Skip to main content

Representational structures for cognitive space: Trees, ordered trees and semi-lattices

  • Conference paper
  • First Online:
Spatial Information Theory A Theoretical Basis for GIS (COSIT 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 988))

Included in the following conference series:

Abstract

During the past twenty years, numerous researchers and papers have discussed inclusion of a hierarchical component to the cognitive representation of spatial knowledge. However, such discussion has occurred without serious consideration of alternative representations. This paper examines the nature of hierarchical representation for spatial representations, in detail, and considers several alternative representational schemes, including ordered trees and semi-lattices. In addition, differences between these representations are demonstrated by mapping two sample datasets onto a variety of representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1974). The design and analysis of computer programs. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Alexander (1965). A city is not a tree. Design, 46–55.

    Google Scholar 

  • Ballard, D. H. (1981). Strip trees: A hierarchical representation for curves. ACM Communications, 24 (5), 310–321.

    Google Scholar 

  • Barthelemy, J. P., Leclerc, B., & Monjardet, B. (1986). On the use of ordered sets in problems and consensus of classification. Journal of Classification, 3, 187–224.

    Google Scholar 

  • Carroll, J. D., & Corter, J. E. (1995). A graph-theoretic method for organizing overlapping clusters into trees, multiple trees, or extended trees. Journal of Classification, in press.

    Google Scholar 

  • Carroll, J. D., & Pruzansky, S. (1980). Discrete and hybrid scaling models. In Feger, E. D. L. &. Feger, H. (Eds.), Similarity and Choice, Bern: Hans Huber.

    Google Scholar 

  • Car, A., & Frank, A. (1994). Modeling of the hierarchy of space applied to large road networks. Paper presented at IGIS'94, Monte Verita, Ascona, Switzerland.

    Google Scholar 

  • Couclelis, H., Golledge, R. G., Gale, N., & Tobler, W. (1987). Exploring the anchor-point hypothesis of spatial cognition. Journal of Environmental Psychology, 7, 99–122.

    Google Scholar 

  • Diday, E. (1986). Orders and overlapping clusters in pyramids. In de Leeuw, J., Heiser, W., Meulman, J., & Critchley, F. (Eds.), Multidimensional data analysis (pp. 201–234). Leiden: DSWO Press.

    Google Scholar 

  • Fotheringham, A. S. (1983). A new set of spatial interaction models: The theory of competing destinations. Environment and Planning A, 15, 15–36.

    Google Scholar 

  • Fotheringham, A. S., & Curtis, A. (1992). Encoding spatial information: The evidence for hierarchical processing. In Frank, A. U., Campari, I., & Formentini, U. (Eds.), Theories and methods of spatiotemporal reasoning in geographic space Lecture Notes in Computer Science, 639 (pp. 269–287). Berlin: Springer-Verlag.

    Google Scholar 

  • Frank, A. U., & Timpf, S. (1994). Multiple representations for cartographic objects in a multi-scale tree — An intelligent graphical zoom. Computers & Graphics, 18, 823–829.

    Google Scholar 

  • Golledge, R. G. (1992). Place recognition and wayfinding: Making sense of space. Geoforum, 23, 199–214.

    Google Scholar 

  • Hernández, D. (1994). Qualitative representation of spatial knowledge. Lecture Notes in Artificial Intelligence, 804. Berlin: Springer-Verlag.

    Google Scholar 

  • Hirtle, S. C., & Heidorn, P. B. (1993). The structure of cognitive maps: Representations and processes. In Gärling, T., & Golledge, R. G. (Eds.), Behavior and environment: Psychological and geographical approaches (pp. 170–192). Amsterdam: North-Holland.

    Google Scholar 

  • Hirtle, S. C., & Jonides, J. (1985). Evidence of hierarchies in cognitive maps. Memory and Cognition, 3, 208–217.

    Google Scholar 

  • Holyoak, K. J., & Mah, W. A. (1982). Cognitive reference points in judgments of symbolic magnitude. Cognitive Psychology, 14, 328–352.

    Google Scholar 

  • Kosslyn, S. M., Ball, T. M., Reiser, B. J. (1978). Visual images preserve metric spatial information: Evidence from studies of image scanning. Journal of Experimental Psychology: Human Perception and Performance, 40, 47–60.

    Google Scholar 

  • Kuipers, B. J., & Levitt, T. S. (1988). Navigation and mapping in large-scale space. AI Magazine, 9(2), 25–43.

    Google Scholar 

  • McNamara, T. (1992). Spatial representation. Geoforum, 2, 139–150.

    Google Scholar 

  • McNamara, T. P., Hardy, J. K., & Hirtle, S. C. (1989). Subjective hierarchies in spatial memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 211–227.

    Google Scholar 

  • Medyckyj-Scott, D. J., & Blades, M. (1992). Human spatial cognition. Geoforum, 2, 215–226.

    Google Scholar 

  • Poucet, B. (1993). Spatial cognitive maps in animals: New hypotheses on their structure and neural mechanisms. Psychological Review, 100, 163–182.

    Google Scholar 

  • Reitman, J. S., & Rueter, H. R. (1980). Organization revealed by recall orders and confirmed by pauses. Cognitive Psychology, 12, 554–581.

    Google Scholar 

  • Sadalla, E. K., Burroughs, W. J., & Staplin, L. J. (1980). Reference points in spatial cognition. Journal of Experimental Psychology: Human Learning and Memory, 5, 516–528.

    Google Scholar 

  • Samet, H. (1989). The design and analysis of spatial data structures. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Sattath, S., & Tversky, A. (1977). Additive similarity trees. Psychometrika, 42, 319–345.

    Google Scholar 

  • Schvaneveldt, R. W. (Ed.). (1990). Pathfinder associative networks: Studies in knowledge organization. Norwood, NJ: Ablex.

    Google Scholar 

  • Shepard, R. N. (1978). The mental image. American Psychologist, 33, 125–137.

    Google Scholar 

  • Shepard, R. N., & Arabie, P. (1979). Additive clustering: Representation of similarities as combinations of discrete overlapping properties. Psychological Review, 86, 87–123.

    Google Scholar 

  • Stevens, A., & Coupe, P. (1978). Distortions in judged spatial relations. Cognitive Psychology, 10, 422–437.

    Google Scholar 

  • Timpf, S., Volta, G. S., Pollock, D. W., & Egenhofer, M. J. (1992). A conceptual model of wayfinding using multiple levels of abstraction. In Frank, A. U., Campari, I., & Formentini, U. (Eds.), Theories and methods of spatio-temporal reasoning in geographic space Lecture Notes in Computer Science, 639 (pp. 348–367). Berlin: Springer-Verlag.

    Google Scholar 

  • Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55, 189–208.

    Google Scholar 

  • Tversky, B. (1981). Distortions in memory for maps. Cognitive Psychology, 13, 407–433.

    Google Scholar 

  • Tversky, B. (1991). Distortions in memory for visual displays. In Ellis, S. R., Kaiser, M. K., & Grunwald, A. (Eds.), Pictorial communication in virtual and real environments (pp. 61–75). London: Taylor and Francis.

    Google Scholar 

  • Van Cutsem, B. (Ed.). (1994). Classification and dissimilarity analysis, Lecture Notes in Statistics, No. 93. New York: Springer-Verlag.

    Google Scholar 

  • Yoshino, R. (1991). A note on cognitive maps: An optimal spatial knowledge representation. Journal of Mathematical Psychology, 35, 371–393.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andrew U. Frank Werner Kuhn

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hirtle, S.C. (1995). Representational structures for cognitive space: Trees, ordered trees and semi-lattices. In: Frank, A.U., Kuhn, W. (eds) Spatial Information Theory A Theoretical Basis for GIS. COSIT 1995. Lecture Notes in Computer Science, vol 988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60392-1_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-60392-1_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60392-4

  • Online ISBN: 978-3-540-45519-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics