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Abstract .  There are many methodologies whose main concern is reducing 
the complexity of a verification problem to be ultimately able to apply model 
checking. Here we propose to use a model-checking like procedure which oper- 
ates on a small, truly symbolic description of the model. We do so by exploit- 
in.g systematically the separation between the (small) control part and the 
(large) data part of systems which often occurs in practice. By expanding the 
control part, we get an intermediate description of the system which already 
allows our symbolic model checking procedure to produce meaningful results 
but which is still small enough to allow model checking to be performed. 

1 Introduct ion  

This paper is about a close marriage of two well known verification paradigms: that 
of model checking and generation of verification conditions. There is no need for 
reiterating the success story of model checking in the verification of reactive systems 
originating with the seminal paper by Clarke, Emerson and Sistla on CTL model 
checking [7]; indeed it is safe to say t h a t t h e  combination of (so-called) symbolic 
techniques [6], abstraction [8] and compositional reasonifig [15, 18] have rendered 
this technology to a state where industrial usage is feasible. 

But beyond doubt even those combined approaches are inadequate for a complete 
verification of the majority of designs. In particular, applications with large or com- 
plicated data parts will escape them. We will bring in the generation of verification 
conditions to overcome some of the limitations. 

The story of generation of verification conditions dates back to Floyd's seminal 
paper [13] from 1967. A large body of research has been conducted over the years 
on sequential program verification for increasingly more complex progrannning lan- 
guage constructs [1]. More recently, parallel programming languages [2] have also 
been extensively investigated. However, the inherent complexity of the task and less 
stringent commercial need for formally verified software systems has impeded indus- 
trial applications of this technology. A few exceptions mainly come from the area of 
secure systems. 

The arguments impeding industrial applications of software verification do not 
hold if we look at systems closer to the hardware level. For such systems, the incentive 
to avoid errors is higher. Moreover, many of them combine data and control in a 
way that enables simplifying or even automating large parts of the verification. 
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In this paper we will show a method that avoids some of the difficulties with 
verification condition generation. We will demonstrate how model-checking tech- 
niques may be used to reduce automatically first-order temporal logic specifications 
to simpler verification conditions. These conditions concern either purely sequential 
behavior of subsystems or first-order data properties. Our procedure is very differ- 
ent from what is usually called "symbolic" model checking, which operates on codes 
for the state sets of the system. Here, we represent data and data operations by 
first-order formulas and substitutions, similar to their respective representations in 
the specification logic and the system description language. We called this "truly 
symbolic" in contrast to the coding approach of "symbolic" model checking. 

The class of applications we aim at include processors where the data path is 
simply too wide to be reasonably considered finite state, or embedded control appli- 
cations, where conlplex interfacing logic is combined with sometimes nontriviai com- 
putations on sampled data (e.g. solving differential equations numerically). These 
applications have in common, that there is a clear separation between the handling 
of control and data. I.e.: 

- The pipelined execution of a RISC instruction is solely determined by the in- 
struction type, the pipeline stage, and other state information collected in the 
controller, which together constitute the control part of the design; register con- 
tents as well as address fields etc. form the data part and are evaluated separately 
and do influence control only sparsely. 

- In embedded control applications it is the control part which governs the inter- 
action between the controller and the controlled system (determining e.g. the 
sampling rate, strobes, etc.); whenever sampled data are latched into the con- 
troller, it initiates the data part of the computation, causing a possibly complex 
but terminating evaluation. 

We find the perfect match for our approach when the data part does not affect control 
at all. In this case, we show that specifications can be tested by conventional model 
checking on the control part of the system. If the test result is negative, not only the 
control part of the specification, but also the complete specification involving data 
is not satisfied by the system. A positive result, on the other hand, tells that the 
control part of the specification is true in the complete system. 

Specifications (and systems) which survive this test phase may then be analyzed 
more thoroughly. For that, we propose a method that generates first-order verifica- 
tion conditions. This phase does not require a Complete separation of control from 
data. The restriction on their interdependence is more relaxed. Therefore, this phase 
is applicable also to systems for which the test phase is not. 

The procedure we apply is based on a first-order extension of local model checking 
in the style of [22], using the control information present in the system description to 
investigate only those first-order aspects of the model consistent with the required 
behavior of its control part. The first-order verification conditions to be generated 
appear as success conditions of the model checking procedure. A sufficient criterion 
guaranteeing that the generation can be performed completely automatically is that 
the control part only allows a bounded number of computations on the data. This 
criterion subsumes e.g. Wolper's data independence property [23], which forbids any 
computation on data. Sometimes it is even possible to transform a system description 



which does not meet our criterion to one which does. A loop which computes on data 
may be replaced by a finite (first-order) representation of its effects. This generates 
a sequential verification condition which can be treated separately. 

Our approach differs from others addressing the verification of first-order temporal 
logic specifications mainly by exploiting the above separation between control and 
data to achieve a high degree of automation of the verification process. Also, its 
scope of application certainly goes beyond what can be done in others. 

Approaches based on abstraction like the ones in [8, 14] and, to some extent, 
the one in [11] try to reduce the state space to a small resp. finite one, where the 
proof engineer is required to find suitable abstractions for program variables. In our 
approach, the verifyer!s main involvement is in deciding which variables to consider 
as control. Remaining are of course first-order and sequential verification conditions. 
But even these may often be discharged automatically, e.g. if each single data loop 
can be handled by BDD-techniques after it is extracted from the context of the rest 
of the system. 

More similar results involving data/control separation can be found in [17] where 
another generalization of Wolper's data independence is pursued. Due to the different 
system description format used there, separation has a different meaning and thus 
the results are complementary to ours. However, [17] does not even at tempt to cope 
with data  computations, and does not include techniques for first-order verification 
condition generation. 

Verification techniques in the style of [20] which underly e.g. procedures of the 
STEP system [19] are closer to our approach. Indeed, one could certainly integrate a 
variant of our generation method as one subprocedure of STEP, suited to deal with 

�9 a specific class of problems. 

Although our techniques and results are rather independent from the overall frame- 
work, we chose one particular for their demonstration. 

Our specification logic is FO-ACTL, a first-order version of ACTL (which resem- 
bles CTL, but allows only universal path quantifiers). The progrmnming language 
might be thought of as being VHDL, stripped to its semantical essence: a flat parallel 
composition of sequential processes, which are essentially while-programs extended 
by one communication construct inspired from VHDL's wai t  statement called step.  
A s tep  can only be executed jointly by all processes and thus serves as a syn- 
chronization barrier; whenever the processes synchronize in a s tep,  they exchange 
information through typed in- resp. outports. All local computations (between steps) 
work only on local vea'iables. 

A program is given as a transition system in which the transitions are annotated 
by the actions performed between states. Such a program stands for a (possibly 
infinite-state) Kripke structure, whose states represent the current position in the 
program and the current variable valuation. Halfway to this large Kripke structure, 
we have the control-expanded program, where only control valuations are explicitly 
coded into the states and operations on the data variables still annotate the transi- 
tion symbolically, in the same way as in the original program. This is the structure 
on which our verification procedures operate. 

The test whether a specification is consistent with control of the system is 
performed by stripping the control-expanded program from its data annotations 



(e.g. turning branches governed by data dependent predicates into nondetermin.istic 
choice). This process may introduce nonterminating loops which, if data were consid- 
ered, would always terminate. In the stripped program, these loops get annotated by 
fairness constraints ensuring their eventual termination. The validity of a similarly 
stripped formula will then be evaluated using standard (i.e. propositional) model 
checking. The data/control separation we require in the original program guaran- 
tees that this evaluation approximates validity of the specification in the desired 
way. 

The verification condition generation essentially collects data operations on those 
paths through the control-expanded model which justify the specification. Besides 
the sufficient criterion mentioned above which guarantees fully automatic verification 
condition generation, the procedure works in several other cases as well (which do 
not seem to have a nice characterization). 

The paper is organized as follows. Having developed the programming language and 
its semantics including the control-expanded program and its stripped version in 
Section 2, Section 3 defines the logic as well as a stripping operator on formulas, 
reducing them to their control aspects. Section 4 develops the theory to provide the 
quick test for falsity of an FO-ACTL formula, while the generation of verification 
conditions is described in Section 5. 

A fully formal development of our  method would require numerous definitions 
and constructions, which would be impossible to fit into the available space. So we 
appeal to the reader's intuition whenever a concept is introduced not rigorously but 
informally or by example. 

2 S e m a n t i c a l  F o u n d a t i o n  

This section introduces the programming language and its semantics. We treat a 
toy language vaguely similar to VHDL; a~y other parallel programming language 
would serve the purpose of this paper. The main novel notion introduced is that of 
a control-expanded program, which makes the distinction between data and control 
aspects of a program explicit, thus providing the semantic basis of the subsequent 
sections. 

Programs in our toy language consist of a flat parallel composition PI[[ . . .  [[P~ of 
sequential processes. We retain from VHDL that processes comnmnicate over ports, 
which in our toy language almost reduce to read-only variables modelling inports 
resp. write-only variables modelling outports. In contrast to variables, updates of 
ports are possible only when executing a step-statement discussed below. 

Process definitions are of the form 

process  <process-declarative-part> beg in  <sequential-statement> end .  

The process declarative part of a process P defines in particular the sets of its 
in- resp. outportsIv resp. Op, and Vp of P ' s  local variables. We require ports 
and variables to be initialized and omit the index P whenever it is understood 
from the context. Its body is given by a so-called sequential statement, which is 
executed continuously as if enclosed in a do forever loop. We allow, like VHDL, 
standard statements such as variable assignments, if-, case-, and while- statements, 



and sequential Composition. Given an assignment v:=e, we will call v the si.nk of 
the assignment. In our toy language we have collapsed signal assignments and wait 
statements from VHDL in the step statement taking the form 

s t e p ( i n  v b . . . , V m ;  ou t  e l , . . . , e n ) .  

A step statement is executed iff all processes are willing to do a step; in this case, 
P ' s  inports Ip  = {i l , . . .  ,irn} are copied into the local variables v l , . . .  ,v,~, while 
its outports  OR = {ol , . . .  ,on} take values determined by expressions e l , . . .  ,en. 
For simplicity, we assume that  "wiring" of ports is given by equality of port names, 
hence the collection of all ports are variables shared between all processes, which 
are updated only in the disciplined style provided by the step statement; in VHDL 
jargon, this restriction would correspond to using only signal assignments with delta 
delay. We also require that  for each port p there is at most one process assigning a 
value to p. 

Our laaguage is strongly typed; for the purpose of this paper  we simply assume 
a collection of types with typical element ~-. Example types are boo l ,  bit~ in teger ,  
rea l ,  b i t v e c t o r ,  a r r ay ,  and enumeration types. At latest at verification time we 
assume, that  types are classified in two modes, data and control, with the obvious 
restriction that  the domain Dr  of expressions of type ~- is finite whenever r is of mode 
control. This classification of types induces a classification of ports and variables. 

As a simple example, consider the program from Fig. 1. Depending on the value of 
the boolean input op, until the next s t ep  the program either computes r e s :=a rg*2  
or - by executing a terminating loop - r e s : = a r g  ~. A typical choice of modes is to 
consider the inport op and the corresponding local variable c to be of mode control. 

process small 

in oi>: bool := f, arg: nat := 0 

out res: nat := 0 

var x,y,z: nat := O, c: bool := f 

begin 
s tep( in  c, x; out z); 
if  c 

then  z:-- x+x 
else y:-- x; z '= 0; 

while y>0 
do 

y:= y-l; z:= z+x 

od 

end 

c/ 
Z:=X+X 

rt~ 

I I c: =op 
L ~x : =arg -,y>O 

y:=y-I fy>O 
Z : =Z+X 

) 

Fig. 1. Example program and its flowchart 

We use a variant of labeled transition systems as intermediate models for the 
semantics of our toy language. As a first step, a program is translated into a flowchart 



which represents the flow of control in a graphical format, see again Fig. 1 for an 
example. States in the flowchart correspond to positions in t he  program. They kre 
labeled by r ts ,  s t ep  or none  to indicate whether in that  position, the program is 
willing to engage in a step action, performing a step, or doing neither. To get the 
second intermediate model, the values of variables and ports of mode control get 
expanded: Their values will then be represented explicitly in the states. This results 
in a structure we call the control-expanded program, denoted CEP, see Fig. 2. It is 
this control-expanded program on which the verification condition generation will 
operate. Removing the transition labels yields the stripped CEP or SCEP, which will 
allow the propositional test of specifications. If, instead of removing the transition 
labels, we expand all variables, we get the fully expanded program, or FEP. The FEP 
is a Kripke structure. Its states include a valuation of all variables and ports, and its 
transitions are not labeled any more. This Kripke structure is the reference structure 
for defining the satisfaction relation between first-order temporal logic formulas and 
processes of our toy language. 

For the more formal development, we fix a set of inports I ,  outports O, and 
variables V, and abbreviate V U I U O by Vat. 

A labeled symbolic transition system over I, O, V assumes a classification of 
each element of Vat as either being expanded (Varczv) or symbolic (Varsymb). It  
is an (ordinary) labeled transition system whose state space consists of pairs of so 
called control points from a finite set S and valuations of the expanded variables 
Varc~p collected in the set P. Its transitions are labeled by an enabling condition on 
the symbolic variables and a set of assignments to symbolic variables. We use s (resp. 
7) as meta variables for control points (resp. valutations of expanded variables). The 
initial value of expanded variables is given by a designated valuation "Y0, while the 
initial valuation of symbolic variables is given by a set of initial assignments Aini~. 
The initial control point is designated so. The (standard) labeling function of states 
L assigns to any control point atoms of our logic in the set {rts,  s tep ,  none}.  As- 
signments are of the form v:=e s.t. v and all variables occurring in e are symbolic. 
All sinks of assignments occuring in one transition label must be mutually distinct. 
Moreover we require, that sinks of assignment are local variables, except for transi- 
tions originating from control points labeled r ts ,  where also assignments to outports 
are allowed. 

Collecting all items into a structure yields an eight-tuple (S, F, L, R, Vare~p, 
s0,'70, Aini~) as constituents of a labeled symbolic transition system M. Flowcharts, 
CEPs and FEPs are all instances of symbolic labeled tremsition systems. So the 
flowchart in Fig. 1 constitutes an example with Var~p = 0 (only that the initial as- 
sigmnments"op := r := f ,  arg  := out := x := z := y := 0" have been omit- 
ted in the picture). In a CEP, the expanded variables are those of mode control, 
while in the FEP, the set Varezp consists of all variables (i.e. it equals Vat and 
Varsymb is empty). 

We translate processes of our toy language into flowcharts by induction on the struc- 
ture of processes. With each statement~ we associate a canonically derived flowchart 
with a unique entry- and exit control-point, which are used in the inductive defini- 
tion as gluing points. Since the definition is otherwise routine, we only discuss the 
semantics of the step statement in detail. 



The flowchart of s t e p ( i n  v l , . . .  ,v~,; ou t  e l , . . .  ,en) has three control points 
so, s, se labeled r ts ,  s t ep ,  none ,  respectively. In so the process is willing t6 syn- 
chronize with its brother processes. If and only if this happens - as modeled in the 
definition of the product of the transition systems described below - it will pass to the 
designated control point s representing the passage of the synchronization barrier. 
The transition from so to s is labeled by random assignments for all inports, which 
guess the value produced by some brother process during this synchronization step, 
as well as a collection of assignemts to its outports with the expressions occuring in 
the step statement.  More forlnally, 

tt / i I := ? . . . .  , irn := ? ,  Ol := e l , . . .  , on := en 

labels the transition connecting so and s. The subsequent postlude transition copies 
the values received through inports into the local variables specified in the step state- 
ment: 

t t  / v 1 :-- i l  . . . . .  v m  := im 

Compound statements are handled trivially by appropriate gluing and possibly in- 
troduction of fresh control points, e.g. using fresh so, s~ in the semantics of 

i f b t h e n  ~ o e l s e ~ l f i  

to relate so with the entry point of zr0 using a transition labeled with b and the entry 
point of ~F1 labeled -~b. The exit points of Iri are linked with the new exit point. 

The flowchart semantics of process P , FC[P] , is obtained from the flowchart 
of its body by relating its exit point with its entry point and adding as set of initial 
assigmnents those canonically induced from P ' s  process declarative part. 

The semantics of programs is given by defining a parallel composition opera: 
tor on labeled symbolic t ransi t ion systems capturing VHDL's communication and 
synchronization semantics. Since synchronization is only required at steps, all tran- 
sitions except for those relating control-points labeled r t s  with s t e p  control points 
can be taken in any order, e.g. in an interleaved fashion. Transitions handling the 
step are taken in lock step, replacing random values assigned to inports by those 
expressions provided by the processes running in parallel. Due to space restrictions, 
we do not discuss this in detail; the reader might refer to [10] for a full definition of 
the comparable operator of VHDL. 

Let us now turn to the process of expanding a labeled symbolic transition system 
M. Fig. 2 shows an expansion of our example flowgraph. 

Each symbolic variable v E l'rarsymb can be expanded separately. The expansion 
of M w.r.t, v is obtained by essentially substituting each occurrence of v in transition 
labels by its vatue now represented in the valuation component of states. The only 
situation deserving special attention arises, whenever v occurs as the sink of an 
assignment v :-- e in a transition label. In this case, the assignment is deleted 
from the transition label. But the query d = e is added to the condition part  of 
the transition leading to a state where v is evaluated to a value d. Expanding the 
variables and ports of mode control in the flowchart FC~P] of a program yields its 
control-expanded version, CEP[P]. Expanding all variables gives the fully expanded 
program FEP~P]. 
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ar ~ =,2 

arg:=? 
~es:=Z 

x:=arg TM 

y:=x 

I z:=O 

y>C 

arg:=? 
res:=z 

84 

y:=y-I 
Z~=Z+X 

88 

89 

Z:=X+X 

Above, the result of expanding the variable c and the port op in the flowgraph from Fig. 1 
is shown. This is the CEP belonging to the example program. The picture omits initial 
assignments and does not contain unreachable states. 

Fig. 2. Example CEP 

By abstracting from data annotations, any labeled symbolic transition structure 
turns into a classical Kripke structure allowing safe model checking of properties 
related only to expanded variables and the synchronization atoms, provided the 
expanded structure is finite. The next section shows that  this abstraction, called 
the stripped transition system, enriched by suitable fairness constraints, may in fact 
be a precise abstraction for such formulas under some additional assumptions. The 
definition of stripping is trivial: for a labeled symbolic transition system M we simply 
delete all transition labels, thus replacing conditional selection by nondeterminism. 
We will apply stripping only to the control-expanded program, and will denote the 
resulting structure by SCEP[P]. 

When the program P is understood from the context, the parameter  [P] will be 
omitted and we will simply write FEP or CEP. And for ease of exposition, we will 
assume in the following that  all control variables are of type b o o l  (instead of an 
arbitrary finite type). 



3 The Logic 

The logic FO-ACTL (first-order ACTL) is a branching-time first-order temporal 
logic. It is similar to the propositional temporal logic ACTL (universal CTL) except 
that it is defined over first-order atomic formulas. Following Emerson [12], a formula 
in the logic is interpreted over a Kripke structure and an interpretation which is 
fixed for all states of the Kripke structure. 

Similarly to propositional ACTL, FO-ACTL provides only universal path quan- 
tifiers. To avoid the invocation of existential path quantifiers via negations, the logic 
is given in a positive normal form in which negations are applied only to atomic 
formulas. Since only universal path quantifiers are allowed, path quantifiers are left 
implicit in the syntax. Thus, r U r represents the ACTL formula A(r  U r and 
similarly for any other temporal operator. 

Def in i t ion  1 F O - A C T L .  Let E be a first-order language over some signature and 
let Vat be a set of (typed) variables. A formula in our logic is defined inductively as 
follows: 

1. Every first-order formula of s over Vat is an atomic formula. 
2. r ts ,  s tep,  none  are atomic formulas. 
3. If p is an atomic formula, then -,p is a formula. 
4. If r and ~b are formulas and x ~ Vat, then r V r r A r 3x.r Vx.r are formulas. 
5. If r and r are formulas, then X r r U r and r W r are formulas. 

X is the next operator, and U is the usual until. I.e. r U r requires to eventually 
reach a state satisfying r and not violate r before that event. W is weak until and 
allows the formula to the left to hold forever. 

We use the following abbreviations: 

F r 1 6 2  and G r  C W f f .  

Let Int be an interpretation for s over domains D~ for occurring type T. The 
semantics of FO-ACTL formulas is defined with respect to an interpretation Int 
and a Kripke structure K. For simplicity we denote T = S • F and omit the empty 
set of assignments A~ni~ in K. For t = (s, V), with a slight abuse of notation, we 
use L(t) and t(v) instead of L(s) and V(v). A Kripke structure has now the form 
K = (T, L, R, Vat, to). A path in a Kripke structure K is a sequence, ~r = w0, wl , . . . ,  
such that for every i, (w~, w~+l) E R. 

K, Int, t ~ r denotes that the formula r is true in state t of structure K under 
interpretation Int. If clear from the context, Int is omitted. 

We sometimes want to restrict our attention to ]air paths only, based on some 
given fairness criterion F that characterizes fair paths. We ltse K, t ~ f  r to denote 
that r holds at t in K with respect to the fair paths only. In particular, the relation 
~ F  for the temporal operators X ~ U ,  a~]d W is defined with respect to every fair 
path rather than with respect to every path. 

In the sequel, we will only consider specifications that do not contain the next- 
time operator. This operator will be used, however, in the tableau construction in 
Section 5. 
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Stripped/ormulas Given a specification written in FO-ACTL, we extract its pr~po- 
sitional part  by applying the strip operator. The strip operator eliminates all first- 
order components of the formula, thus results in a propositional ACTL formula. 
Data-dependent parts of the formula are replaced by tt, so the stripped formula will 
be more often true. 

De f in i t i on2  ( S t r i p p e d  fo rmula ) .  Let Vare C_ Vat be a set of boolean (control) 
variables and let r be a FO-ACTL formula, strip(C) with respect to Varc is defined 
as follows. 

1.  strip p(ol, . . . , o k ) ) = p ( o l , . . .  ,ok); strip( (p(o , . . . , ok ) ) )=  , 'k ) ) i f  
Vl,. �9 �9 ok E Vare. 

2. s t r ip (p(v l , . . .  ,ok)) = s t r ip ( ' ,p (v l , . . .  ,ok)) = tt if some variable vi f~ Vare. 
3. strip(1) = l; strip(-,l)  = -,l for I e {rts,  s tep,  none}.  
4.  s t r i p ( r  v r = strip(C) V strip(C). 
5. s tr ip(r  A r = strip(C) A strip(C). 
6. s tr ip(3x.r  = strip(r V strip(r /x]) for x e Yare. 
7. s tr ip(Vx.r  = strip(C[tt/x]) A strip(r /x]) for z e Vare. 
8. strip(3z.~b) = s tr ip(Vz.r  = strip(C), for x ~ Varc. 
9. s tr ip(r  U r = strip(C) U strip(C).  

10. strip(r w r = strip(C) w strip(C). 

L e m m a 3 .  I f  r is a F O - A C T L  formula then strip(C) with respect to Varc is a 
propositional A CTL formvla over Vare. 

E x a m p l e :  Consider two specifications for th e example in Figure 1, where op is a 
Control variable and arg ,  r e s  and x are data variables. L e t r  = (F r t s )  W ( s t epA 
-,op), then s t r ip( f1)  = r 
Consider now the formula r = Vz.G ((s tepAarg = zAop) --+ F ( s t epAres  = x*2)). 
Then, strip(C2) = G ( (s tep  A tt A op) -+ F (s tep  At t ) )  which is equivalent to 
G ((step A op) -+ F step). 

4 T h e  P r o p o s i t i o n a l  V e r i f i c a t i o n  M e t h o d o l o g y  

In this section, we restrict our concern to programs for which there is a clear separa- 
tion between da ta  and control. In particular, data cannot influence control variables. 
For such programs, their verification with respect to first-order temporal  specifica- 
tion can take advantage of a preliminary phase in which propositional temporal  
specifications are proved for the control part  of the program. 

More precisely, let a data-dependent condition be a boolean condition that  con- 
tains (also) da ta  variables. A program has the separation property if no control 
variable gets assigned a value depending on data, and neither assignments to control 
variables nor step statements occur in the scope of a data-dependent condition. 

The separation property ensures that  data do not directly influence control val- 
ues. But there is a more subtle way in which the validity of a temporal  formula not 
referring to data  may be affected: by the termination behavior of data-controlled 
loops it might be determined whether observable changes to control might happen 
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or not. This influence we eliminate by assuming - which at least in a hardware con- 
text is not unreasonable - that  data-controlled loops always terminate. Formally, the 
assumption enters in the form of fairness constraints. 

In more detail, the situation is as follows. Let P have the separation property. 
Since the transition labels in CEP[P| contain no control variables, stripping the 
CEP from its transition labels eliminates data-dependent conditions only. But the 
separation property implies that  also no control variable changes its value along a 
transition if the condition labeling it is different from tt. Thus, the stripping does 
not introduce changes of control which did not happen before. And if the stripping 
results in an infinite loop that  did not occur before, then this must be a data loop 
in which only data variables may change their value. For all these loops, we assume 
termination and check the stripped formula in the stripped CEP based on this 
assumption (To complete the verification, we must of course later show that  in the 
fully expanded Kripke structure FEP[P] all data loops are indeed terminating). As 
a result, control properties are not affected by stripping the CEP. 

For the verification of formulas which also depend on data, we can infer the 
following. If the check of the stripped formula in SCEP[P] (the stripped CEP) 
returns tt, then we can conclude that  the stripped formula is true of FEP[P]. But if 
the check returns i f ,  then we know that  the original formula is false in FEP[P[. As 
mentioned before, we consider the latter as a significant contribution that  enables 
model checking together with termination proofs to debug any first-order temporal  
specification. 

Our methodology is summarized in the following theorem, where F denotes ter- 
mination of all data  loops. We refer to the well-known notion of a generalized Kripke 
structure [12] to explain the meaning of validity of a temporal logic formula under 
fairness assumptions. 

T h e o r e m 4 .  / f  FEB[P[ ~ F then 

1. SCEB[P] ~p strip(C) ~ FEB[P[ ~ strip(C), and 
2. SCEP[P] ~F strip(C) ==t, FEB[P[ ~ r 

The proof of the theorem could not be included in this paper due to space 
limitations. The main technical result in the proof states that~ if all data  loops 
terminate, then SCEP[P] aaad FEP[P] are fair stuttering bisimilar and therefore 
agree on all propositional ACTL formulas (with no next-time operator). 

E x a m p l e :  Consider again the example of Figure 1. Once we verify that  the 
while loop always terminates, we can use SCEP[P] to verify propositional ACTL 
formulas and to refute FO-ACTL formulas. SCEP[P[ is obtained from the CEP of 
Fig. 2 by eliminating all transition labels. 

For instance, since SCEB[P] satisfies r = (F r t s )  W (s tep  A -~op) under loop 
termination a.ssumption, we can conclude that this formula is true also in FEP[P] 
(recall that strip(C1) = r 
Consider the FO-ACTL formula r = Vx.G ( ( s tepAarg  = xAop) --+ F ( s t e p A r e s  = 
x * 2)). Since the formula strip(C2) = G ( (s tep  A op) -+ F s tep)  is true of SCEB[P] 
we can conclude that  strip(C2 ) is true also in FEP[P]. Note that  we cannot conclude 
that  r is true in FEP[P]. For that  we must use the method developed in Section 
5. 
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Consider also the FO-ACTL formula r = G F (step A -~op A y = 0 A z = arg 2). 
Then strip(Ca) = G F (step A -~op A tt). Recall that our formulas have an implicit 
universal path quantifier accompanied with any temporal operator. Thus, strip(C3) 
means that for every path, (step A -~op) is true for infinitely many states on that 
path. This does not hold, for instance, on the path so, s6, sT, ss, sl0, sT,.., in Fig. 2. 
Hence, strip(C3) is false in SCEP[P] and as a result we can conclude that r is false 
in FEP[P]. 

5 v e r i f i c a t i o n  C o n d i t i o n  G e n e r a t i o n  

To handle specifications including data, we propose to verify the temporal aspects 
relative to first-order verification conditions. As we did before, we start by expand- 
ing control variables to get the CEP. The key idea then is to use an approach close 
to what is usually called local model checking. Local model checldng searches for a 
sufficient reason for the specification to be satisfied. It has the advantage over iter- 
ative model checking that it may turn out that some parts of the program behavior 
are irrelevant to the specification considered. Here, it may be the case that control 
information alone can tell that a loop, which can not be handled in general, does not 
affect validity of the specification. In suda and further cases, local model checking 
will be successful without expanding every data domain. This is essential if some of 
the data domains are infinite or too large or complex to be completely expanded. 

The presentation in this section remains on a rather informal level. The reason 
is that the subject is a rather complicated one. It concerns a nontrivial algortihm, 
its correctness and termination properties. To help the reader, the section consists 
of several parts, each containing a result stating the main achievement of the part. 
To get an overview, it should be sufficient to read the titles and the stated results. 
By this, the purpose of the various introduced concepts will become clear, and their 
definitions - which in most cases are not formal - will be easier to comprehend. 

A t ab l eau  s y s t e m  for F O - A C T L  Local model checking consists in constructing 
a tableau proving the validity of the formula in question for the start state - or, in 
the negative case showing the nonexistence of such a tableau. A tableau is essentially 
a proof tree. Ignoring data for the moment, the root of the tableau is the sequent 
so l- r where so is the initial state of the system and r is the formula in question. 
The successors of each node must provide sufficient reason for the validity of that 
node. Rules are available for each form of node which fix possible successor sets. If 
the expansion of a tableau is stopped at some point, a success criterion tells whether 
the tableau constitutes a complete proof for the sequent at its root. 

Our tableau system serves as the basic formalism to derive first-order temporal 
properties involving data, by providing a well-defined method to generate pure first- 
order conditions from the system and a specification. Below we present our rules 
for tableaux constmmtion. They differ in two respects from the usual rules for CTL. 
One is notational: Usually, the different possibilities for proving a sequent (i.e. the 
different possibilities for successor sets of one vertex) are given in different rules 
which could be applied alternatively. Our fornlat comprises them in one schema, the 
alternatives being separated by "] ". Elements in one successor set are separated 
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by " ,  ". But the rules also reflect tha t  we deal with a first-order model: The ~state 
component  of a sequent consists of a control state (an element of S) and a condition 
on a variable valuation, given in the form of a first-order formula. 

O r  R u l e  A n d  R u l e  

s ,p  ~- r 1 6 2  s ,p  ~- r 1 6 2  

s,p ~- r s,p ~- r s ,p  t- r  s,p ~- r 

E x i s t s  R u l e  Fora l l  R u l e  

s ,p  F- 3 z . r  s ,p  ~- Vz.r 
, y r ]~ee(p) 

s,p ~ r s,p ~ r 
, y r fr~e(p) 

U n t i l  R u l e  U n l e s s  R u l e  

s ,p  i- r 1 6 2  s ,p  I-- r 1 6 2  

s,p ~ C V ( r 1 6 2 1 6 2  s,p e C V ( r 1 6 2 1 6 2  

N e x t  R u l e  

s ,p  ~- X r  
, s  I { s l , . . . , sn}  

s l ,px  F" r , . . . ,  sn,p,~ }- r 

where p A ci -+ subst(pi,  Ai )  for s e~/_~ si, i = 1 , . . .  ,n .  

C a s e  Spl i t  R u l e  

s ,p  F- r 
P -+ Pl V P2 

s, p l  t- r  s,p2 ~- r 

subst(pi, Ai) in the rule dealing with " X "  means the parallel substitution of e for v in 
Pi for each assignment v :=  e E A~. The rules above are chosen to be as simple rules 
as possible. For convenient application, usually several of them would be combined. 
For instance, a more useful rule to deal with "V" like 

s ,p  ~ r 1 6 2  

s, p l  F r  p2 ~" r 
, p -+ p l  V p2 

is derived from our rule set by combining the Case Split and the Or Rule. 
The reader may have noted that  3 and V as well as U and W are treated in the 

same way by the rules. The difference between the operators is captured by (global) 
success conditions, see below. 

A tableau is a finite tree of sequents s~p F r where the set of successors of each 
internal node are instances of one of the alternative successor sets according to the 
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rules. The  nodes on the pa th  from the root of the tableau to a given node are called 
its predecessors. 

To each tableau we associate a first-order formula which specifies whether the 
tableau is successful. This success formula is computed  bot tom-up.  The success 
formulas of leaves are as follows. 

- P -~ ViPl  for leaves s,p ~- r 1 6 2  where pi, i = 1 , . . .  , n  are the first-order 
conditions in predecessors of the form s,p' ~" r W r 

- p ~ rs for leaves s,p F- r with a first-order formula r (see below for the compu- 
ta t ion of rs), and 

- p -~ ff  fo r  other leaves s,p ~- r 

For a first-order formula r and a state s, replace the a toms r t s  and s t e p  as well as 
control variables in r by their t ru th  values in the state s to obtain the formula rs. 

At inner nodes, the success formula is computed  by conjuncting the success 
formulas of the subtableanx following it. I f  case split is applied, the appropriate 
implication is added. At quantifier steps, the respective quantifier is applied. 

A tableau is successful in a da ta  domain, if its success formula is valid in the 
domain. A sequent is provable if it has a successful tableau. A formula r is provable 
if so, tt b r is a provable sequent. 

T h e o r e m 5  ( S o u n d n e s s ) .  The tableau system is sound. I.e., if a sequent s,p b r 
is provable, then all copies of s in the full model where the data variable valuation 
satisfies p have property r If a formula is provable, it is valid in the system. 

The tableau system does not provide us with a decision method,  though. One reason 
is tha t  of course the validity of success formulas can not be decided in general. 
Another  one concerns the t reatment  of the U operator.  To achieve a stronger form 
of completeness than1 we do, we would have to allow a successful recurrence of U - 
formulas in the style of the recurrence condition for minimal fixpoints of [4, 3]. This, 
however, would introduce a new dimension of undecidability, because successful U - 
recurrence would have to involve a well-foundedness condition. We do not strive for 
completeness in general, though. We do achieve completeness and even decidability 
relative to first-order questions for a certain class of interesting cases, as indicated 
by the results below. 

T h e  c o n s t r u c t i o n  o f  a gene r i c  t a b l e a u  Roughly spoken, systematic tableau 
construct ion will provide a proof or a refutation (up to first-order verification condi- 
tions) ff all "nontrivial cycles" are "broken by control". This is a property of system 
and formula combined. A "nontrivial cycle" occurs when a data-variable value at 
one position in the program may result by applying a function other than identity 
to the value the same variable had at tha t  same location at an earlier stage of the 
execution of a program. 4 Such cycles may cause unbounded expansion of the tableau 
during construction. A cycle like that  one is "broken by control", if one can tell from 
control information that  there is a bound on the number  of iterations through this 

4 More general: the value need not be computed from the previous value alone, but also 
other variables might influence the result. 
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cycle which are necessary to decide the validity of the formula. As an extreme case, 
the path  through the program which introduces the cyclic dependency migKt not 
be executable at all without violating an essential control condition in the formula, 
giving zero as a bound. 

A formalization of this informal concept will take several steps. First of these 
is the construction of a generic tableau wlfich comprises in some sense all tableaux 
which can be constructed for a given formula r It  represents, essentially, the control 
part  of each first-order tableau. Thus, it can later be used to detect cycles broken by 
control. The rules for the generic tableau are derived from the above rules essentially 
by removing all first-order aspects. 

s t- r 1 6 2  s t- r 1 6 2  s t- 3 / V z . r  

s ~ - r 1 6 2  s~- r 1 6 2  s ~ - r  
, z ~  

s F 3z.r  s ~- Vx.r 
, z ~ V r  , z E V r  

~ r I s F r s e r  s ~ r 

s ~ C U / W r  s ~ x r  
, ,  ..... > { ~ I , . . . , ~ }  

~ V r  e r  ~ x ( r 1 6 2  ~1 ~ r  sn ~ r 

With these rules, we construct the generic tableau for a given CEP and a temporal  
formula by the following deterministic procedure. Starting with so I- r the appro- 
priate rule gets applied. But different from the first-order tableau, no choice is made 
between alternative successors. Instead, all alternatives are pursued. The expansion 
of the generic tableau stops if the temporal formula is reduced to a pure first-order 
formula (first-order leaf) or if a node recurs, i.e. at a node which has a predecessor 
labeled by the same sequent (recurring leaf resp. recurrence node). Since there is a 
finite number of states and subformulas, the process is bound to terminate. 

Next, irrelevant branches are removed. This starts at non-recurring leaves. X -  
leaves can be replaced by s ~" tt. Also, some of the first-order leaves s ~- p can be 
evaluated. To do this, first the formula Ps is constructed. Then, the control infor- 
mation present in Ps is used to determine whether by propositional reasoning and 
trivial first-order identities like (3x.ff)  ~ f f  the formula can be reduced to tt or if. 

Then, tt and f f  are propagated upwards in the tableau. A successor set gets 
replaced by ff  (resp. tt) if one (resp. all) of its components becomes f f  (resp. tt). If 
one of the alternative successor sets of a node becomes tt, the node itself is replaced 
by tt, and if all  alternatives become if, it is replaced by ft. The resulting, reduced 
structure is called the generic tableau for r 

O b s e r v a t i o n  6 For every system and formula, there is one (unique) generic tableau. 

Let us return to our example program from Fig. 1, aud take r = (F r t s )  W (s tepA 
-~op) as a specification. Fig. 3 shows the first steps of the construction of the generic 
tableau (indicating the evaluation of first-order leaves in boxes) aald the final re- 
sult, after removing irrelevant branches. The generic tableau contains one pair of 
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a recurring leaf and recurrence node. These are marked with " ." .  Note tha t  other 
recurrences (e.g. of sequences involving F r t s )  occurring during its construction have 
been eliminated by the reduction process. 

so I- (F rts) W (step A -~op) 

so b F rts 
so f- rts 

N 
so F- X F rts 

so F- X ((F rts) W (step A -~op)) [ so F- s tep A op = f 
: 

so b (F rts) W ( s t e p  A -op) 

s0 t- tt , s o F ' X r  [ * o F ' f f  

*6 F- t t  , s6 F- X r ] s6 F- f f  

t t  S7 }- r 

s7 F- tt , s7 F - X r  [ s , t - f f  
s8 t- r 

ss ~-tt , s8 F" X r  I s s t - / f  

s 9 ~ - r  , s10~- r  

s9 F- tt  slo F t t  , slo ~ X r  I Slo b f f  

* s7 ~ r  

Fig. 3. Constructing the generic tableau 

If the program has t h e  separation property,  the construct ion of the g e n e r i c  
tableau can profit from the results of the test computa t ion according to Theorem 4. 
They  enable early detection of irrelevant or always successful branches. 

I n s t a n c e s  o f  t h e  g e n e r i c  t a b l e a u  The relevance of the generic tableau construc- 
tion relies on the fact that  every successful tableau can be put  in a form that  it is 
an instance of the generic one. Instances are built by adding first-order formulas to 
the s tate  components  of sequents and perhaps by unfolding the generic tableau at 
its recurring leaves. 

To be more precise, a first-order tableau T with root  s , p  I-- r is an instance of a 
subtableau (to get an inductive condition) of the generic tableau start ing at node n 
if: 

- n has the form s ~ r and 
- if n is not  a leaf, the rule applied to n is matched by all appropriate rule com- 

bination in T, and subtableaux start ing at end nodes of the rule combination 
are instances of the corresponding end nodes of the generic rule ("Matching" 
requires choosing among the alternatives present in the generic tableau, and we 
allow the matching combination to contain applications of Case Split). And 

- if n is a recurring leaf and T is not a leaf itself, it is an instance of the subtableau 
star t ing at the recurrence node. And 
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- if n = s ~- tt where this is the result of a reduction, T is an instance of the 
subtableau reduced to n. 

The restrictions imposed on a tableau to be an instance of the generic tableau are 
rather modest. They require complete case distinction for control values, and that 
branches which are always successful (and have been reduced to tt in the generic 
tableau construction) have to be chosen whenever such are available. So we have: 

Obse rva t ion  7 I f  a formula is provable at all, it i.s also proved by an instance of 
its generic tableau. 

In s t an t i a t i ng  the  generic  t ab leau  Now we give a procedure which tries sys- 
tematically to construct an instance of the generic tableau. It will not terminate 
in general. The procedure operates on the generic tableau. If it terminates, it com- 
putes a first-order formula, called instantiating formula, for each node of the generic 
tableau. These fornmlas can subsequently be used to generate an instance. 

First-order leaves s }- p are instantiated with ps. Recurring U-leaves are ini- 
tialized with ff  and recurring W -leaves with tt. For inner nodes, the instantiating 
formulas are computed from those for their successor nodes. Disjunction is used 
for V, conjunction for A, existential quantification for 3, and universal quantifica- 
tion for V. For a X-node with successor formulas P l , . . .  ,Pn, the conjunction over 
cl --> subst(pi, Ai)  is taken. Inner U - and W -nodes get instantiated with their suc- 
cessor formulas. But if such a node is a recurrence node, the process of computing 
the instantiating formula is iterated after instarltiating the corresponding recurring 
leaves with the fornmla computed for the recurrence node. The iteration stops if 
a fixpoint is reached for a recurrence node. Propositional and control reasoning is 
applied to detect a fixpoint. 

Although this process does not literally generate an instance of the generic 
tableau, it performs all necessary computations. Due to lack of space we can not 
show the formal construction of the instance. One point to note is that the itera- 
tion steps at U -nodes during the computation process correspond to unfoldings in 
the construction. Most importantly, we can prove that the result of a terminating 
instantiation provides us with a first-order characterization of the correctness of the 
program. 

T h e o r e m  8. I f  the instantiation process terminates for a specification r the success 
formula of the generated instance characterizes validity ore .  Le. the success formula 
is valid in a data domain iff  under this interpretation the specification r is valid (for 
the system).  

In our example in Fig. 3, data do not matter at all. A successful tableau can 
be derived directly from the generic tableau. One only has to restore branches 
which have been reduced to the form s }- tt. As an example for a nontrivial, 
but still terminating instantiation process the reader may consider the specifica- 
tion Vx.G ((step A arg = x A op = t)  -r F (step A r e s  = x * 2)). We have to leave 
the development of this example to the reader. 

The formulas computed for recurrence nodes form chains of monotonically weaker 
( U )  resp. stronger ( W )  approximations of the strongest resp. weakest fixpoint 
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formula. For infinite data domains, this process need not come to an end, or the 
end, if reached, need not be detected. Below we will formalize the no~ion of "cycles 
broken by control ~ by a criterion sufficient for the termination of the instantiation. 

Termination of the  ins tan t i a t ion  The termination criterion is based on an an- 
notation of the generic tableau with variable sets. Basically, one just takes the sets of 
free variables of the instantiating formulas which would be computed by the process 
sketched above. But it is not necessary to compute the formulas themselves. Instead, 
one can operate on the finite domain of sets of variables involved (namely, the data 
variables of the program and the bound variables of the formula) where termination 
is guaranteed. 

The case of next nodes may serve as an example of how these sets are computed. 
If x annotates the ith successor node of a next node in the CEP, and x :-- e E Ai, 
all variables in e annotate the next node. Additionally we take the variables from ci. 

On the completed annotation sets, we draw edges indicating for each variable 
which other annotations caused its introduction. E.g. if x annotates the ith successor 
node of a next node, aald e gets assigned to x along the edge, all variables in e have an 
edge pointing to x. Edges always go from inner node annotations to their successor 
annotations and from recurring leaves to recurrence nodes. Edges originating at 
next nodes which arise from some x := e where e contains a function application get 
marked. Let us call the generic tableau cycle-free if there is no cycle in the resulting 
graph containing a marked edge. 

T h e o r e m  9. The instantiation of the generic tableau of a formula terminates if the 
tableau is cycle.free. 

Critical points for termination of the instaaltiation are the fixpoint computations 
at recurrence nodes. During a fixpint computation, only substitutions and boolean 
operations are applied. If the generic tableau is cycle-free, only a finite number of 
terms will occur in those computations. Since only finitely many propositionally 
nonequivalent formulas can be constructed with finitely many terms, fixpoints will 
be reached and detected. 

The condition on the annotations of the generic tableau can be viewed as de- 
scribing a set of specifications having a filfite reason in every data domain. It gives 
rise to a proof procedure which subsumes properly everything which can be gained 
by data independence reasoning [23]. A program is said to be data independent if, 
intuitively, its behavior does not depend on the identity of input values (changes to 
input values lead to similar changes of output values). 

Any program which meets appropriate syntactic criteria on its data ports s will 
have only cycle-free generic tableaux, regardless of the formula. On the other hand, 
there are programs with cycle-free tableaux which perform a control-bounded num- 
ber of computations and also tests on their data and which are thus not data inde- 
pendent. 

This becomes clear if we draw a value flow graph of the CEP, similar to the 
graph on the annotations of the generic tableau. I.e. we annotate each state with 

These are: No computations on data variables, no tests depending on them. 
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the full set of data variables and draw edges and marked edges between variables 
annotating successive nodes according to the value flow. Transferring the notion of 
cycle-freeness to value flow graphs, we get a class of programs which will have only 
cycle-free tableaux. 

P r o p o s i t i o n  10. If  the value flow graph of a program is cycle-free, then each generic 
tableau built on its CEP is cycle-free. 

The proposition is implied by the observation that cycles in the generic tableau come 
from cycles in the CEP. This criterion is not necessary, but close to. It should be 
kept in mind, though, that the automatic instantiation process works in far more 
cases than just for programs having cycle-free value flow graphs. To decide specific 
properties, it is not necessary that each generic tableau is cycle-free. 

E l ab o ra t i ons  of  the  m e t h o d  The basic proof procedure described above, which 
is already quite powerful and has the advantage of being completely automatic, can 
be improved in several ways. For instance, it may be adapted to make use of the 
first-order theory of the data domain. Also, the user might be allowed to propose 
invariants or other guidance. 

6 C o n c l u s i o n  

We envision the techniques described in this paper to be integrated into current 
design verification environments, providing interfaces to standard design languages. 
Given a system in one of those languages, the designer would provide formal specifi- 
cations in FO-ACTL. Based on design knowledge and the properties to be checked, 
the designer would then debug the system by model checking stripped versions of 
the specifications in stripped control-expanded versions of the system. Note that 
the selection of the expanded set of variables will typically depend on the formula 
to be verified. In this phase, the full range of techniques for "classical" symbolic 
model checking will come into play. Only after surviving this debugging phase, truly 
symbolic model checking enters the stage. 

Truly symbolic model checking will unfold the CEP in the verification process; 
data loops touched in this unfolding process have to be contracted - using guidance 
on the source-language level by the designer - to a single transition labeled by the 
effect of the loop on the data variables and a condition guaranteeing termination. 
The verification of the purely sequential loop against such a total correctness formula 
is a classical task handled by a dedicated prover component, which will also have to 
handle termination proofs for loops claimed to be terminating by the introduction of 
fairness assumptions during the debugging phase. Given the contraction of loops, the 
techniques described in Section 5 will automatically generate verification conditions 
reducing the correctness of the FO-ACTL formula to be checked to a pure first-order 
formula. 

The scenario described above will be realized on the basis of the FORMAT 
verification tools [9], using symbolic timing diagrams [21] as graphical representations 
of FO-ACTL specifications, within a new industrial project aiming at safety critical 
embedded control applications. 



20 

R e f e r e n c e s  

1. Apt, K.R. Ten years of Hoare's logic: A survey - part I, TOPLAS 3 (1981), 431--483. 
2. Apt, K.R. and Olderog, E.-R. Verification of sequential and concurrent programs, 

Springer, New York (1991). 
3. Bradfield~ J.C. Verifying temporal properties of systems, Birkh~.user, Boston (1992). 
4. Bradfield, J.C. and Stirling, C.P. Verifying temporal properties of processes, CONCUR 

'90, LNCS 458 (1990), 115-125. 
5. Brown,M.C., Clarke, E.M. and Grumberg, O. Characterizing finite Kripke structures 

in propositional temporal logic, TCS 59 (1988), 115-131. 
6. Butch, J.R., Clarke, E.M., McMillan, K.L. and Dill D.L. Sequential circuit verification 

using symbolic model checking DAC '90, 46-51. 
7. Clarke, E.M., Emerson, E.A. and Sistla, A.P. Automatic verification of finite state 

concurrent systems using temporal logics, POPL '83, 117-126. 
8. Clarke, E.M., Grumberg. 0. and Long, D.E. Model checking and abstraction, POPL 

'92, 343-354. 
9. Damm, W., DShmen, G., Helbig, J., Herrmann, R., Josko, B., Kelb, P., Koff, F. and 

SchlSr, R. Correct system level design with VHDL, Tech. Rep., Oldenburg (1994), 54p. 
10. Datum, W., Josko, B. and SchlSr, R. Specification and verification of VHDL-based 

system-level hardware designs, in BSrger (ed.) Specification and Validation Methods, 
Oxford Univ. Press, 331-410 (to appear). 

11. Dingel, J. and Filkorn, T. Model checking for infinite state systems using data ab- 
straction, assumption-commitment style reasoning and theorem proving, CAV '95, to 
appear. 

12. Emerson, E.A. Temporal and modal logic, in: Handbook of Theor. Comp. Sc., B, North 
Holland (1990), 997-1072. 

13. Floyd, R.W. Assigning meanings to programs, Proc. AMS Syrup. Applied Math. 19 
(1967), 19-31. 

14. Graf, S. Verification of a distributed cache memory by using abstractions, CAV '94, 
LNCS 818 (1994), 207-219. 

15. Grumberg, 0. and Long. D.E. Model checking and modular verification, TOPLAS 16 
(1994), 843-871. 

16. Herrmann, R. and Pargmann, H. Compiling VHDL data types into BDDs, EURO- 
VHDL '94, 578-583. 

17. Hojati, R. and Brayton, R.K. Automatic datapath abstraction in hardware systems, 
CAV '95, to appear. 

18. Josko~ B. Verifying the correctness of AADL modules using model checking, in: Stepwise 
refinement of distributed systems: models, formalisms, correctness, LNCS 430 (1990), 
386-400. 

19. Manna~ Z. Beyong model checking, CAV '94, LNCS 818 (1994), 220-221. 
20. Manna, Z. and Pnueli, A. The temporal logics of reactive and concurrent systems. 

Specification. Springer., New York 1992. 
21. SchlSr., R. and Datum, W. Specification and verification of system-level hardware designs 

using timing diagrams, EDAC '93, 518-524. 
22. Stirling, C. and Walker, D. Local model checking in the modal ran-calculus, TAPSOFT 

'89, LNCS 351,369-383. 
23. Wolper, P. Expressing interesting properties of programs in propositional temporal logic, 

POPL '86, 184-193. 


