu88]. For this problem we ob-
tain a quadratic algorithm, which matches the complexity of the best known
algorithm [SW94] but has a very different nature.

2 Encoding Integer Vectors

We consider integer vectors v = (v1, . . . , vn) where each vi ∈ Z. We encode
integers in binary (most significant bit first) using 2’s complement for negative
numbers. We do not fix the length of encodings, but we do require that the
encoding of an integer x such that −2p−1 ≤ x < 2p−1 has at least p bits. Hence,
the most significant bit of a positive number will always be 0 and that of a
negative number 1. By convention, the empty word encodes 0.

To represent a vector of integers, we encode each of the component integers
with an identical number of bits. A vector of integers thus has an infinite num-
ber of possible encodings, the shortest of which having the length required by
the component with the largest magnitude. All other encodings can be obtained
from the shortest one by repeating the initial bit of each component an identical
number of times. An encoding of a vector of integers v = (v1, . . . , vn) can in-
differently be viewed either as a tuple (w1, . . . , wn) of words of identical length
over the alphabet {0, 1}, or as a single word w over the alphabet {0, 1}n.

3 Automata Accepting Integer Vector Encodings

Since a integer vector has several possible encodings of different length, we have
to choose which of these the automata we define will recognize. A natural choice
would be to accept the shortest possible encoding, another to accept all en-
codings. However, both these choices make some operations on our automata
somewhat more complicated. So, we make a third choice for which all oper-
ations, except complementation (which in any case is costly) are simple. The
requirement is that, if an automaton accepts some encoding of a vector, there is
some length ℓ such that it accepts all encodings of that vector that are longer
than ℓ.

Automata accepting the encodings of integer vectors could simply be classical
finite-state automata over the alphabet {0, 1}n. However, with this representa-
tion, the size of the automata would quickly blow up. We thus choose a more
powerful type of automata, namely a particular kind of concurrent automata.

Our Concurrent Number Automata (CNA) are an adaptation of the automata
used to model concurrent systems where components synchronize on like-labeled
transitions and interleave on others [Mil89]. A concurrent number automaton
recognizing encodings of integer vectors with n elements (an n-CNA) has n

number component (one per element of the vector), plus an arbitrary number
(possibly 0) of synchronization components. Each component is defined by a
synchronization alphabet and by a finite-state automaton. The transitions of the
automaton of a component are labeled by a subset of its synchronization alphabet
(synchronization transitions), or by a bit and a subset of its synchronization
alphabet (bit transitions of number components). The synchronization rule is
that a transition with a label containing an element a of the synchronization
alphabet must synchronize with a transition containing a in its label for each of
the components whose synchronization alphabet contains a. Furthermore, bits
are read synchronously, meaning that bits from each of the n integers of the
vector are always read simultaneously.

Formally, an n-Concurrent Number Automaton (n-CNA) is a tuple A =
(C1, . . . Cn, Cn+1, . . . Cn+m) of n ≥ 1 number components and m ≥ 0 synchro-
nization components.

– A number component Ck is defined by a synchronization alphabet Σk and a
finite automaton Ak = (2Σk ∪ ({0, 1} × 2Σk), Sk, s0k, Tk, Fk) where

• 2Σk ∪ ({0, 1} × 2Σk) is the alphabet,

• Sk is a set of states,

• s0k is an initial state,

• Tk ⊆ Sk × (2Σk ∪ ({0, 1} × 2Σk)) × Sk is a set of transitions, and

• Fk is a set of accepting states.

– A synchronization component is defined exactly as a number component,
except that its alphabet is simply 2Σk (no bit may appear in the label of
transitions).

To give precise semantics to concurrent number automata, we define the
sequential automaton Seq(A) corresponding to a CNA A = (C1, . . . Cn, Cn+1, . . .

Cn+m). We have Seq(A) = (Σ,S, s0,T,F) where

– Σ = 2Σ ∪ ({0, 1}n × 2Σ) with Σ =
⋃

Σk being the synchronization alphabet
of A;

– S = S1 × · · · × Sn+m;

– s0 = (s01, . . . , s0(n+m));

– ((s1, . . . , s(n+m)), α, (s′1, . . . , s
′
(n+m))) ∈ T iff either

• α ∈ 2Σ, for all 1 ≤ k ≤ n+m such that α∩Σk 6= ∅ (sk, α∩Σk, s′k) ∈ Tk,
and s′k = sk for all other k, or

• α ∈ {0, 1}n×2Σ (i.e., α = ([b1, . . . bn], αs)), for all 1 ≤ k ≤ n (sk, (bk, αs∩
Σk), s′k) ∈ Tk, for all 1 ≤ k ≤ n + m such that αs ∩ Σk 6= ∅ (sk, αs ∩
Σk, s′k) ∈ Tk, and s′k = sk for all other k;

F = F1 × · · · × Fn+m.

A binary encoding of an integer vector is then accepted by a concurrent
number automaton A if it is the projection on {0, 1}n of a word accepted by the
sequential automaton Seq(A) (elements of 2Σ project to the empty word ǫ). By
extension, we say that an integer vector is accepted by a CNA if at least one of
its encodings is accepted.

A CNA is well-formed if whenever it accepts an encoding of an integer vector,
there is some length ℓ such that it accepts all encodings of that vector that
are longer than ℓ. In what follows we only consider well-formed CNA, unless
stated otherwise. Finally, we say that a CNA A is deterministic if Seq(A) is
deterministic‘ when projected on the alphabet {0, 1}n.

4 Automata for Elementary Predicates

Well-formed concurrent number automata accepting sets of (the encodings of)
integer vectors satisfying elementary predicates are easy to obtain. We show here
some typical examples. To represent a CNA, we give the transition graphs of its
number and synchronization (when present) components. The initial state of a
number component is labeled by its index (position of the corresponding num-
ber in the vector), whereas the initial states of synchronization components are
unlabeled. The synchronization alphabet of each component is written in square
brackets near its initial state. The labels {a, b, . . .} of synchronization transi-
tions are simply written ab . . ., and the labels (b, {a, b, . . .}) of bit transitions
are written b ab

A well formed CNA accepting Zn is presented in Figure 1. For any constant
k, one easily obtains a CNA with one component having O(log(k)) states. Fig-
ure 2 represents a well-formed CNA accepting the set {(x1, x2) | x1 ≤ x2}. When
examining this automaton remember that the most significant bits are read first.
A CNA accepting {(x1, x2, x3) | x1 + x2 = x3} is given in Figure 3. Note that
the synchronization between the components of this CNA is such that the cor-
responding sequential automaton only has 3 reachable states. More importantly,
all the CNA for elementary predicates are deterministic (the corresponding se-
quential automata projected on {0, 1}n are deterministic).

5 Operations

We consider operations on sets of integer vectors and study the implementation
of these operations by operations on the CNA representing these sets. Given sets
VS 1 and VS2 of vectors of respective arities (number of components per vector)
n1 and n2, the operations of interest are

– Union (VS 1 ∪VS 2) and intersection (VS 1 ∩ VS2) provided that n1 = n2;

. . .

0, 1

1

[]

0, 1

2

[]

0, 1

n

[]

Fig. 1. AZn .

1 20 d 1 d

[a . . . g] [a . . . g]

0 g
1 g

0 e
1 f

0 g
1 g

0 e
1 f

0 b
1 c

1 a

1 c
0 b

0 a

Fig. 2. A{(x1,x2)|x1≤x2}.

1 2 3

[a . . . n]

0 j

1 k

[a . . . n]

0 j

1 k

[a . . . n]

1 j

0 k

0 g

1 m
0 l

1 n

0 i

1 l
0 m
1 n

1 h

0 l
0 m
1 n

0 a

1 f

1 d

0 a 0 a
1 b
1 c

0 e

0 h
1 i

0 g
1 h

0 g

1 i

1 c
0 b 1 b

0 c

0 d
1 e 0 e

1 f

0 d

1 f

Fig. 3. A{(x1,x2,x3)|x1+x2=x3)}.

– Complement :VS 1 = {v | v 6∈ VS 1};
– Cartesian product : VS 1 × VS 2 = {(v1,v2) | v1 ∈ VS 1 ∧ v2 ∈ VS2};
– Reordering : πVS 1 = {(xπ(1), . . . , xπ(n1)) | (x1, . . . , xn1

) ∈ VS1}, where π is
a permutation on {1, . . . , n1};

– Projection : ∃xiVS1 = {(x1, . . . , xi−1, xi+1, . . . , xn1
) | ∃xi(x1, . . . , xi−1, xi,

xi+1, . . . , xn1
) ∈ VS1}.

– Restriction : σi,jVS 1 = {(x1, . . . , xn1
) | (x1, . . . , xn1

) ∈ VS 1 ∧ xi = xj},

As stated by the theorem below, all operations other than complement can
be computed in linear time and furthermore preserve determinism, except un-
surprisingly for union and projection. Note that when we compute the size of a
CNA, we do not consider the size of the alphabets of the automata defining the
components of the CNA. Indeed, these alphabets are of the form 2Σk∪{0, 1}×2Σk

and hence can be quite large. We only consider the size of Σk and, of course, of
the elements of the alphabet actually used in transitions of the automaton.

Theorem 1. Given well-formed concurrent number automata A1 and A2 accept-
ing respectively the integer vector sets VS1 and VS 2, one can construct in time
O(|A1|+ |A2|) well formed CNA of size O(|A1|+ |A2|) that accept the following
sets : VS 1∪VS2, VS1∩VS2, VS1×VS2, πVS1, ∃xiVS 1, and σi,jVS1 (take the
size of the second automaton to be 0 for unary operations). Furthermore, if A1

and A2 are deterministic, then so are the CNA accepting VS1∩VS 2, VS 1×VS2,
πVS 1, and σi,jVS 1.

Proof : The constructions proving the theorem are quite direct and will be given
in a full version of this paper. 2

For complementation, the situation is much less favorable. Indeed, to com-
plement, one needs a deterministic sequential automaton, and the fact that the
automaton is concurrent costs us one exponential, whereas its nondeterminism
can cost us another exponential.

Theorem 2. Given a well-formed concurrent number automaton A accepting

the integer vector set VS, one can construct in time O(22|A|

) a well-formed de-

terministic sequential automaton of size O(22|A|

) that accepts the set VS. Fur-
thermore, if A is deterministic, then the size of the automaton accepting VS and
the time needed to construct it are O(2|A|).

While this result is rather negative, the following result shows that we can-
not to do much better, at least if complementation is done by constructing a
sequential deterministic automaton.

Theorem 3. The equivalence problem (acceptance of the same integer vector
set) for concurrent number automata is EXPSPACE-complete.

Proof : This can be derived from the result in [Rab92] on the complexity of
trace equivalence for concurrent programs. 2

A final problem of major importance is determining the nonemptiness of a
concurrent number automaton. This is a PSPACE-complete problem.

Theorem4. The nonemptiness problem for concurrent number automata (de-
terministic or not) is PSPACE-complete.

Proof : To show membership in PSPACE, one shows that the sequential
automaton corresponding to a CNA can be constructed and explored in a space
efficient way (a similar construction can be found in [VW94]). To show PSPACE
hardness, one uses a CNA to efficiently encode the computations of a polynomial
space Turing machine. 2

Note that the PSPACE hardness applies to general concurrent number au-
tomata, not necessarily to those obtained from any class of arithmetic formulas.
Indeed, we will show in the next Section that we can get better complexity
results for the CNA obtained from two common arithmetic problems.

6 Applications

6.1 Integer Programming

The integer programming problem consists of determining whether a system of
constraints of the form

a1,1x1 + a1,2x2 + · · · a1,nxn ≤ b1

a2,1x1 + a2,2x2 + · · · a2,nxn ≤ b2

...
...

...
...

ap,1x1 + ap,2x2 + · · · ap,nxn ≤ bp,

where all the ai,j are integers, accepts an integer solution (x1, x2, . . . , xn).
The representation of sets of integer vectors by concurrent number automata

leads to an original solution to this problem : one simply constructs the CNA
accepting all solutions of the system of equations and tests for its emptiness. The
real issue is the complexity of this method. We show here that the size of the CNA
is linear in the size of the system equations and that, since integer programming
problems admit “small” solutions [Pap81], this leads to an NP algorithm which
matches the well known lower and upper bounds for this problem.

Our first result is thus the following.

Theorem5. Given an integer programming problem P of size n, it is possible
to build in time O(n) a concurrent number automaton of size O(n) that accepts
exactly the integer vectors that are solutions of P .

Proof sketch : The only real difficulty in the construction is to handle the
multiplicative constants with only a linear blowup. The size of a constant a is
taken to be the size r of its binary encoding br−1 . . . b1b0. The problem is to
represent the set {(x1, x2) | x1 = ax2} with a CNA of size linear in r. To do this,
we simply use the fact that a =

∑
0≤i≤r−1 2ibi. This leaves us with 2 problems :

representing the sum of r integers and representing multiplication by powers of
2. By introducing auxiliary variables, sums of r terms can be represented by

r−1 binary sums. Since each binary sum has a constant size representation, this
leads to a linear representation of the sum. For powers of 2, the idea is similar.
One can represent {(y0, y1) | y1 = 2y0}, {(y1, y2) | y2 = 2y1}, . . ., each with a
fixed size CNA. Using r − 1 such CNA’s, one can thus represent multiplication
by the necessary powers of 2. 2.

To solve the integer programming problem, all that needs to be done is to
test for nonemptiness of the CNA obtained by the construction of Theorem 5.
By Theorem 4 this is a PSPACE-complete problem. However, we have here some
additional information on the structure of the CNA : its is obtained from an inte-
ger programming problem. Given that if an integer programming problem P has
a solution, it has a solution that can be written with a number of bits bounded
by a polynomial in |P | [Pap81], we only need to look for a polynomially bounded
integer vector representation accepted by the CNA, and this can be done in NP.
Our approach thus also yields an NP algorithm for integer programming.

From a more concrete algorithmic point of view, what we propose is to solve
the integer programming problem by searching through the state space of the
CNA we have constructed. Remembering that we represent most significant bits
first, a depth-first exploration of this state space loosely corresponds to a space
partitioning approach with backtracking. It is likely that how well this type of
algorithm will perform will depend on how strong the constraints on a solution
are. It is likely to perform well when solutions are loosely constrained and to
get bogged down when the solutions are very constrained (and hence difficult to
find).

6.2 Systems of Arithmetic Inequalities

The problem here consists of determining whether a conjunction P of inequalities
of the form xi θ xj , where θ ∈ {=, 6=, <,≤} admits a solution x = (x1, x2, . . . , xn).
It is a problem that has been studied, for instance, in the context of database the-
ory [Ull89, Klu88]. Building a linear size CNA for such a problem P is straight-
forward. What we show here is that testing the emptiness of this CNA can be
done very efficiently.

To see this, we first notice that if a system of arithmetic inequalities has
a solution, then it has a positive solution. We will take advantage of this by
working from now on only with positive numbers, and we will thus no longer use
2’s complement representation. We next prove a lemma about the solutions to
conjunctions of arithmetic inequalities.

Lemma6. If a system of arithmetic inequalities has a solution, then for any
strict inequality x1 < x2 or difference x1 6= x2 constraint in the system, there is
a solution in which x1 and x2 differ on their most significant bit.

Proof : Take a positive solution of the system and prefix the most significant bit
0 to the value of x1, and of all variables less than or equal to x1 in the solution.
Similarly, prefix the most significant bit 1 to the value of x2 and to all variables
greater than x1 in the solution. 2

Next, we examine the CNA obtained for the systems of constraints we are
considering and examine their behavior on the encodings of positive numbers.
The first important observation is that the automata representing the elementary
constraints have the property that, each time a bit of the input is read, either
no transition is possible, or the automaton stays in the same state, or it moves
to an accepting state from which all inputs are accepted. The consequence of
this is that whenever one moves within the reachable states of the CNA, as
long as the CNA accepts a nonempty language, one can always complete the
execution to an accepting one. In other words, one can always find a solution
without backtracking. A second observation on the automata is that the only
non-accepting states are the initial states of components corresponding to a strict
inequality or difference constraint.

This leads to our algorithm which (sketchily) is the following.

1. Select arbitrarily the components corresponding to a strict inequality or
difference constraint and that are not in an accepting state (this choice can
be arbitrary given Lemma 6).

2. Check if some choice of input bits can force these components to move to
an accepting state. This amounts to solving an instance of 2SAT which can
be done in linear time [APT79]. If there is no such choice, the system of
constraints is unsatisfiable.

3. Repeat steps 1 and 2 until all components are in accepting states.

Given that for a system of size n, there are at most n strict inequality or
difference constraints, and that for each the algorithm requires time O(n), the
global time complexity of the method is O(n2). Note that once it has been
obtained automata-theoretically, it is possible to rewrite this algorithm to avoid
the explicit construction of the automaton.

7 Conclusions

The goal of this paper is to establish that using automata operating on binary
encodings of integer vectors is a fruitful approach for representing and manip-
ulating Presburger arithmetic constraints. We have made our case by showing
that this use of automata could lead to interesting algorithmic insights. Even
though we have not improved on known worst-case complexity bounds, we be-
lieve that the algorithms derived from our automata-theoretic approach can have
interesting behaviors in practice. Of course in such a well studied area as integer
programming, this should be said with caution and needs to be shown by exper-
iments. An advantage of our approach though is that, since it is based on the
very general pattern of a state-space search, it does not break down when one
moves beyond the exact class of problems for which the algorithm is designed.
Extensions can be incorporated gracefully, but of course will usually lead to a
performance penalty.

We have introduced a particular representation of constraints (concurrent
number automata) that is especially adequate for the applications we considered.

In fact, one can imagine a whole spectrum of representations, ranging from the
traditional formulas to more and more restricted types of automata. For instance,
deterministic sequential automata might be a very reasonable representation if
complementation operations have to be performed frequently. Of course, the
deterministic automata could be much larger than other representations. This
would amount to paying upfront the cost of the processing that will be required,
often a reasonable approach.

Possible applications of our approach are numerous : whenever arithmetic
constraints are used, it could be useful to think about them automata-theo-
retically. There are probably many more algorithms that can be obtained from
the automata-theoretic approach, and more work to be done on analyzing and
testing those we have obtained. As far as extensions, just one idea would be to
handle the rationals with automata on infinite words [Büc62, Tho90].

References

[ACD90] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time sys-
tems. In Proceedings of the 5th Symposium on Logic in Computer Science,
pages 414–425, Philadelphia, June 1990.

[AH90] R. Alur and T. Henzinger. Real-time logics: complexity and expressiveness.
In Proceedings of the 5th Symposium on Logic in Computer Science, pages
390–401, Philadelphia, June 1990.

[APT79] B. Aspvall, M. Plass, and R. Tarjan. A linear-time algorithm for testing
the truth of certain quantified boolean formulas. Information Processing

Letters, 8(3):121–123, 1979.

[BCM+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Sym-
bolic model checking: 1020 states and beyond. Information and Computa-

tion, 98(2):142–170, June 1992.

[BHMV94] V. Bruyère, G. Hansel, C. Michaux, and R. Villemaire. Logic and p-
recognizable sets of integers. In Bulletin of the Belgian Mathematical Soci-

ety, volume 1, pages 191–238, Mar 1994.

[Bry86] R. E. Bryant. Graph based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35(8):677–691, 1986.

[Bry92] R.E. Bryant. Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

[Büc62] J.R. Büchi. On a decision method in restricted second order arithmetic.
In Proc. Internat. Congr. Logic, Method and Philos. Sci. 1960, pages 1–12,
Stanford, 1962. Stanford University Press.

[BVW94] O. Bernholtz, M.Y. Vardi, and P. Wolper. An automata-theoretic approach
to branching-time model checking. In Computer Aided Verification, Proc.

6th Int. Workshop, Stanford, California, June 1994. Lecture Notes in Com-
puter Science, Springer-Verlag. full version available from authors.

[BW94] B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In
Computer Aided Verification, Proc. 6th Int. Workshop, Stanford, California,
June 1994. Lecture Notes in Computer Science, Springer-Verlag.

[Cob69] A. Cobham. On the base-dependence of sets of numbers recognizable by
finite automata. Mathematical Systems Theory, 3, 1969.

[GW93] P. Godefroid and P. Wolper. Using partial orders for the efficient verifica-
tion of deadlock freedom and safety properties. Formal Methods in System

Design, 2(2):149–164, April 1993.
[Hen89] Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming.

MIT Press, 1989.
[KKR90] Paris C. Kanellakis, Gabriel M. Kuper, and Peter Revesz. Constraint query

languages. In Ninth ACM Symposium on Principles of Database Systems,
pages 299–313, Nashville, Tennessee, April 1990.

[Klu88] A. Klug. On conjunctive queries containing inequalities. Journal of the

ACM, 35(1), January 1988.
[KSW90] F. Kabanza, J.-M. Stévenne, and P. Wolper. Handling infinite temporal

data. In Proc. of the 9th ACM Symposium on Principles of Database Sys-

tems, pages 392–403, Nashville Tennessee, 1990.
[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[Pap81] C. Papadimitriou. On the complexity of integer programming. Journal of

the ACM, 28:765–768, Oct 1981.
[Rab92] A. Rabinovich. Checking equivalences between concurrent systems of finite

agents. In International Colloquium on Automata, Languages and Program-

ming, volume 623 of Lecture Notes in Computer Science, pages 696–707.
Springer-Verlag, 1992.

[Sch86] A. Schrijver. Theory of Linear and Integer Programming. A Wiley-
Interscience publication. Wiley, Chichester, New York, 1986.

[Sem77] A. L. Semenov. The presburger nature of predicates that are regular in two
number systems. Siberian Math. J., 18(2):289–299, 1977.

[SW94] W. Sun and M. A. Weiss. An improved algorithm for implication testing
involving arithmetic inequalities. In IEEE Transactions on Knowledge and

Data Engineering, volume 6, pages 997–1001, Dec 1994.
[Tho90] Wolfgang Thomas. Automata on infinite objects. In J. Van Leeuwen, edi-

tor, Handbook of Theoretical Computer Science – Volume B: Formal Models

and Semantics, chapter 4, pages 133–191. Elsevier Science Publishers, Am-
sterdam, 1990.

[Ull89] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems –

Volume II: The New Technologies. Computer Science Press, 1989.
[VW86a] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic

program verification. In Proceedings of the First Symposium on Logic in

Computer Science, pages 322–331, Cambridge, June 1986.
[VW86b] M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics

of programs. Journal of Computer and System Science, 32(2):182–21, April
1986.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Infor-

mation and Computation, 115(1):1–37, November 1994.

This article was processed using the LaTEX macro package with LLNCS style

