
What if Model Checking Must Be Truly Symbolic*

Hardi Hungar 1 0 r n a Grumberg 2 Werner Damm a

a OFFIS, Oldenburg
2 The Technion, Halfa
a University Oldenburg

Abstract . There are many methodologies whose main concern is reducing
the complexity of a verification problem to be ultimately able to apply model
checking. Here we propose to use a model-checking like procedure which oper-
ates on a small, truly symbolic description of the model. We do so by exploit-
in.g systematically the separation between the (small) control part and the
(large) data part of systems which often occurs in practice. By expanding the
control part, we get an intermediate description of the system which already
allows our symbolic model checking procedure to produce meaningful results
but which is still small enough to allow model checking to be performed.

1 Introduct ion

This paper is about a close marriage of two well known verification paradigms: that
of model checking and generation of verification conditions. There is no need for
reiterating the success story of model checking in the verification of reactive systems
originating with the seminal paper by Clarke, Emerson and Sistla on CTL model
checking [7]; indeed it is safe to say t h a t t h e combination of (so-called) symbolic
techniques [6], abstraction [8] and compositional reasonifig [15, 18] have rendered
this technology to a state where industrial usage is feasible.

But beyond doubt even those combined approaches are inadequate for a complete
verification of the majority of designs. In particular, applications with large or com-
plicated data parts will escape them. We will bring in the generation of verification
conditions to overcome some of the limitations.

The story of generation of verification conditions dates back to Floyd's seminal
paper [13] from 1967. A large body of research has been conducted over the years
on sequential program verification for increasingly more complex progrannning lan-
guage constructs [1]. More recently, parallel programming languages [2] have also
been extensively investigated. However, the inherent complexity of the task and less
stringent commercial need for formally verified software systems has impeded indus-
trial applications of this technology. A few exceptions mainly come from the area of
secure systems.

The arguments impeding industrial applications of software verification do not
hold if we look at systems closer to the hardware level. For such systems, the incentive
to avoid errors is higher. Moreover, many of them combine data and control in a
way that enables simplifying or even automating large parts of the verification.

* This research has been funded in part by the MWK under No. 210.3 - 70631 - 99 - 14/93.
The views and conclusions contained in this document are those of the authors.

In this paper we will show a method that avoids some of the difficulties with
verification condition generation. We will demonstrate how model-checking tech-
niques may be used to reduce automatically first-order temporal logic specifications
to simpler verification conditions. These conditions concern either purely sequential
behavior of subsystems or first-order data properties. Our procedure is very differ-
ent from what is usually called "symbolic" model checking, which operates on codes
for the state sets of the system. Here, we represent data and data operations by
first-order formulas and substitutions, similar to their respective representations in
the specification logic and the system description language. We called this "truly
symbolic" in contrast to the coding approach of "symbolic" model checking.

The class of applications we aim at include processors where the data path is
simply too wide to be reasonably considered finite state, or embedded control appli-
cations, where conlplex interfacing logic is combined with sometimes nontriviai com-
putations on sampled data (e.g. solving differential equations numerically). These
applications have in common, that there is a clear separation between the handling
of control and data. I.e.:

- The pipelined execution of a RISC instruction is solely determined by the in-
struction type, the pipeline stage, and other state information collected in the
controller, which together constitute the control part of the design; register con-
tents as well as address fields etc. form the data part and are evaluated separately
and do influence control only sparsely.

- In embedded control applications it is the control part which governs the inter-
action between the controller and the controlled system (determining e.g. the
sampling rate, strobes, etc.); whenever sampled data are latched into the con-
troller, it initiates the data part of the computation, causing a possibly complex
but terminating evaluation.

We find the perfect match for our approach when the data part does not affect control
at all. In this case, we show that specifications can be tested by conventional model
checking on the control part of the system. If the test result is negative, not only the
control part of the specification, but also the complete specification involving data
is not satisfied by the system. A positive result, on the other hand, tells that the
control part of the specification is true in the complete system.

Specifications (and systems) which survive this test phase may then be analyzed
more thoroughly. For that, we propose a method that generates first-order verifica-
tion conditions. This phase does not require a Complete separation of control from
data. The restriction on their interdependence is more relaxed. Therefore, this phase
is applicable also to systems for which the test phase is not.

The procedure we apply is based on a first-order extension of local model checking
in the style of [22], using the control information present in the system description to
investigate only those first-order aspects of the model consistent with the required
behavior of its control part. The first-order verification conditions to be generated
appear as success conditions of the model checking procedure. A sufficient criterion
guaranteeing that the generation can be performed completely automatically is that
the control part only allows a bounded number of computations on the data. This
criterion subsumes e.g. Wolper's data independence property [23], which forbids any
computation on data. Sometimes it is even possible to transform a system description

which does not meet our criterion to one which does. A loop which computes on data
may be replaced by a finite (first-order) representation of its effects. This generates
a sequential verification condition which can be treated separately.

Our approach differs from others addressing the verification of first-order temporal
logic specifications mainly by exploiting the above separation between control and
data to achieve a high degree of automation of the verification process. Also, its
scope of application certainly goes beyond what can be done in others.

Approaches based on abstraction like the ones in [8, 14] and, to some extent,
the one in [11] try to reduce the state space to a small resp. finite one, where the
proof engineer is required to find suitable abstractions for program variables. In our
approach, the verifyer!s main involvement is in deciding which variables to consider
as control. Remaining are of course first-order and sequential verification conditions.
But even these may often be discharged automatically, e.g. if each single data loop
can be handled by BDD-techniques after it is extracted from the context of the rest
of the system.

More similar results involving data/control separation can be found in [17] where
another generalization of Wolper's data independence is pursued. Due to the different
system description format used there, separation has a different meaning and thus
the results are complementary to ours. However, [17] does not even at tempt to cope
with data computations, and does not include techniques for first-order verification
condition generation.

Verification techniques in the style of [20] which underly e.g. procedures of the
STEP system [19] are closer to our approach. Indeed, one could certainly integrate a
variant of our generation method as one subprocedure of STEP, suited to deal with

�9 a specific class of problems.

Although our techniques and results are rather independent from the overall frame-
work, we chose one particular for their demonstration.

Our specification logic is FO-ACTL, a first-order version of ACTL (which resem-
bles CTL, but allows only universal path quantifiers). The progrmnming language
might be thought of as being VHDL, stripped to its semantical essence: a flat parallel
composition of sequential processes, which are essentially while-programs extended
by one communication construct inspired from VHDL's wai t statement called step.
A s tep can only be executed jointly by all processes and thus serves as a syn-
chronization barrier; whenever the processes synchronize in a s tep, they exchange
information through typed in- resp. outports. All local computations (between steps)
work only on local vea'iables.

A program is given as a transition system in which the transitions are annotated
by the actions performed between states. Such a program stands for a (possibly
infinite-state) Kripke structure, whose states represent the current position in the
program and the current variable valuation. Halfway to this large Kripke structure,
we have the control-expanded program, where only control valuations are explicitly
coded into the states and operations on the data variables still annotate the transi-
tion symbolically, in the same way as in the original program. This is the structure
on which our verification procedures operate.

The test whether a specification is consistent with control of the system is
performed by stripping the control-expanded program from its data annotations

(e.g. turning branches governed by data dependent predicates into nondetermin.istic
choice). This process may introduce nonterminating loops which, if data were consid-
ered, would always terminate. In the stripped program, these loops get annotated by
fairness constraints ensuring their eventual termination. The validity of a similarly
stripped formula will then be evaluated using standard (i.e. propositional) model
checking. The data/control separation we require in the original program guaran-
tees that this evaluation approximates validity of the specification in the desired
way.

The verification condition generation essentially collects data operations on those
paths through the control-expanded model which justify the specification. Besides
the sufficient criterion mentioned above which guarantees fully automatic verification
condition generation, the procedure works in several other cases as well (which do
not seem to have a nice characterization).

The paper is organized as follows. Having developed the programming language and
its semantics including the control-expanded program and its stripped version in
Section 2, Section 3 defines the logic as well as a stripping operator on formulas,
reducing them to their control aspects. Section 4 develops the theory to provide the
quick test for falsity of an FO-ACTL formula, while the generation of verification
conditions is described in Section 5.

A fully formal development of our method would require numerous definitions
and constructions, which would be impossible to fit into the available space. So we
appeal to the reader's intuition whenever a concept is introduced not rigorously but
informally or by example.

2 S e m a n t i c a l F o u n d a t i o n

This section introduces the programming language and its semantics. We treat a
toy language vaguely similar to VHDL; a~y other parallel programming language
would serve the purpose of this paper. The main novel notion introduced is that of
a control-expanded program, which makes the distinction between data and control
aspects of a program explicit, thus providing the semantic basis of the subsequent
sections.

Programs in our toy language consist of a flat parallel composition PI[[. . . [[P~ of
sequential processes. We retain from VHDL that processes comnmnicate over ports,
which in our toy language almost reduce to read-only variables modelling inports
resp. write-only variables modelling outports. In contrast to variables, updates of
ports are possible only when executing a step-statement discussed below.

Process definitions are of the form

process <process-declarative-part> beg in <sequential-statement> end .

The process declarative part of a process P defines in particular the sets of its
in- resp. outportsIv resp. Op, and Vp of P ' s local variables. We require ports
and variables to be initialized and omit the index P whenever it is understood
from the context. Its body is given by a so-called sequential statement, which is
executed continuously as if enclosed in a do forever loop. We allow, like VHDL,
standard statements such as variable assignments, if-, case-, and while- statements,

and sequential Composition. Given an assignment v:=e, we will call v the si.nk of
the assignment. In our toy language we have collapsed signal assignments and wait
statements from VHDL in the step statement taking the form

s t e p (i n v b . . . , V m ; ou t e l , . . . , e n) .

A step statement is executed iff all processes are willing to do a step; in this case,
P ' s inports Ip = {i l , . . . ,irn} are copied into the local variables v l , . . . ,v,~, while
its outports OR = {ol , . . . ,on} take values determined by expressions e l , . . . ,en.
For simplicity, we assume that "wiring" of ports is given by equality of port names,
hence the collection of all ports are variables shared between all processes, which
are updated only in the disciplined style provided by the step statement; in VHDL
jargon, this restriction would correspond to using only signal assignments with delta
delay. We also require that for each port p there is at most one process assigning a
value to p.

Our laaguage is strongly typed; for the purpose of this paper we simply assume
a collection of types with typical element ~-. Example types are boo l , bit~ in teger ,
rea l , b i t v e c t o r , a r r ay , and enumeration types. At latest at verification time we
assume, that types are classified in two modes, data and control, with the obvious
restriction that the domain Dr of expressions of type ~- is finite whenever r is of mode
control. This classification of types induces a classification of ports and variables.

As a simple example, consider the program from Fig. 1. Depending on the value of
the boolean input op, until the next s t ep the program either computes r e s :=a rg*2
or - by executing a terminating loop - r e s : = a r g ~. A typical choice of modes is to
consider the inport op and the corresponding local variable c to be of mode control.

process small

in oi>: bool := f, arg: nat := 0

out res: nat := 0

var x,y,z: nat := O, c: bool := f

begin
s tep(in c, x; out z);
if c

then z:-- x+x
else y:-- x; z '= 0;

while y>0
do

y:= y-l; z:= z+x

od

end

c/
Z:=X+X

rt~

I I c: =op
L ~x : =arg -,y>O

y:=y-I fy>O
Z : =Z+X

)

Fig. 1. Example program and its flowchart

We use a variant of labeled transition systems as intermediate models for the
semantics of our toy language. As a first step, a program is translated into a flowchart

which represents the flow of control in a graphical format, see again Fig. 1 for an
example. States in the flowchart correspond to positions in t he program. They kre
labeled by r ts , s t ep or none to indicate whether in that position, the program is
willing to engage in a step action, performing a step, or doing neither. To get the
second intermediate model, the values of variables and ports of mode control get
expanded: Their values will then be represented explicitly in the states. This results
in a structure we call the control-expanded program, denoted CEP, see Fig. 2. It is
this control-expanded program on which the verification condition generation will
operate. Removing the transition labels yields the stripped CEP or SCEP, which will
allow the propositional test of specifications. If, instead of removing the transition
labels, we expand all variables, we get the fully expanded program, or FEP. The FEP
is a Kripke structure. Its states include a valuation of all variables and ports, and its
transitions are not labeled any more. This Kripke structure is the reference structure
for defining the satisfaction relation between first-order temporal logic formulas and
processes of our toy language.

For the more formal development, we fix a set of inports I , outports O, and
variables V, and abbreviate V U I U O by Vat.

A labeled symbolic transition system over I, O, V assumes a classification of
each element of Vat as either being expanded (Varczv) or symbolic (Varsymb). It
is an (ordinary) labeled transition system whose state space consists of pairs of so
called control points from a finite set S and valuations of the expanded variables
Varc~p collected in the set P. Its transitions are labeled by an enabling condition on
the symbolic variables and a set of assignments to symbolic variables. We use s (resp.
7) as meta variables for control points (resp. valutations of expanded variables). The
initial value of expanded variables is given by a designated valuation "Y0, while the
initial valuation of symbolic variables is given by a set of initial assignments Aini~.
The initial control point is designated so. The (standard) labeling function of states
L assigns to any control point atoms of our logic in the set {rts, s tep , none}. As-
signments are of the form v:=e s.t. v and all variables occurring in e are symbolic.
All sinks of assignments occuring in one transition label must be mutually distinct.
Moreover we require, that sinks of assignment are local variables, except for transi-
tions originating from control points labeled r ts , where also assignments to outports
are allowed.

Collecting all items into a structure yields an eight-tuple (S, F, L, R, Vare~p,
s0,'70, Aini~) as constituents of a labeled symbolic transition system M. Flowcharts,
CEPs and FEPs are all instances of symbolic labeled tremsition systems. So the
flowchart in Fig. 1 constitutes an example with Var~p = 0 (only that the initial as-
sigmnments"op := r := f , arg := out := x := z := y := 0" have been omit-
ted in the picture). In a CEP, the expanded variables are those of mode control,
while in the FEP, the set Varezp consists of all variables (i.e. it equals Vat and
Varsymb is empty).

We translate processes of our toy language into flowcharts by induction on the struc-
ture of processes. With each statement~ we associate a canonically derived flowchart
with a unique entry- and exit control-point, which are used in the inductive defini-
tion as gluing points. Since the definition is otherwise routine, we only discuss the
semantics of the step statement in detail.

The flowchart of s t e p (i n v l , . . . ,v~,; ou t e l , . . . ,en) has three control points
so, s, se labeled r ts , s t ep , none , respectively. In so the process is willing t6 syn-
chronize with its brother processes. If and only if this happens - as modeled in the
definition of the product of the transition systems described below - it will pass to the
designated control point s representing the passage of the synchronization barrier.
The transition from so to s is labeled by random assignments for all inports, which
guess the value produced by some brother process during this synchronization step,
as well as a collection of assignemts to its outports with the expressions occuring in
the step statement. More forlnally,

tt / i I := ? , irn := ? , Ol := e l , . . . , on := en

labels the transition connecting so and s. The subsequent postlude transition copies
the values received through inports into the local variables specified in the step state-
ment:

t t / v 1 :-- i l v m := im

Compound statements are handled trivially by appropriate gluing and possibly in-
troduction of fresh control points, e.g. using fresh so, s~ in the semantics of

i f b t h e n ~ o e l s e ~ l f i

to relate so with the entry point of zr0 using a transition labeled with b and the entry
point of ~F1 labeled -~b. The exit points of Iri are linked with the new exit point.

The flowchart semantics of process P , FC[P] , is obtained from the flowchart
of its body by relating its exit point with its entry point and adding as set of initial
assigmnents those canonically induced from P ' s process declarative part.

The semantics of programs is given by defining a parallel composition opera:
tor on labeled symbolic t ransi t ion systems capturing VHDL's communication and
synchronization semantics. Since synchronization is only required at steps, all tran-
sitions except for those relating control-points labeled r t s with s t e p control points
can be taken in any order, e.g. in an interleaved fashion. Transitions handling the
step are taken in lock step, replacing random values assigned to inports by those
expressions provided by the processes running in parallel. Due to space restrictions,
we do not discuss this in detail; the reader might refer to [10] for a full definition of
the comparable operator of VHDL.

Let us now turn to the process of expanding a labeled symbolic transition system
M. Fig. 2 shows an expansion of our example flowgraph.

Each symbolic variable v E l'rarsymb can be expanded separately. The expansion
of M w.r.t, v is obtained by essentially substituting each occurrence of v in transition
labels by its vatue now represented in the valuation component of states. The only
situation deserving special attention arises, whenever v occurs as the sink of an
assignment v :-- e in a transition label. In this case, the assignment is deleted
from the transition label. But the query d = e is added to the condition part of
the transition leading to a state where v is evaluated to a value d. Expanding the
variables and ports of mode control in the flowchart FC~P] of a program yields its
control-expanded version, CEP[P]. Expanding all variables gives the fully expanded
program FEP~P].

80

ar ~ =,2

arg:=?
~es:=Z

x:=arg TM

y:=x

I z:=O

y>C

arg:=?
res:=z

84

y:=y-I
Z~=Z+X

88

89

Z:=X+X

Above, the result of expanding the variable c and the port op in the flowgraph from Fig. 1
is shown. This is the CEP belonging to the example program. The picture omits initial
assignments and does not contain unreachable states.

Fig. 2. Example CEP

By abstracting from data annotations, any labeled symbolic transition structure
turns into a classical Kripke structure allowing safe model checking of properties
related only to expanded variables and the synchronization atoms, provided the
expanded structure is finite. The next section shows that this abstraction, called
the stripped transition system, enriched by suitable fairness constraints, may in fact
be a precise abstraction for such formulas under some additional assumptions. The
definition of stripping is trivial: for a labeled symbolic transition system M we simply
delete all transition labels, thus replacing conditional selection by nondeterminism.
We will apply stripping only to the control-expanded program, and will denote the
resulting structure by SCEP[P].

When the program P is understood from the context, the parameter [P] will be
omitted and we will simply write FEP or CEP. And for ease of exposition, we will
assume in the following that all control variables are of type b o o l (instead of an
arbitrary finite type).

3 The Logic

The logic FO-ACTL (first-order ACTL) is a branching-time first-order temporal
logic. It is similar to the propositional temporal logic ACTL (universal CTL) except
that it is defined over first-order atomic formulas. Following Emerson [12], a formula
in the logic is interpreted over a Kripke structure and an interpretation which is
fixed for all states of the Kripke structure.

Similarly to propositional ACTL, FO-ACTL provides only universal path quan-
tifiers. To avoid the invocation of existential path quantifiers via negations, the logic
is given in a positive normal form in which negations are applied only to atomic
formulas. Since only universal path quantifiers are allowed, path quantifiers are left
implicit in the syntax. Thus, r U r represents the ACTL formula A(r U r and
similarly for any other temporal operator.

Def in i t ion 1 F O - A C T L . Let E be a first-order language over some signature and
let Vat be a set of (typed) variables. A formula in our logic is defined inductively as
follows:

1. Every first-order formula of s over Vat is an atomic formula.
2. r ts , s tep, none are atomic formulas.
3. If p is an atomic formula, then -,p is a formula.
4. If r and ~b are formulas and x ~ Vat, then r V r r A r 3x.r Vx.r are formulas.
5. If r and r are formulas, then X r r U r and r W r are formulas.

X is the next operator, and U is the usual until. I.e. r U r requires to eventually
reach a state satisfying r and not violate r before that event. W is weak until and
allows the formula to the left to hold forever.

We use the following abbreviations:

F r 1 6 2 and G r C W f f .

Let Int be an interpretation for s over domains D~ for occurring type T. The
semantics of FO-ACTL formulas is defined with respect to an interpretation Int
and a Kripke structure K. For simplicity we denote T = S • F and omit the empty
set of assignments A~ni~ in K. For t = (s, V), with a slight abuse of notation, we
use L(t) and t(v) instead of L(s) and V(v). A Kripke structure has now the form
K = (T, L, R, Vat, to). A path in a Kripke structure K is a sequence, ~r = w0, wl , . . . ,
such that for every i, (w~, w~+l) E R.

K, Int, t ~ r denotes that the formula r is true in state t of structure K under
interpretation Int. If clear from the context, Int is omitted.

We sometimes want to restrict our attention to]air paths only, based on some
given fairness criterion F that characterizes fair paths. We ltse K, t ~ f r to denote
that r holds at t in K with respect to the fair paths only. In particular, the relation
~ F for the temporal operators X ~ U , a~]d W is defined with respect to every fair
path rather than with respect to every path.

In the sequel, we will only consider specifications that do not contain the next-
time operator. This operator will be used, however, in the tableau construction in
Section 5.

]0

Stripped/ormulas Given a specification written in FO-ACTL, we extract its pr~po-
sitional part by applying the strip operator. The strip operator eliminates all first-
order components of the formula, thus results in a propositional ACTL formula.
Data-dependent parts of the formula are replaced by tt, so the stripped formula will
be more often true.

De f in i t i on2 (S t r i p p e d fo rmula) . Let Vare C_ Vat be a set of boolean (control)
variables and let r be a FO-ACTL formula, strip(C) with respect to Varc is defined
as follows.

1. strip p(ol, . . . , o k)) = p (o l , . . . ,ok); strip((p(o , . . . , ok)))= , 'k)) i f
Vl,. �9 �9 ok E Vare.

2. s t r ip (p(v l , . . . ,ok)) = s t r ip (' ,p (v l , . . . ,ok)) = tt if some variable vi f~ Vare.
3. strip(1) = l; strip(-,l) = -,l for I e {rts, s tep, none}.
4. s t r i p (r v r = strip(C) V strip(C).
5. s tr ip(r A r = strip(C) A strip(C).
6. s tr ip(3x.r = strip(r V strip(r /x]) for x e Yare.
7. s tr ip(Vx.r = strip(C[tt/x]) A strip(r /x]) for z e Vare.
8. strip(3z.~b) = s tr ip(Vz.r = strip(C), for x ~ Varc.
9. s tr ip(r U r = strip(C) U strip(C).

10. strip(r w r = strip(C) w strip(C).

L e m m a 3 . I f r is a F O - A C T L formula then strip(C) with respect to Varc is a
propositional A CTL formvla over Vare.

E x a m p l e : Consider two specifications for th e example in Figure 1, where op is a
Control variable and arg , r e s and x are data variables. L e t r = (F r t s) W (s t epA
-,op), then s t r ip(f1) = r
Consider now the formula r = Vz.G ((s tepAarg = zAop) --+ F (s t epAres = x*2)).
Then, strip(C2) = G ((s tep A tt A op) -+ F (s tep At t)) which is equivalent to
G ((step A op) -+ F step).

4 T h e P r o p o s i t i o n a l V e r i f i c a t i o n M e t h o d o l o g y

In this section, we restrict our concern to programs for which there is a clear separa-
tion between da ta and control. In particular, data cannot influence control variables.
For such programs, their verification with respect to first-order temporal specifica-
tion can take advantage of a preliminary phase in which propositional temporal
specifications are proved for the control part of the program.

More precisely, let a data-dependent condition be a boolean condition that con-
tains (also) da ta variables. A program has the separation property if no control
variable gets assigned a value depending on data, and neither assignments to control
variables nor step statements occur in the scope of a data-dependent condition.

The separation property ensures that data do not directly influence control val-
ues. But there is a more subtle way in which the validity of a temporal formula not
referring to data may be affected: by the termination behavior of data-controlled
loops it might be determined whether observable changes to control might happen

]1

or not. This influence we eliminate by assuming - which at least in a hardware con-
text is not unreasonable - that data-controlled loops always terminate. Formally, the
assumption enters in the form of fairness constraints.

In more detail, the situation is as follows. Let P have the separation property.
Since the transition labels in CEP[P| contain no control variables, stripping the
CEP from its transition labels eliminates data-dependent conditions only. But the
separation property implies that also no control variable changes its value along a
transition if the condition labeling it is different from tt. Thus, the stripping does
not introduce changes of control which did not happen before. And if the stripping
results in an infinite loop that did not occur before, then this must be a data loop
in which only data variables may change their value. For all these loops, we assume
termination and check the stripped formula in the stripped CEP based on this
assumption (To complete the verification, we must of course later show that in the
fully expanded Kripke structure FEP[P] all data loops are indeed terminating). As
a result, control properties are not affected by stripping the CEP.

For the verification of formulas which also depend on data, we can infer the
following. If the check of the stripped formula in SCEP[P] (the stripped CEP)
returns tt, then we can conclude that the stripped formula is true of FEP[P]. But if
the check returns i f , then we know that the original formula is false in FEP[P[. As
mentioned before, we consider the latter as a significant contribution that enables
model checking together with termination proofs to debug any first-order temporal
specification.

Our methodology is summarized in the following theorem, where F denotes ter-
mination of all data loops. We refer to the well-known notion of a generalized Kripke
structure [12] to explain the meaning of validity of a temporal logic formula under
fairness assumptions.

T h e o r e m 4 . / f FEB[P[~ F then

1. SCEB[P] ~p strip(C) ~ FEB[P[~ strip(C), and
2. SCEP[P] ~F strip(C) ==t, FEB[P[~ r

The proof of the theorem could not be included in this paper due to space
limitations. The main technical result in the proof states that~ if all data loops
terminate, then SCEP[P] aaad FEP[P] are fair stuttering bisimilar and therefore
agree on all propositional ACTL formulas (with no next-time operator).

E x a m p l e : Consider again the example of Figure 1. Once we verify that the
while loop always terminates, we can use SCEP[P] to verify propositional ACTL
formulas and to refute FO-ACTL formulas. SCEP[P[is obtained from the CEP of
Fig. 2 by eliminating all transition labels.

For instance, since SCEB[P] satisfies r = (F r t s) W (s tep A -~op) under loop
termination a.ssumption, we can conclude that this formula is true also in FEP[P]
(recall that strip(C1) = r
Consider the FO-ACTL formula r = Vx.G ((s tepAarg = xAop) --+ F (s t e p A r e s =
x * 2)). Since the formula strip(C2) = G ((s tep A op) -+ F s tep) is true of SCEB[P]
we can conclude that strip(C2) is true also in FEP[P]. Note that we cannot conclude
that r is true in FEP[P]. For that we must use the method developed in Section
5.

12

Consider also the FO-ACTL formula r = G F (step A -~op A y = 0 A z = arg 2).
Then strip(Ca) = G F (step A -~op A tt). Recall that our formulas have an implicit
universal path quantifier accompanied with any temporal operator. Thus, strip(C3)
means that for every path, (step A -~op) is true for infinitely many states on that
path. This does not hold, for instance, on the path so, s6, sT, ss, sl0, sT,.., in Fig. 2.
Hence, strip(C3) is false in SCEP[P] and as a result we can conclude that r is false
in FEP[P].

5 v e r i f i c a t i o n C o n d i t i o n G e n e r a t i o n

To handle specifications including data, we propose to verify the temporal aspects
relative to first-order verification conditions. As we did before, we start by expand-
ing control variables to get the CEP. The key idea then is to use an approach close
to what is usually called local model checking. Local model checldng searches for a
sufficient reason for the specification to be satisfied. It has the advantage over iter-
ative model checking that it may turn out that some parts of the program behavior
are irrelevant to the specification considered. Here, it may be the case that control
information alone can tell that a loop, which can not be handled in general, does not
affect validity of the specification. In suda and further cases, local model checking
will be successful without expanding every data domain. This is essential if some of
the data domains are infinite or too large or complex to be completely expanded.

The presentation in this section remains on a rather informal level. The reason
is that the subject is a rather complicated one. It concerns a nontrivial algortihm,
its correctness and termination properties. To help the reader, the section consists
of several parts, each containing a result stating the main achievement of the part.
To get an overview, it should be sufficient to read the titles and the stated results.
By this, the purpose of the various introduced concepts will become clear, and their
definitions - which in most cases are not formal - will be easier to comprehend.

A t ab l eau s y s t e m for F O - A C T L Local model checking consists in constructing
a tableau proving the validity of the formula in question for the start state - or, in
the negative case showing the nonexistence of such a tableau. A tableau is essentially
a proof tree. Ignoring data for the moment, the root of the tableau is the sequent
so l- r where so is the initial state of the system and r is the formula in question.
The successors of each node must provide sufficient reason for the validity of that
node. Rules are available for each form of node which fix possible successor sets. If
the expansion of a tableau is stopped at some point, a success criterion tells whether
the tableau constitutes a complete proof for the sequent at its root.

Our tableau system serves as the basic formalism to derive first-order temporal
properties involving data, by providing a well-defined method to generate pure first-
order conditions from the system and a specification. Below we present our rules
for tableaux constmmtion. They differ in two respects from the usual rules for CTL.
One is notational: Usually, the different possibilities for proving a sequent (i.e. the
different possibilities for successor sets of one vertex) are given in different rules
which could be applied alternatively. Our fornlat comprises them in one schema, the
alternatives being separated by "] ". Elements in one successor set are separated

13

by " , ". But the rules also reflect tha t we deal with a first-order model: The ~state
component of a sequent consists of a control state (an element of S) and a condition
on a variable valuation, given in the form of a first-order formula.

O r R u l e A n d R u l e

s ,p ~- r 1 6 2 s ,p ~- r 1 6 2

s,p ~- r s,p ~- r s ,p t- r s,p ~- r

E x i s t s R u l e Fora l l R u l e

s ,p F- 3 z . r s ,p ~- Vz.r
, y r]~ee(p)

s,p ~ r s,p ~ r
, y r fr~e(p)

U n t i l R u l e U n l e s s R u l e

s ,p i- r 1 6 2 s ,p I-- r 1 6 2

s,p ~ C V (r 1 6 2 1 6 2 s,p e C V (r 1 6 2 1 6 2

N e x t R u l e

s ,p ~- X r
, s I { s l , . . . , sn}

s l ,px F" r , . . . , sn,p,~ }- r

where p A ci -+ subst(pi, Ai) for s e~/_~ si, i = 1 , . . . ,n .

C a s e Spl i t R u l e

s ,p F- r
P -+ Pl V P2

s, p l t- r s,p2 ~- r

subst(pi, Ai) in the rule dealing with " X " means the parallel substitution of e for v in
Pi for each assignment v := e E A~. The rules above are chosen to be as simple rules
as possible. For convenient application, usually several of them would be combined.
For instance, a more useful rule to deal with "V" like

s ,p ~ r 1 6 2

s, p l F r p2 ~" r
, p -+ p l V p2

is derived from our rule set by combining the Case Split and the Or Rule.
The reader may have noted that 3 and V as well as U and W are treated in the

same way by the rules. The difference between the operators is captured by (global)
success conditions, see below.

A tableau is a finite tree of sequents s~p F r where the set of successors of each
internal node are instances of one of the alternative successor sets according to the

14

rules. The nodes on the pa th from the root of the tableau to a given node are called
its predecessors.

To each tableau we associate a first-order formula which specifies whether the
tableau is successful. This success formula is computed bot tom-up. The success
formulas of leaves are as follows.

- P -~ ViPl for leaves s,p ~- r 1 6 2 where pi, i = 1 , . . . , n are the first-order
conditions in predecessors of the form s,p' ~" r W r

- p ~ rs for leaves s,p F- r with a first-order formula r (see below for the compu-
ta t ion of rs), and

- p -~ ff fo r other leaves s,p ~- r

For a first-order formula r and a state s, replace the a toms r t s and s t e p as well as
control variables in r by their t ru th values in the state s to obtain the formula rs.

At inner nodes, the success formula is computed by conjuncting the success
formulas of the subtableanx following it. I f case split is applied, the appropriate
implication is added. At quantifier steps, the respective quantifier is applied.

A tableau is successful in a da ta domain, if its success formula is valid in the
domain. A sequent is provable if it has a successful tableau. A formula r is provable
if so, tt b r is a provable sequent.

T h e o r e m 5 (S o u n d n e s s) . The tableau system is sound. I.e., if a sequent s,p b r
is provable, then all copies of s in the full model where the data variable valuation
satisfies p have property r If a formula is provable, it is valid in the system.

The tableau system does not provide us with a decision method, though. One reason
is tha t of course the validity of success formulas can not be decided in general.
Another one concerns the t reatment of the U operator. To achieve a stronger form
of completeness than1 we do, we would have to allow a successful recurrence of U -
formulas in the style of the recurrence condition for minimal fixpoints of [4, 3]. This,
however, would introduce a new dimension of undecidability, because successful U -
recurrence would have to involve a well-foundedness condition. We do not strive for
completeness in general, though. We do achieve completeness and even decidability
relative to first-order questions for a certain class of interesting cases, as indicated
by the results below.

T h e c o n s t r u c t i o n o f a gene r i c t a b l e a u Roughly spoken, systematic tableau
construct ion will provide a proof or a refutation (up to first-order verification condi-
tions) ff all "nontrivial cycles" are "broken by control". This is a property of system
and formula combined. A "nontrivial cycle" occurs when a data-variable value at
one position in the program may result by applying a function other than identity
to the value the same variable had at tha t same location at an earlier stage of the
execution of a program. 4 Such cycles may cause unbounded expansion of the tableau
during construction. A cycle like that one is "broken by control", if one can tell from
control information that there is a bound on the number of iterations through this

4 More general: the value need not be computed from the previous value alone, but also
other variables might influence the result.

15

cycle which are necessary to decide the validity of the formula. As an extreme case,
the path through the program which introduces the cyclic dependency migKt not
be executable at all without violating an essential control condition in the formula,
giving zero as a bound.

A formalization of this informal concept will take several steps. First of these
is the construction of a generic tableau wlfich comprises in some sense all tableaux
which can be constructed for a given formula r It represents, essentially, the control
part of each first-order tableau. Thus, it can later be used to detect cycles broken by
control. The rules for the generic tableau are derived from the above rules essentially
by removing all first-order aspects.

s t- r 1 6 2 s t- r 1 6 2 s t- 3 / V z . r

s ~ - r 1 6 2 s~- r 1 6 2 s ~ - r
, z ~

s F 3z.r s ~- Vx.r
, z ~ V r , z E V r

~ r I s F r s e r s ~ r

s ~ C U / W r s ~ x r
, , > { ~ I , . . . , ~ }

~ V r e r ~ x (r 1 6 2 ~1 ~ r sn ~ r

With these rules, we construct the generic tableau for a given CEP and a temporal
formula by the following deterministic procedure. Starting with so I- r the appro-
priate rule gets applied. But different from the first-order tableau, no choice is made
between alternative successors. Instead, all alternatives are pursued. The expansion
of the generic tableau stops if the temporal formula is reduced to a pure first-order
formula (first-order leaf) or if a node recurs, i.e. at a node which has a predecessor
labeled by the same sequent (recurring leaf resp. recurrence node). Since there is a
finite number of states and subformulas, the process is bound to terminate.

Next, irrelevant branches are removed. This starts at non-recurring leaves. X -
leaves can be replaced by s ~" tt. Also, some of the first-order leaves s ~- p can be
evaluated. To do this, first the formula Ps is constructed. Then, the control infor-
mation present in Ps is used to determine whether by propositional reasoning and
trivial first-order identities like (3x.ff) ~ f f the formula can be reduced to tt or if.

Then, tt and f f are propagated upwards in the tableau. A successor set gets
replaced by ff (resp. tt) if one (resp. all) of its components becomes f f (resp. tt). If
one of the alternative successor sets of a node becomes tt, the node itself is replaced
by tt, and if all alternatives become if, it is replaced by ft. The resulting, reduced
structure is called the generic tableau for r

O b s e r v a t i o n 6 For every system and formula, there is one (unique) generic tableau.

Let us return to our example program from Fig. 1, aud take r = (F r t s) W (s tepA
-~op) as a specification. Fig. 3 shows the first steps of the construction of the generic
tableau (indicating the evaluation of first-order leaves in boxes) aald the final re-
sult, after removing irrelevant branches. The generic tableau contains one pair of

16

a recurring leaf and recurrence node. These are marked with " ." . Note tha t other
recurrences (e.g. of sequences involving F r t s) occurring during its construction have
been eliminated by the reduction process.

so I- (F rts) W (step A -~op)

so b F rts
so f- rts

N
so F- X F rts

so F- X ((F rts) W (step A -~op)) [so F- s tep A op = f
:

so b (F rts) W (s t e p A -op)

s0 t- tt , s o F ' X r [* o F ' f f

*6 F- t t , s6 F- X r] s6 F- f f

t t S7 }- r

s7 F- tt , s7 F - X r [s , t - f f
s8 t- r

ss ~-tt , s8 F" X r I s s t - / f

s 9 ~ - r , s10~- r

s9 F- tt slo F t t , slo ~ X r I Slo b f f

* s7 ~ r

Fig. 3. Constructing the generic tableau

If the program has t h e separation property, the construct ion of the g e n e r i c
tableau can profit from the results of the test computa t ion according to Theorem 4.
They enable early detection of irrelevant or always successful branches.

I n s t a n c e s o f t h e g e n e r i c t a b l e a u The relevance of the generic tableau construc-
tion relies on the fact that every successful tableau can be put in a form that it is
an instance of the generic one. Instances are built by adding first-order formulas to
the s tate components of sequents and perhaps by unfolding the generic tableau at
its recurring leaves.

To be more precise, a first-order tableau T with root s , p I-- r is an instance of a
subtableau (to get an inductive condition) of the generic tableau start ing at node n
if:

- n has the form s ~ r and
- if n is not a leaf, the rule applied to n is matched by all appropriate rule com-

bination in T, and subtableaux start ing at end nodes of the rule combination
are instances of the corresponding end nodes of the generic rule ("Matching"
requires choosing among the alternatives present in the generic tableau, and we
allow the matching combination to contain applications of Case Split). And

- if n is a recurring leaf and T is not a leaf itself, it is an instance of the subtableau
star t ing at the recurrence node. And

17

- if n = s ~- tt where this is the result of a reduction, T is an instance of the
subtableau reduced to n.

The restrictions imposed on a tableau to be an instance of the generic tableau are
rather modest. They require complete case distinction for control values, and that
branches which are always successful (and have been reduced to tt in the generic
tableau construction) have to be chosen whenever such are available. So we have:

Obse rva t ion 7 I f a formula is provable at all, it i.s also proved by an instance of
its generic tableau.

In s t an t i a t i ng the generic t ab leau Now we give a procedure which tries sys-
tematically to construct an instance of the generic tableau. It will not terminate
in general. The procedure operates on the generic tableau. If it terminates, it com-
putes a first-order formula, called instantiating formula, for each node of the generic
tableau. These fornmlas can subsequently be used to generate an instance.

First-order leaves s }- p are instantiated with ps. Recurring U-leaves are ini-
tialized with ff and recurring W -leaves with tt. For inner nodes, the instantiating
formulas are computed from those for their successor nodes. Disjunction is used
for V, conjunction for A, existential quantification for 3, and universal quantifica-
tion for V. For a X-node with successor formulas P l , . . . ,Pn, the conjunction over
cl --> subst(pi, Ai) is taken. Inner U - and W -nodes get instantiated with their suc-
cessor formulas. But if such a node is a recurrence node, the process of computing
the instantiating formula is iterated after instarltiating the corresponding recurring
leaves with the fornmla computed for the recurrence node. The iteration stops if
a fixpoint is reached for a recurrence node. Propositional and control reasoning is
applied to detect a fixpoint.

Although this process does not literally generate an instance of the generic
tableau, it performs all necessary computations. Due to lack of space we can not
show the formal construction of the instance. One point to note is that the itera-
tion steps at U -nodes during the computation process correspond to unfoldings in
the construction. Most importantly, we can prove that the result of a terminating
instantiation provides us with a first-order characterization of the correctness of the
program.

T h e o r e m 8. I f the instantiation process terminates for a specification r the success
formula of the generated instance characterizes validity ore . Le. the success formula
is valid in a data domain iff under this interpretation the specification r is valid (for
the system).

In our example in Fig. 3, data do not matter at all. A successful tableau can
be derived directly from the generic tableau. One only has to restore branches
which have been reduced to the form s }- tt. As an example for a nontrivial,
but still terminating instantiation process the reader may consider the specifica-
tion Vx.G ((step A arg = x A op = t) -r F (step A r e s = x * 2)). We have to leave
the development of this example to the reader.

The formulas computed for recurrence nodes form chains of monotonically weaker
(U) resp. stronger (W) approximations of the strongest resp. weakest fixpoint

]8

formula. For infinite data domains, this process need not come to an end, or the
end, if reached, need not be detected. Below we will formalize the no~ion of "cycles
broken by control ~ by a criterion sufficient for the termination of the instantiation.

Termination of the ins tan t i a t ion The termination criterion is based on an an-
notation of the generic tableau with variable sets. Basically, one just takes the sets of
free variables of the instantiating formulas which would be computed by the process
sketched above. But it is not necessary to compute the formulas themselves. Instead,
one can operate on the finite domain of sets of variables involved (namely, the data
variables of the program and the bound variables of the formula) where termination
is guaranteed.

The case of next nodes may serve as an example of how these sets are computed.
If x annotates the ith successor node of a next node in the CEP, and x :-- e E Ai,
all variables in e annotate the next node. Additionally we take the variables from ci.

On the completed annotation sets, we draw edges indicating for each variable
which other annotations caused its introduction. E.g. if x annotates the ith successor
node of a next node, aald e gets assigned to x along the edge, all variables in e have an
edge pointing to x. Edges always go from inner node annotations to their successor
annotations and from recurring leaves to recurrence nodes. Edges originating at
next nodes which arise from some x := e where e contains a function application get
marked. Let us call the generic tableau cycle-free if there is no cycle in the resulting
graph containing a marked edge.

T h e o r e m 9. The instantiation of the generic tableau of a formula terminates if the
tableau is cycle.free.

Critical points for termination of the instaaltiation are the fixpoint computations
at recurrence nodes. During a fixpint computation, only substitutions and boolean
operations are applied. If the generic tableau is cycle-free, only a finite number of
terms will occur in those computations. Since only finitely many propositionally
nonequivalent formulas can be constructed with finitely many terms, fixpoints will
be reached and detected.

The condition on the annotations of the generic tableau can be viewed as de-
scribing a set of specifications having a filfite reason in every data domain. It gives
rise to a proof procedure which subsumes properly everything which can be gained
by data independence reasoning [23]. A program is said to be data independent if,
intuitively, its behavior does not depend on the identity of input values (changes to
input values lead to similar changes of output values).

Any program which meets appropriate syntactic criteria on its data ports s will
have only cycle-free generic tableaux, regardless of the formula. On the other hand,
there are programs with cycle-free tableaux which perform a control-bounded num-
ber of computations and also tests on their data and which are thus not data inde-
pendent.

This becomes clear if we draw a value flow graph of the CEP, similar to the
graph on the annotations of the generic tableau. I.e. we annotate each state with

These are: No computations on data variables, no tests depending on them.

19

the full set of data variables and draw edges and marked edges between variables
annotating successive nodes according to the value flow. Transferring the notion of
cycle-freeness to value flow graphs, we get a class of programs which will have only
cycle-free tableaux.

P r o p o s i t i o n 10. If the value flow graph of a program is cycle-free, then each generic
tableau built on its CEP is cycle-free.

The proposition is implied by the observation that cycles in the generic tableau come
from cycles in the CEP. This criterion is not necessary, but close to. It should be
kept in mind, though, that the automatic instantiation process works in far more
cases than just for programs having cycle-free value flow graphs. To decide specific
properties, it is not necessary that each generic tableau is cycle-free.

E l ab o ra t i ons of the m e t h o d The basic proof procedure described above, which
is already quite powerful and has the advantage of being completely automatic, can
be improved in several ways. For instance, it may be adapted to make use of the
first-order theory of the data domain. Also, the user might be allowed to propose
invariants or other guidance.

6 C o n c l u s i o n

We envision the techniques described in this paper to be integrated into current
design verification environments, providing interfaces to standard design languages.
Given a system in one of those languages, the designer would provide formal specifi-
cations in FO-ACTL. Based on design knowledge and the properties to be checked,
the designer would then debug the system by model checking stripped versions of
the specifications in stripped control-expanded versions of the system. Note that
the selection of the expanded set of variables will typically depend on the formula
to be verified. In this phase, the full range of techniques for "classical" symbolic
model checking will come into play. Only after surviving this debugging phase, truly
symbolic model checking enters the stage.

Truly symbolic model checking will unfold the CEP in the verification process;
data loops touched in this unfolding process have to be contracted - using guidance
on the source-language level by the designer - to a single transition labeled by the
effect of the loop on the data variables and a condition guaranteeing termination.
The verification of the purely sequential loop against such a total correctness formula
is a classical task handled by a dedicated prover component, which will also have to
handle termination proofs for loops claimed to be terminating by the introduction of
fairness assumptions during the debugging phase. Given the contraction of loops, the
techniques described in Section 5 will automatically generate verification conditions
reducing the correctness of the FO-ACTL formula to be checked to a pure first-order
formula.

The scenario described above will be realized on the basis of the FORMAT
verification tools [9], using symbolic timing diagrams [21] as graphical representations
of FO-ACTL specifications, within a new industrial project aiming at safety critical
embedded control applications.

20

R e f e r e n c e s

1. Apt, K.R. Ten years of Hoare's logic: A survey - part I, TOPLAS 3 (1981), 431--483.
2. Apt, K.R. and Olderog, E.-R. Verification of sequential and concurrent programs,

Springer, New York (1991).
3. Bradfield~ J.C. Verifying temporal properties of systems, Birkh~.user, Boston (1992).
4. Bradfield, J.C. and Stirling, C.P. Verifying temporal properties of processes, CONCUR

'90, LNCS 458 (1990), 115-125.
5. Brown,M.C., Clarke, E.M. and Grumberg, O. Characterizing finite Kripke structures

in propositional temporal logic, TCS 59 (1988), 115-131.
6. Butch, J.R., Clarke, E.M., McMillan, K.L. and Dill D.L. Sequential circuit verification

using symbolic model checking DAC '90, 46-51.
7. Clarke, E.M., Emerson, E.A. and Sistla, A.P. Automatic verification of finite state

concurrent systems using temporal logics, POPL '83, 117-126.
8. Clarke, E.M., Grumberg. 0. and Long, D.E. Model checking and abstraction, POPL

'92, 343-354.
9. Damm, W., DShmen, G., Helbig, J., Herrmann, R., Josko, B., Kelb, P., Koff, F. and

SchlSr, R. Correct system level design with VHDL, Tech. Rep., Oldenburg (1994), 54p.
10. Datum, W., Josko, B. and SchlSr, R. Specification and verification of VHDL-based

system-level hardware designs, in BSrger (ed.) Specification and Validation Methods,
Oxford Univ. Press, 331-410 (to appear).

11. Dingel, J. and Filkorn, T. Model checking for infinite state systems using data ab-
straction, assumption-commitment style reasoning and theorem proving, CAV '95, to
appear.

12. Emerson, E.A. Temporal and modal logic, in: Handbook of Theor. Comp. Sc., B, North
Holland (1990), 997-1072.

13. Floyd, R.W. Assigning meanings to programs, Proc. AMS Syrup. Applied Math. 19
(1967), 19-31.

14. Graf, S. Verification of a distributed cache memory by using abstractions, CAV '94,
LNCS 818 (1994), 207-219.

15. Grumberg, 0. and Long. D.E. Model checking and modular verification, TOPLAS 16
(1994), 843-871.

16. Herrmann, R. and Pargmann, H. Compiling VHDL data types into BDDs, EURO-
VHDL '94, 578-583.

17. Hojati, R. and Brayton, R.K. Automatic datapath abstraction in hardware systems,
CAV '95, to appear.

18. Josko~ B. Verifying the correctness of AADL modules using model checking, in: Stepwise
refinement of distributed systems: models, formalisms, correctness, LNCS 430 (1990),
386-400.

19. Manna~ Z. Beyong model checking, CAV '94, LNCS 818 (1994), 220-221.
20. Manna, Z. and Pnueli, A. The temporal logics of reactive and concurrent systems.

Specification. Springer., New York 1992.
21. SchlSr., R. and Datum, W. Specification and verification of system-level hardware designs

using timing diagrams, EDAC '93, 518-524.
22. Stirling, C. and Walker, D. Local model checking in the modal ran-calculus, TAPSOFT

'89, LNCS 351,369-383.
23. Wolper, P. Expressing interesting properties of programs in propositional temporal logic,

POPL '86, 184-193.

