Skip to main content

A model theory for paraconsistent logic programming

  • Posters
  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 1995)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 990))

Included in the following conference series:

Abstract

We provide a nine-valued logic to characterize the models of logic programs under a paraconsistent well-founded semantics with explicit negation WFSX p. We define a truth-functional logic, \(\mathcal{N}\mathcal{I}\mathcal{N}\mathcal{E}\), based on the bilattice construction of Ginsberg and Fitting. The models identified by WFSX p are models of logic \(\mathcal{N}\mathcal{I}\mathcal{N}\mathcal{E}\). We conclude with a discussion on the conditions to obtain an isomorphism between the two definitions, and thereby characterizing WFSXp model-theoretically.

We thank Esprit BR project Compulog 2 (no. 6810), and JNICT for their support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. J. Alferes, C. V. Damásio, and L. M. Pereira. A logic programming system for non-monotonic reasoning. Journal of Automated Reasoning, Special Issue on Implementation of NonMonotonic Reasoning(14):93–147,1995.

    Google Scholar 

  2. J. J. Alferes and L. M. Pereira. Reasoning with Logic Programming. Springer-Verlag, 1995. In print.

    Google Scholar 

  3. N. D. Belnap. A useful four-valued logic. In G. Epstein and J. M. Dunn, editors, Modern Uses of Many-valued Logic, pages 8–37. Reidel, 1977.

    Google Scholar 

  4. H. A. Blair and V. S. Subrahmanian. Paraconsistent logic programming. Theoretical Computer Science, 68:135–154, 1989.

    Article  Google Scholar 

  5. S. Brass and J. Dix. A disjunctive semantics based on unfolding and bottom-up evaluation. In Proc. IFIP '94-Congress, Workshop FG2: Disjunctive Logic Programming and Disjunctive Databases, pages 83–91. Springer, 1994.

    Google Scholar 

  6. M. Fitting. Bilattices and the semantics of logic programming. Journal of Logic Programming, 11:91–116,1991.

    Article  Google Scholar 

  7. A. V. Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic programs. Journal of the ACM, 38(3):620–650, 1991.

    Google Scholar 

  8. M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Warren and Szeredi, editors, 7th ICLP, pages 579–597. MIT Press, 1990.

    Google Scholar 

  9. M. L. Ginsberg. Multivalued logics: a uniform approach to reasoning in artificial intelligence. Computational Intelligence, 4:265–316, 1988.

    Google Scholar 

  10. C. M. Jonker and C. Witteveen. Revision by expansion. In G. Lakemeyer and B. Nebel, editors, Proceedings ECAI'92 Workshop on Theoretical Foundations of Knowledge Representation, pages 40–44. ECAI'92 Press, 1992.

    Google Scholar 

  11. R. Kowalski and F. Sadri. Logic programs with exceptions. In Warren and Szeredi, editors, 7th ICLP. MIT Press, 1990.

    Google Scholar 

  12. D. Pearce and G. Wagner. Reasoning with negative information I: Strong negation in logic programs. In Language, Knowledge and Intentionality, pages 430–453. Acta Philosophica Fennica 49, 1990.

    Google Scholar 

  13. L. M. Pereira and J. J. Alferes. Well founded semantics for logic programs with explicit negation. In B. Neumann, editor, Proc. ECAI, pages 102–106. John Wiley & Sons, 1992.

    Google Scholar 

  14. L. M. Pereira, J. J. Alferes, and J. N. Aparício. Contradiction Removal within Well Founded Semantics. In A. Nerode, W. Marek, and V. S. Subrahmanian, editors, LPNMR'91, pages 105–119. MIT Press, 1991.

    Google Scholar 

  15. L. M. Pereira, J. J. Alferes, and J. N. Aparício. Contradiction removal semantics with explicit negation. In M. Masuch and L. Pólos, editors, Knowledge Representation and Reasoning Under Uncertainty, volume 808 of LNAI, pages 91–106. Springer-Verlag, 1994.

    Google Scholar 

  16. L. M. Pereira, J. N. Aparício, and J. J. Alferes. Non-monotonic reasoning with logic programming. Journal of Logic Programming. Special issue on Nonmonotonic reasoning, 17(2, 3 & 4):227–263,1993.

    Google Scholar 

  17. S. G. Pimentel and W. L. Rodi. Belief revision and paraconsistency in a logic programming framework. In A. Nerode, W. Marek, and V. S. Subrahmanian, editors, LPNMR'91, pages 228–242. MIT Press, 1991.

    Google Scholar 

  18. T. Przymusinski. Extended stable semantics for normal and disjunctive programs. In Warren and Szeredi, editors, 7th ICLP, pages 459–477. MIT Press, 1990.

    Google Scholar 

  19. C. Sakama. Extended well-founded semantics for paraconsistent logic programs. In Fifth Generation Computer Systems, pages 592–599. ICOT, 1992.

    Google Scholar 

  20. C. Sakama and K. Inoue. Paraconsistent stable semantics for extended disjunctive programs. Journal of Logic and Computation, 5(3), 1995.

    Google Scholar 

  21. G. Wagner. A database needs two kinds of negation. In B. Thalheim, J. Demetrovics, and H.-D. Gerhardt, editors, Mathematical Foundations of Database Systems, pages 357–371. LNCS 495, Springer-Verlag, 1991.

    Google Scholar 

  22. G. Wagner. Vivid logic: Knowledge-based reasoning with two kinds of negation. LNAI, 764, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Carlos Pinto-Ferreira Nuno J. Mamede

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Damásio, C.V., Pereira, L.M. (1995). A model theory for paraconsistent logic programming. In: Pinto-Ferreira, C., Mamede, N.J. (eds) Progress in Artificial Intelligence. EPIA 1995. Lecture Notes in Computer Science, vol 990. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60428-6_32

Download citation

  • DOI: https://doi.org/10.1007/3-540-60428-6_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60428-0

  • Online ISBN: 978-3-540-45595-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics