Skip to main content

Constraint categorial grammars

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 1995)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 990))

Included in the following conference series:

  • 124 Accesses

Abstract

Although unification can be used to implement a weak form of β-reduction, several linguistic phenomena are better handled by using some form of λ-calculus. In this paper we present a higher order feature description calculus based on a typed λ-calculus. We show how the techniques used in \(\mathcal{C}\mathcal{L}\mathcal{G}\)for resolving complex feature constraints can be efficiently extended. \(\mathcal{C}\mathcal{C}\mathcal{L}\mathcal{G}\)is a simple formalism, based on categorial grammars, designed to test the practical feasibility of such a calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gosse Bouma and Gertjan van Noord. Constraint-based categorial grammars. In Proceedings of the 15th International Conference on Computational Linguistics and the 22nd Annual Meeting of the Association for Computational Linguistics (COLING), 1994.

    Google Scholar 

  2. Luís Damas, Nelma Moreira, and Giovanni B. Varile. The formal and computational theory of complex constraint solution. In C. Rupp, M. A. Rosner, and R. L. Johnson, editors, Constraints, Language, and Computation, Computation In Cognitive Science, pages 149–166. Academic Press, London, 1994.

    Google Scholar 

  3. Mary Dalrymple, Stuart M. Shieber, and Fernando C. N. Pereira. Ellipsis and higher-order unification. Linguistics and Philosophy, 14:399–452, 1991.

    Article  Google Scholar 

  4. Luís Damas and Giovanni B. Varile. On the satisfiability of complex constraints. In Proceedings of the 14th International Conference on Computational Linguistics (COLING), Nantes, France, 1992.

    Google Scholar 

  5. Mark Hepple. Chart parsing lambek grammars. In Proceedings of the 14th International Conference on Computational Linguistics (COLING), pages 134–140, Nantes,France, 1992.

    Google Scholar 

  6. Esther Konig. A hypothetical reasoning algorithm for linguistic analysis. Journal of Logic and Computation, 1994. to appear.

    Google Scholar 

  7. Joachim Lambek. The mathematics of sentence structure. American Mathematical Monthly, 65, 1958. Reprinted in: Buszkowski, W., W. Marciszewski, and J. van Benthem (eds): Categorial Grammar. Amsterdam, 1988.

    Google Scholar 

  8. Michael J. Maher. Complete axiomatizations of the algebras of finite, rational and infinite trees. Technical report, IBM Thomas J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, U.S.A., 1988.

    Google Scholar 

  9. Michael Moortgat. Categorial Investigations: Logical and Linguistic Aspects of Lambek Calculus. Foris, Dordrecht, 1988.

    Google Scholar 

  10. Glyn Morrill. Type Logical Grammar:Categorial Logic of Signs. Kluwer Academic Publishers, Dordrecht, 1994.

    Google Scholar 

  11. Nelma Moreira. Formalismos e técnicas de implementação de gramáticas lógicas com restrições. PhD thesis, Faculdade de Ciências da Universidade do Porto, 1995. to appear.

    Google Scholar 

  12. Gopalan Nadathur and Dale Miller. An overview of λprolog. In Robert A. Kowalski and Kenneth A. Bowen, editors, Logic Programming: Proceedings of the Fifth International Conference and Symposium, volume 1, pages 810–827, Seattle, WA, 1988. MIT Press.

    Google Scholar 

  13. Fernando C.N. Pereira. Categorial semantics and scoping. Computational Linguistics, 16(1). 1990.

    Google Scholar 

  14. Fernando C.N. Pereira and Stuart M. Shieber. Prolog and Natural Language Analysis. Center for the Study of Language and Information Stanford, 1987.

    Google Scholar 

  15. Gert Smolka. Feature constraint logics for unification grammars. Technical report, IBM Wissenschafliches Zentrum, Institut für Wissensbasierte Systeme, 1989. IWBS Report 93.

    Google Scholar 

  16. Gert Smolka and Ralf Treinen. Records for logic programming. In Krzysztof Apt, editor, ICLP92. MIT, 1992.

    Google Scholar 

  17. Henk Zeevat, Ewan Klein, and Jo Calder. Unification categorial grammar. In Nicholas Haddock, Ewan Klein, and Glyn Morrill, editors, Categorial Grammar, Unification Grammar and Parsing. Centre for Cognitive Science, University of Edinburgh, 1987. Volume 1 of Working Papers in Cognitive Science.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Carlos Pinto-Ferreira Nuno J. Mamede

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Damas, L., Moreira, N. (1995). Constraint categorial grammars. In: Pinto-Ferreira, C., Mamede, N.J. (eds) Progress in Artificial Intelligence. EPIA 1995. Lecture Notes in Computer Science, vol 990. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60428-6_29

Download citation

  • DOI: https://doi.org/10.1007/3-540-60428-6_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60428-0

  • Online ISBN: 978-3-540-45595-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics