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1 I n t r o d u c t i o n  

Since we introduced the cipher SAFER K-64 (an acronym for Secure and Fas t  
Encryption Routine with a user-selected Key of 64 bits) one year ago at the 
predecessor to this workshop [MAS94], we have been pleasantly surprised by the 
rapidity of its acceptance within the cryptographic users' community. Undoubt-  
edly the foremost reason for this is the non-proprietary character of SAFER K -  
64, which makes it unusally attractive to users. Although our design of SAFER 
K-64 was sponsored by Cylink Corporation (Sunnyvale, CA, USA), Cylink has 
explicitly relinquished any proprietary rights to this algorithm. This largesse on 
the part of Cylink was motivated by the reasoning that the company would gain 
more from new business than it would lose from competit ion should many new 
users adopt this publicly available cipher. SAFER K-64 has not been patented 
and, to the best of our knowledge, is free for use by anyone without fees of any 
kind and with no violation of any rights of ownership, intellectual or otherwise. 
Indeed, one way in which we have become aware of applications of SAFER K -  
64 is via the requests that we have received from users for written assurance of 
the non-proprietary character of SAFER K-64 (and of SAFER K-128 that  is 
described in the next section). 

Almost immediately upon the announcement of SAFER K-64, we began to 
receive requests for a version of this cipher with a 128-bit user-selected key. In 
many ways, 128 is a natural key length because the cipher uses 128 bits from the 
key schedule within each round. The Special Projects Team of the Ministry of 
Home Affairs, Singapore, took the initiative to design a key schedule to be used 
with the basic SAFER algorithm for a 128-bit user-selected key. We found their 
key schedule to be very attractive because, when the two halves of the 128-bit 
key are the same 64-bit string, it produces the same round keys as does the 
key schedule for SAFER K-64 when its user-selected key is this same 64-bit  
string. The designers have renounced all proprietary rights to this 128-bit key 
schedule and have authorized us both to announce their key schedule and to 
standardize its use. We do this in Section 2 of this paper where we refer to the 
resultant cipher as SAFER K-128. Hereafter, we will say simply 'SAFER'  when 
our remarks apply to both SAFER K-64 and SAFER K-128. 
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A second factor in the quick popularity of SAFER is its byte orientation. 
Within the enciphering and deciphering processes, all operations are on bytes, 
which makes SAFER especially attractive for implementation on smart cards 
with 8-bit internal processors. This fact played an important role in the tenta- 
tive selection by Singaporean planners of SAFER K-128 as the standard cipher 
within the island-wide information system being planned for the turn of the 
century. A prototype smart-card implementation of SAFER was found there to 
run about 2.5 times as fast as a fully optimized smart-card implementation of 
the Data Encryption Standard (DES). 

We have received several enquiries about our reasons for choosing the 'loga- 
rithm' and 'exponential' functions to provide the 'nonlinearities' in SAFER that 
are required for good 'confusion'. To answer these questions, we give in Section 3 
an analysis to show that these functions well resemble 'randomly chosen' func- 
tions. Further justification for the choice of these nonlinearities is given in the 
paper [VAU95] in this volume, which shows that other choices would have given 
a much weaker cipher. 

One of the novel features of SAFER was the use of a new linear transform 
to provide the "diffusion" that a good cipher requires, i.e., to ensure that small 
changes in each round input result in large changes in the round output. We 
called this transform the Pseudo-Hadamard Transform (PHT) as it differs from 
the conventional Hadamard (or Walsh-Hadamard) transform only enough to 
make it invertible over the ring of integers modulo 256. Again we have been 
questionned, sometimes skeptically, as to how good this diffusion is. In Section 
4, we give a detailed discussion of the diffusing capability of the PHT, not only 
to answer these questions but also because the results are essential to the crypt- 
analysis in Section 6. We were remiss in [MAS94] in not mentionning two earlier 
applications in cryptography of transform techniques similar to the Hadamard 
transform and we are pleased to remedy this omission here. Huber [HUB90] 
also used the "butterfly with decimation" structure of the Hadamard transform 
within an eneryption round to provide diffusion, but replaced the linear "but- 
terflys" with two-input two-output nonlinear functions to obtain the required 
invertibility of the transform. Schnorr, in a paper presented in the rump session 
at CRYPTO '91, cf. [SCH92], used the "butterfly with decimation" structure of 
the fast Walsh-Hadamard transform to obtain diffusion within a hashing func- 
tion. 

For a cipher to gain popularity, there must be a general belief that it is 
'secure'. The resistance of a cipher to differential cryptanalysis, introduced by 
Biham and Shamir [BIH90], is perhaps the best measure available today of its 
security.We are aware of several privately conducted and proprietary differential 
cryptanalyses of SAFER, all of which have reached the conclusion that SAFER 
is secure against differential cryptanalysis, but there has been some disagreement 
about how many rounds of SAFER are required for this security. In [MAS94], we 
recommended the use of six rounds in SAFER K-64 but allowed optionally up to 
ten rounds. In Section 6 we give our own detailed differential cryptanalysis, which 
shows that six rounds of SAFER K-64 suffices for protection against differential 
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cryptanalysis. The next best measure today of a cipher's security is its resistance 
to linear cryptanalysis, introduced by Matsui [MAT93, MAT94]. We have had no 
reports from others on the strength of SAFER against linear cryptanalysis, but 
together with our students [PER94, HAR95b, HAR95a] we have undertaken the 
linear cryptanalysis of SAFER. Because of the lengthy treatment that is required 
to do justice to the differential cryptanalysis of SAFER, we will not discuss this 
work further here, except to mention that it indicates that SAFER is even more 
secure against linear cryptanalysis than against differential cryptanalysis, which 
is the reverse of the situation for DES. 

Very recently, Knudsen [KNU95] has pointed out a 'weakness' in SAFER 
when this cipher is used within a public hashing scheme. We discuss this 'weak- 
ness' in Section 7 where we also give a specification for its avoidance. We close 
in Section 8 with some remarks. 

2 S A F E R  K - 1 2 8  

SAFER K-64 with r rounds uses 2 r+  1 64-bit subkeys that are derived from the 
64-bit user-selected key according to the key schedule shown in Fig. 1. We now 
define SAFER K-128 as the cipher whose encryption round structure, output 
transformation and key biases are identical to those of SAFER K-64 but whose 
2r + 1 64-bit subkeys are derived from the 128-bit user-selected key according 
to the key schedule shown in Fig. 2. As mentioned above, this latter key schedule 
was designed by the Special Projects Team of the Ministry of Home Affairs, Sin- 
gapore. We recommend that r = 10 rounds of encryption be used with SAFER 
K-128 and specify that not more than 12 rounds be used. 

The left and right halves of the 128-bit user-selected key are denoted as Ka 
and Kb, respectively, in Fig. 2 where, as in [MAS94], we abide by the convention 
that more significant bits and bytes are to the left. Upon comparing Figs. 1 and 
2, one sees immediately that if the righthalf key Kb in Fig. 2 coincides with the 
64-bit user-selected key K1 in Fig. 1, then the same subkeys K1, K3, Ks, ... 
are generated by both key algorithms. Similarly, if the lefthalf key K~ in Fig. 2 
coincides with the 64-bit user-selected key K1 in Fig. 1, then the same subkeys 
K2, K4, K6, ... are generated by both key algorithms. Thus, when both K~ and 
Kb in Fig. 2 coincide with the 64-bit user-selected key K1 in Fig. 1, then all 
subkeys produced by both key schedules are the same. This is a very desirable 
feature as it permits a user with an implementation of SAFER K-128 to encipher 
and decipher for SAFER K-64 whenever desired. 

Appendix B contains a TURBO PASCAL program that implements encryp- 
tion for the full r-round SAFER K-128 cipher. This program should be taken 
as the official definition of the SAFER K-128 encryption algorithm. Appendix 
C gives two examples of 12-round encryption (i.e., r = 12) that the reader may 
find useful in checking his or her own implementation of this cipher. 
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User Selected Eight-Byte Key K 1 1 

I 
Rotate Each Byte Left by 3 Bits 

Rotate Each Byte Left by 3 Bits 

Rotate Each Byte Left by 3 Bits 

B2 - ~  

Byte-by-Byte 
mod 256 add 

B3 

Byte-by-Byte 
mod 256 add 

Byte-by-Byte 
rood 256 add 

I< 3 

4 

Rotate Each Byte Left by 3 Bits 

i 

B2r+ 1 

Byte-by-Byte 
mod 256 add - -  K2r+l 

Fig. 1. Key Schedule for SAFER K-64. 

3 The  Nonl inear i t ies  of S A F E R  

We begin by recalling the encryption round structure of SAFER shown in Fig. 3. 
The first step within the i-th round is the Mixed XOR/Byte-Addition of the 
round input with the subkey K2~-1. The eight resulting bytes are then individu- 
ally subjected to one of two different transformations, namely: (1) the operation 
labelled "45(')" in Fig. 3 to denote that if the input byte is the integer j then 
the output byte is 45 j modulo 257 (except that this output is taken to be 0 if 
if the modular result is 256, which occurs for j = 128) and (2) the operation 
labelled "1og45" in Fig. 3 to denote that if the byte is the integer j then the 
output byte is log45(J ) (except that this output is taken to be 128 if the input 
is j = 0), i.e., the power to which one must raise 45 to obtain j modulo 257. 
Because 257 is a prime, arithmetic modulo 257 is the arithmetic of the finite 
field GF(257). The element 45 is a primitive element of this field, i.e., its first 
256 powers generate all 256 non-zero field elements. Thus the mapping 45(') is 
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Fig.  2. Key Schedule for SAFER K-128. 
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an invertible mapping from one byte to one byte. The mapping log45(. ) is just 
the inverse of the mapping 45('). 

ROUND INPUT (8 Bytes) 
1 2 3 4 5 6 7 8 

I I I I 1 I I I 
xor add add xor xor add add xor 

xor xor add add xor xor add --~-- K2i add 
/ 

I I I I I I 1 

! 

2-PHT 2-PHT 2-PHT I 2-PHT 
! 

I I I I I I I I 
1 2 3 4 5 6 7 8 

K2i-1 

ROUND OUTPUT (8 Bytes) 

Fig. 3. Encryption round structure of SAFER. 

To see just how "nonlinear" these two mappings are or, better, how closely 
they resemble a "randomly chosen" mapping, we consider for each mapping the 
boolean functions that determine each output bit in terms of the eight input 
bits. Any boolean function of 8 input bits, say f(.), has an algebraic normal 
form (ANF) of the type 

f (x l :x2 , . . . x s )  = a0 -1- azml + a2x2 + . . - +  asms 

- ' ~ a l , 2 X l X 2  + a l , 3 X . l X 3  ~ �9 �9 �9 .-~ a g , s x 7 x 8  

- [ - . . .  ~ a1,2,3,4,5,6,7,8~gl T . 2 x 3 x 4 x 5 x 6 x 7 X s  . (1) 
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The coefficients on the right are elements of the finite field GF(2) and the ad- 
dition is addition in this field, which is just  the XOR operation. The nonlinear 
order of a product  of variables is the number of variables in that  product; the 
nonlinear order of the function itself is the maximum nonlinear order of a prod- 
uct of variables appearing with a non-zero coefficient in its ANF. Each boolean 
function of eight bits uniquely determines the coefficients of its ANF and, con- 
versely, any choice of these coefficients determines such a function. Choosing 
such a function f uniformly at random from the set of all 2256 such functions is 
thus equivalent to choosing the coefficients on the right in (1) by coin-tossing. 
It follows that,  in a randomly chosen function, the number of terms of nonlinear 
order i that  appear is binomially distributed from 0 to (s.) with mean (s.)/2. In a 
randomly chosen function, the number of terms of nonlinear order i that  appear 
should be rather close to this mean. 

Table  1. The number of terms of nonlinear order i, 0 < i < 8, in the boolean functions 
corresponding to the eight output bits of the exponential mapping 45('). 

order i (~)[bitl bit2 

0 1 0 0 
1 8 3 4 
2 28 17 22 
3 56 36 27 
4 70 52 40 
5 56 35 25 
6 28 15 16 
7 8 2 4 
8 1 0 0 

bit3 bit4 bit5 bit6 bit7 bit8 

0 0 0 0 0 1 
5 3 4 2 2 6 

16 17 16 14 11 9 
29 27 33 30 14 13 
38 39 28 32 10 15 
22 24 24 18 8 8 
8 15 12 11 I 4 
3 5 2 1 0 0 
0 0 0 0 0 0 

Table 1 shows the number of terms of each nonlinear order i that  appear in 
the boolean function for the j - th  output  bit in the function 45(') where j = 1 
and j = 8 denote the most significant and least significant bits of the output ,  
respectively, for i = 1, 2 , . . . ,  8. The maximum possible number of terms (s) is 
also indicated. One sees immediately that,  in each output  bit position j ,  the 
number of terms appearing is remarkably close to the mean number (s) /2  for 
a randomly chosen function. Table 2 is a similar table for the function log45(. ) 
and again the agreement is remarkably close. 

It is interesting to observe that  the number of terms of nonlinear order i in 
the least significant bit (bit 8) function for the mapping log~(.) is invariant to 
the choice of primitive element w in GF(257).  The reason is that ,  independently 
of the choice of w, wk is a quadratic residue (or "square") just  when k is even 
and hence its logarithm will have least significant bit 0 just  in this case. But if 
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Tab le  2. The number of terms of nonlinear order i, 0 < i < 8, in the boolean functions 
corresponding to the eight output bits of the logarithmic mapping log4s (.). 

order i (~)[bitl bit2 bit3 bit4 bit5 bit6 bit7 bit8 

1 1 
8 5 
28 12 
56 26 
70 39 
56 25 
28 13 
8 1 
1 0 

0 0 0 0 0 0 0 
4 4 4 0 0 0 0 

12 13 14 22 9 11 18 
25 27 28 24 24 38 19 
38 34 33 43 34 26 38 
27 18 28 29 30 19 22 
16 15 14 17 11 9 11 
4 2 2 3 2 1 2 
0 0 0 0 0 0 0 

w is pr imit ive in GF(257) ,  ( = v i  is also primitive if and only if i is odd. Hence 
any non-zero 7 in GF(257)  is an even power of w if and only if it is an even 
power of  ~ and thus the least signficant bit functions in the mappings  log~(.) 
and log~(.) coincide. In general, however, all the other output  bit functions of 

the mapp ing  log~(.) and all the output  bit functions of the mapping  w(') will 
depend on the choice of ~. However, the variation with v is not subs tan t i a l - -  
our conclusions about  Tables 1 and 2 would still apply had we chosen any other 
pr imit ive element, say w = 3, of GF(257)  to define the exponential and logarith- 
mic mappings  and SAFER so modified would be essentially as secure as for our 
choice of w = 45. This choice was rather  arbi trary and was mot ivated pr imari ly  
by the apparent  "randomness" in the sequence of key biases that  it produces, 
cf. [MAS94]. 

4 P s e u o - H a d a m a r d  Transform 

The purpose of the Pseudo-Hadamard  Transform (PHT) section in Fig. 3 is to 
provide SAFER with diffusion, i.e., to ensure that  small changes in round inputs 
cause large changes in round outputs.  Because the P H T  is linear over the ring of 
integers modulo 256 and because "differences" can be taken conveniently as byte 
differences modulo  256 at the output  of the eight nonlinear channels in Fig. 3, 
diffusion is well measured by how well the P H T  converts low weight inputs into 
high weight inputs. Here and hereafter, weight means the number  of non-zero 
bytes. We now treat  this question in some detail as the results are essential to 
the differential cryptanalysis  that  will be carried out in Section 6. 

I f  the input to the P H T  is the eight-byte row v = [v l , v2 , . . . v s] ,  then the 
output  is the eight-byte row 

v = [v~, v 2 , . . ,  v8] = v M  , 
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where 

M = 

" 8 4 4 2 4 2 2 1  
4 2 4 2 2 1 2 1  
4 2 2 1 4 2 2 1  
2 1 2 1 2 1 2 1  
4 4 2 2 2 2 1 1  
2 2 2 2 1 1 1 1  
2 2 1 1 2 2 1 1  
1 1 1 1 1 1 1 1  

(2) 

is the 8 • 8 matrix that we will refer to as the PHT matrix. The i-th row of M 
is just the PHT V of the input row v. that  is all-zero except in the i-th byte 
where it contains a 1. From (2), the action of the PHT matrix M on the inputs 
v of weight 1 is evident. These results are given in Table 4 of Appendix A for 
outputs with weight up to 4. The only weight-1 input v giving an output also of 
weight 1 is [128, 0, 0, 0, 0, 0, 0, 0] as follows from the facts that only the first row 
of M contains a single 1 and that for non-zero a 2a = 0 if and only if a = 128. 
Similarly, it is easy to check that there are 3 different weight-1 inputs that give 
weight-2 outputs, none whatsoever that give weight-3 outputs, and only 5 that 
give weight-4 outputs. One sees from Table 4 that the PHT diffuses weight-1 
inputs exceedingly well. 

The situation is not so much different for weight-2 inputs. In Table 6 we list 
all 33 weight-2 inputs that produce a PHT of weight between 1 and 3 inclusive. 
In particular, we note that only three weight-2 inputs produce an output of 
weight 1. There are nine weight-2 inputs that produce outputs also of weight 2, 
the most interesting of these being [0,128, 0,128, 0, 0, 0, 0], [0, 0,128, 0, 0, 0,128, 0] 
and [0, 0, 0, 0,128,128, 0, 0], all of which reproduce themselves. Such replicating 
patterns might well represent a "weakness" that one could exploit in differential 
cryptanalysis were it not for the fact, which will be seen in Section 6, that byte 
differences of 128 cannot propagate unchanged through the nonlinear section of 
SAFER. From Table 4 one must conclude that the PHT also diffuses weight-2 
inputs admirably well. 

There are roughly 213 weight-2 inputs, which is a fraction about 2 -9 of 
the total number of weight-2 inputs, that produce PHT outputs of weight 4. 
There are 9 "isolated" weight-2 inputs, listed in Table 5, that produce weight-4 
outputs, but these are of little use in differential cryptanalysis because of the 
plethora of 128's in the output--here "isolated" refers to the fact that the only 
non-zero multiples of these inputs that have weight 4 and produce weight-4 
outputs are the trivial multiples by 1 and -1 .  The remaining weight-2 inputs 
play a rather important role in the differential cryptanalysis of SAFER in Section 
6--we call them one-dimensional weight-2 inputs to emphasize that they appear 
in sets containing all the non-zero multiples of some weight-2 input, excluding 
possibly the non-zero multiples by 64, 128 and -64 when these have the effect 
of reducing either the weight of the input or the Weight of the output, or both. 
This makes it possible to tabulate all these inputs in a compact way as we have 
done in Table 7. The last entry in this table indicates, for example, that all the 
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non-zero multiples of [0, 0, 0, 0, 0, 0, - 1,21, whose PHT is [0, 0, 1, 1,0, 0, 1, 1], are 
weight-2 inputs, except the multiple by 128, and produce weight-4 outputs. 

There are no weight-3 inputs that give a PHT of weight 1. The lists of 
weight-3 inputs that produce PHT outputs with weights 2 and 3 are given in 
Tables 9 and 10, respectively. It is evident that the PHT diffuses even weight-3 
inputs very well. 

We will also have use in the differential cryptanalysis of SAFER for the list 
of weight-4 inputs that give a PHT of weight 1. There are only five of these and 
they are listed in Table 8. 

5 R e c o g n i t i o n  o f  C e r t a i n  M a r k o v  C i p h e r s  

Differential cryptanalysis, originated by Biham and Shamir [BIH90], is a general 
attack on iterated ciphers, i.e., on ciphers that consist of many applications in 
cascade of the same round function. Our discussion of differential cryptanalysis 
will follow the treatment in [LAI91], which introduced and exploited the notion 
of a Markov cipher. 

Differential cryptanalysis requires that one specify a notion of difference for 
round inputs and round outputs. In an iterated cipher, the round input and 
round output must take values in the same set G. In general, one can specify 
the difference AX between two round inputs (or two round outputs) X and X* 
in the manner 

~ X  = X | (X*) -1 (3) 

where | is a group operation on G and where (X*) -1 denotes the group inverse 
of X*. The cipher is then said to be a Markov cipher if, when the round key 
is chosen uniformly at random and applied to two distinct round inputs X and 
X*, the conditional probability p ( A y  = fl I AX = a, X = 7) for the difference 
of the corresponding distinct round outputs Y and Y* is independent of 7. In 
other words, the conditional probability of an output difference depends only 
on the input difference and not on the particular value of either input. It was 
shown in [LAI91] that, for a Markov cipher in which the round keys are chosen 
independently and uniformly at random [which is the universal assumption in 
differential cryptanalysis], the sequence of round differences is a Markov chain for 
which the uniform probability distribution is a stationary distribution. It follows 
that if this Markov chain has a steady-state probability distribution, then this 
must also be the uniform distribution. 

We now prove a proposition that is very useful in identifying many commonly 
used block ciphers as Markov ciphers. 

P r o p o s i t i o n  1. An iterated cipher in which the round input X and round output 
Y take values in a set G and for which the round function has the form 

Y ~- f (S,  Zb) where S = X | Za , 

where | is a group operalion on G and where Z = (Za,Zb)  is the round key, 
is a Markov cipher for differences defined by A X  = X | (X*) -1 and A y  = 
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Y | (Y*)-•. Moreover, if.| is any other group operation on G and the output 
difference A Y  is de~ned as f lY  = Y e ( Y * )  -I ,  where ( V . ) - I  is the group inverse 
of Y* with respect to the group operation | then the conditional probability 
P ( A Y = Z  l A X = a , X = 7 )  is also independent ofT. 

Remark 1: Because a cipher must be decryptable, it follows that the function 
f(S, Zb) in this proposition, for every value of the partial key Zb, must be an 
invertible function of S. No other assumption on this function is needed. 
Remark 2: The latter part of the proposition, which seems unmotivated at this 
point, will be seen to be useful in the differential cryptanalysis of SAFER. 
Proof: It suffices to prove that P(AY=f l  [ A X = a ,  X =7) is independent of 7, 
since choosing Q = | implies the first claim of the proposition. To do this, we 
begin by noting that 

P ( A Y = ~  I A X = ~ , X - - 7 )  = 

P(ZY=~,Z~=S I AX=~,X=7) = 
5EG 

Y~ P(Z~=S I AX=~,X=7)P(,~Y=~ I AX=a,X=% Za=5) . 
5EG 

(4) 

But Za is uniformly random over G and jointly independent of X and X* so 
that 

P(Za=S I A X = a , X = 7 ) = I / N  (5) 

where N is the cardinality of G. Moreover, because S = X | Z, it follows that 

A S -  ( X ( ~ Z )  | ( X * |  -1 -- X ~ Z |  - 1 |  (X*) -1 -- X ~ ( X * )  -1 --~ AX 

where we used the fact that the inverse of a group product is the product of the 
inverses in reverse order. Thus, 

P ( A Y = ~  I A X = a , X = 7 ,  Za=5 ) = 
P( f~Y =fl [ AX = a , X  =% A S = a , S = 7  | 5, Za=5) = 

P (~Y=f l  [ A S = a , S = 7 |  (6) 

because, given AS and S, z~Y has no further dependence on X and AX.  Sub- 
stituting (5) and (6)into (4) gives 

P ( ~ Y = ~  I A X = a , X = 7 )  -= ( l / N ) E  P('~Y=~ I A S - : a ' S = 7  | 5) , 
5EG 

which, because 7 | 5 ranges over all the elements of G in this sum, is equivalent 
to 

P ( ~ Y = I ~ [ A X = a , X = 7 )  = ( l /N)  E P ( / ~ Y = ~  I AS.=a,S=g) 
gEG 

and hence is independent of 7, as was to be shown. [] 
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6 Differential Cryptanalysis of SAFER 

As can be seen from Fig. 3, at the beginning of a round, SAFER combines the 
8-byte round input X = [X1,X2,...Xs] bytewise with the 8-byte first half 
Z~ = [Z~I,Z~2,...Z~s] of the round key to produce the 8- byte input S = 
[$1, $2, . . .  Ss] to the nonlinear operations in the manner that S = X | Za where 

| = [e,  +, +,  (9, +,  +, e]  ; 

here @ denotes the bitwise XOR operation on bytes and + denotes usual byte 
addition, i.e., addition modulo 256. It follows that @ is a group operation on 
the set G of 8-byte words. We then obtain as an immediate consequence of 
Proposition 1: 

Coro l l a ry2 .  SAFER is a Markov cipher when the difference A V  between 8- 
byte words V and V* is defined in the manner A V  = [1/1 (9 V{,  V2 - V~, V3 - 
v#, v4 e vg, vs e v6 - v#, vr vs e ] 

We now draw upon the latter part of Proposition 1 to establish a fact that 
will be especially useful in the differential cryptanalysis of SAFER. 

Coro l l a ry3 .  When all output differences in SAFER are defined as byte differ- 
ences modulo 256, i.e., Z V  = [1/1 - V{, V2 - V~, V3 - V~, V4 - Vg, V5 - V[, V6 - 
V~, V7 - V~, V s -  V~], then P ( A Y = t 3 1 A X = ~ , X = 7 )  is independent ofT. 

6.1 Byte  Differentials and Quasi-differentials 

The detailed differential cryptanalysis of SAFER is facilitated by consideration 
of the input S = [$1, S2,. . .Ss] to the PHT section in 3. Note that Sj is given 
by 

S# = 45 (xjez~j) + Zb# , j E {1, 4, 5, 8} (7) 

where Za and ZD are the left and right halves of the round key, respectively. We 
thus refer to bytes 1, 4, 5, and 8 as the exponential bytes. Similarly, one notes 
that 

S~ = log45 (X~ + Z~j) �9 Zbj , j C {2, 3, 6, 7} (8) 

and we thus refer to bytes 2, 3, 6 and 7 as the logarithmic bytes. We will call a pair 
(a, r), considered as the value of (AX#, AS#), an exponential byte differential 
for j E {1,4,5,8} and a logarithmic byte differential for j E {2,3,6,7}. Of 
interest greater than that of the exponential byte differentials are the exponential 
byte quasi-differentials where the output difference is taken as the modulo 256 
difference ,~Sj rather than as the XOR difference ASj .  

The principal properties of the byte differentials and quasi-differentials are 
summarized in Table 3. When a difference AV or z~V is a modulo 256 difference, 
then interchanging the inputs X and X* negates this difference but has no effect 
on differences z2V that are XOR differences. It follows that for logarithmic byte 
differentials, where both input and output differences are modulo 256 differences, 

P ( A S = r  I AX=c~) = P ( A S = - r  I AX=--c~) . 
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Similarly for exponential byte quasi-differentials, where only the output  differ- 
ence is modulo 256, 

P ( A S = r  l A X = a )  = P ( A S = - r  l A X = a )  . 

These two facts are stated in the first section of Table 3. The other entries in 
this table were determined b E direct computation of the transition probabilities 
P ( A S = r  I / I X = a )  and P ( A S = r  [ A X = a )  with the help of (7) and (8) when 
the bytes Zaj and Zbj are chosen uniformly at random over the 256 possible 
byte values. 

Table 3. Properties of byte differentials for SAFER. 

logarithmic 

input difference: mod 256 
output difference: mod 256 

P ( r  l a) = P ( - r  I -a )  
P(128 [ 128) ---- 0 
P(128 [ a) = 2-7 

for a odd 
P(128 I o0 = 0 

for a even 
maxP(r  [ a) = 2 -6.4 

occurs for (or, r) E 
{(128, 48), (128, -48)}  

maxP(r  1 128) = 2 -6.~ 
occurs for r E {48,-48} 

exponential 
conventional 

input difference: XOR 
output difference: XOR 

P(128 ] 128) = 0 
P(r [ 128) = 2 -7 

for r odd 

maxP(r  l a) = 2 -5 
occurs for ( a , r )  E 

{(-16,32),(103,64), 
(18,128),(-108,128), 
(48,128),(-78,128), 
(54,128),(-115,128), 
(-23,128),(102,128), 
(-2,128),(103,-64)} 
maxP(128 I s )  = 2 -5 

occurs for a E 
{18, 48, 54, 102, -115, 
- -108 , -78 , -23 , -2}  

exponential 
quas~ 

input difference: XOR 
output difference: mod 256 

P(T I s )  = P ( - r  l a) 
P(128 [ 128) = 0 
P ( r  I 128) = 2 -7 

for r odd 
avg[P(128 l a)] = 2 -s'2 

for a odd 
maxP('r [ a) = 2 -4.7 

occurs for (a, r) E 
{(79, 68), (79,--68) } 

maxP(128 Is )  = 2 -5 
occurs for a E 

{18,48,54,102,-115, 
- 1 0 8 , - 7 8 , - 2 3 , - 2 }  

It will be convenient in the differential cryptanatysis of SAFER to have avail- 
able the relations between byte differentials and byte quasi-differentials that  are 
given in the following proposition. 

P r o p o s i t i o n 4 .  For byte differences A V  = V @ V* and ~ V  = V - V*, 
a) A V  = 0 if and only i f A V  = 0; 
b) ~ V  = 128 if and only i f A V  = 128; and 
c)AV is odd if and only if A V  is odd. 
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Proof: Relation a) is trivial. Relation b) follows from the fact that A V  = 128 
if and only if V and V* differ in the most significant bit only, which is also the 
necessary and sufficient condition for zIV = 128. Finally, AV is odd if and only 
if V and V* differ in the least significant bit only, which is also the necessary 
and sufficient condition for zIV to be odd. O 

6.2 The  P H T  and  B y t e  Differentials  

We have already defined S = [31, $2,. �9 �9 Ss] as the input to the PHT section in 3. 
Thus, the round output Y = [Y1, ]I2,-..Ys] is given by Y = SM where M is the 
PHT matrix of (2) and where all the arithmetic is modulo 256. It follows that 
when each component of AS is a modulo 256 difference, i.e., when ASj = Sj -S~j 
as is the case in the logarithmic bytes and as is also the case in the exponential 
bytes when quasi-differences are used, then 

/~Y = S M -  S*M = (AS)M . (9) 

The simple relation (9) is the primary reason that it is more natural to use quasi- 
differentials rather than ordinary differentials in the differential cryptanalysis of 
SAFER. 

6.3 O n e - r o u n d  and T w o - r o u n d  Quasi-differentials 

We now get to the heart of the differential cryptanalysis of SAFER, i.e., to the 
finding of the most probable (r - 1)-round quasi-differentials for r = 2, 3, .... It 
was shown in [LAI91] that an r-round cipher is immune from differential crypt- 
analysis just when all its (r - 1)- round differentials (or quasi-differentials) are 
essentially equally likely. Thus, SAFER is immune from differential cryptanaly- 
sis when ( A X , / / Y ( r  - 1)) takes on every possible value (a, fl) with probability 
about 1/(264 - 1) ~ 2 -64 when X = Y(0) = a is the plaintext and Y(i) is 
the output of the i-th round. It is convenient for a one-round quasi-differential 
(AX(i), z~Y(i)) to consider also the PHT input S(i) at mid-round. To empha- 
size the role pf S(i).we will write one-round quasi-differentials in expanded view 
as (AX(i), AS(i), AY(i)). 'It  follows from (9) that 

~Y(i )  = (z~S(i))M 

where M is the PHT matrix of (2). The probability of the transition from AX(i) 
to z~Y(i) is just the probability of the transition from zbX(i) to AS(i) because 
the transition from z1S(i) to ~Y( i )  is deterministic. Note that the probability of 
a transition from AX(i) to AS(i) is the product of the probabilities of the byte 
differentials (in the logarithmic bytes) and the byte quasi-differentials (in the 
exponential bytes) for the corresponding bytes of AX(i) and z~S(i). It follows 
then from consideration of Table 3 that the probability of such a transition 
decreases as the number of bytes specified in zlS(i) increases, which number 
will generally be the same as the weight of AX(i). Finding high probability 
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quasi-differentials for several rounds is thus mostly a matter of finding quasi- 
differentials whose evolution has input differences of weight as small as possible 
in every round. To a good first approximation, the probability of an /-round 
quasi-differential decreases as the total weight of the round inputs increases. 

Table 3, which directly gives the probability of one-round byte differentials 
and quasi-differentials, immediately provides the justification of the following 
two claims in which, for brevity here and later, we have written 0 j to denote j 
successive zero bytes. 

Cla im 1 The 1-round quasi-differential with the expanded view 

([79, 07], [68, 07], [32, 16, 16,-120, 16,-120,-120, 68]) 

has probability 2 -4.7 and is a most likely 1-round quasi-differential for SAFER. 

It follows from Table 3 that there are 8 such most probable quasi-differentials 
since any of the four exponential bytes could be chosen as the single non-zero 
byte and since a value o f - 6 8  in this byte of z~S(1) would do just as well as the 
value 68. 

Cla im 2 The I-round differential with the expanded view 

([18, 07], [128, 07], [07, 128]) 

has probability 2 -5 and is a most likely 1-round differential for SAFER. 

It follows from Table 3 that there are 48 such most probable differentials since 
again any of the four exponential bytes could be chosen as the single non-zero 
byte and since there are 12 pairs of values for these non-zero bytes of AX(1) 
and/~S(1) that have this same maximum probability. 

Claims 1 and 2 illustrate interestingly that the most likely one-round quasi- 
differential is slightly more probable than the most likely one-round differential, 
which is another argument in favor of considering the former type of 'differential' 
rather than the latter. 

Finding the most probable two-round quasi-differential is not much more 
difficult. 

Cla im 3 The 2-round quasi-differential ([18, 07], [1, 1, 1, 1, 1, 1, 1, 1]) with the ex- 
panded view 
(round 1) ([18, 07], [128, 07], [07, 128]) 
(round 2) ([07, 128], [07, 1], [1, 1, 1, 1, 1, 1, 1, 1]) 
has probability 2 -12 and is a most likely 2-round quasi-differential for SAFER. 

This claim requires more justification. Recall from the discussion in Section 5 
that differences at round inputs must be of the type AX rather than of the type 
/~X. Thus, one cannot immediately set z~Y(1) equal to AX(2). However, when 
each component of/~Y(1) is either 0 or 128, it follows from Proposition 4 that 
this equality does hold. From Table 4, we recall that there is a unique PHT 
input of weight 1, namely [128, 07], that gives an output also of weight 1, namely 
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[07, 128]. Thus, the two-round quasi-differential in Claim 3 is the unique (up to 
the choice of an odd byte value for the bytes of AY(2), which we have arbitrarily 
taken as 1) such two-round quasi-differential that has weight-1 inputs to each 
round--thus it has maximum probability. This probability is the product of the 
transition probability 2 -5 from the 18 in the first byte (which is an exponential 
byte) of AX(1) to the 128 in the first byte of ~S(1) and the transition probability 
2 -7 from the 128 in the eighth byte (which is also an exponential byte) of AX(2) 
to the 1 in the eighth byte of z~S(2). There are 9 • 128 = 1152 such most probable 
two-round quasi-differentials, corresponding to the 9 choices seen in Table 3 for 
the first byte of AX(1) and to the 128 choices of an odd number for the eighth 
byte of/~S(2). 

6.4 Three-round Quasi-differentials 

Finding the most probable three-round quasi-differential is a much more intri- 
cate matter. We begin by stating the solution. 

Cla im 4 The 3-round quasi-differential ([03, 18, 04], [03, 128, 04]) with the ex- 
panded view 
(I) ([03, 18, 04], [03, 128, 04], [0,128, 0,128, 0,128, 0,128]) 
(2) ([0,128, 0,128, 0, 12S, 0, 1281, [0, b, 0,-b,  0,-b,  0, hi: b odd, [b, 0, b, 05]) 
(3) ([c, 0, b, 05]: c odd, [128, 0,128, 05], [03, 128, 04]), 
has probability 2 -41'6 and is a most likely 3-round quasi-differential for SAFER. 

We first show that this three-round quasi-differential has the claimed prob- 
ability 2 -41'6. From Table 3 we see that the transition from 18 to 128 in an 
exponential byte has probability 2 -5 , which is thus the probability of the first- 
round transition. Because each byte of z~Y(1) is either 0 or 128, it follows from 
Proposition 4 that AX(2) coincides with AY(1). The second round requires 
transitions in logarithmic bytes 2 and 6 from 128 to b and -b, respectively, 
where b can be any odd number. All byte transitions are independent because 
the corresponding keys for each byte are independent. A direction computation 
gives 

Plos(b1128)Plog(-b[ 128) = 2 -7.4 
b odd 

where P~og(b [ a) is the probability of the byte quasi-differential (AX, z~S) = 
(a, b). Again from Table 3 we see that the transitions from 128 to b and -b  (which 
is also odd) in exponential bytes 4 and 8 each have probability 2 -7. Thus the 
transition in round two has probability 2 -(7.4+7+7) ---- 2 -21"4. It follows further 
from Proposition 4 that an odd value b in exponential byte 1 of /~Y(2) will 
give an odd value c, not necessarily the same as b, in byte 1 of AX(3). From 
Table 3, we see that the transition from b in (logarithmic) byte 3 of AX(3) to 
128 in byte 3 of AS(3) has probability 2 -7. The probability of the transition 
from the odd c in exponential byte 1 of AX(3) to 128 in byte 1 of z~s(3) can 
be well approximated by the average probability for such c, which from Table 3 
is seen to be 2 -s'2. Hence, the transition in round 3 has probability essentially 
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equal to 2 -15"2. The probability of the 3-round differential in the claim is thus 
2 -5 • 2 -21'4 • 2 -15"2 = 2 -41'6, as was to be shown. 

It is interesting to note that the above 3-round differential consists of 128 
different "characteristics" [to use the language of Biham and Shamir [BIH90]], 
one for each odd byte value b that specifies the four non-zero bytes of A$(2). 
An/- round characteristic is a sequence consisting of the first-round input and 
the outputs of rounds 1, 2, ... i. The probability of a differential is the sum of the 
probabilities of all the characteristics of which it is composed. It is often the case 
that the probability of a differential is dominated, and thus well approximated, 
by the probability of its most likely characteristic. However, many of its 128 
characteristics contribute substantially to the probabilility of the differential in 
Claim 4. 

We now begin the rather tedious, but essential, task of showing that the 3- 
round differential in Claim 4 does indeed have maximum probability. Note that 
the sum of the weights of the three round inputs is 7--thus our task is to show 
that there exists no 3-round differentials having round inputs whose weights sum 
to 6 or less and that any whose weights sum to 7 have probability no greater 
than that in Claim 4. 

We begin by considering differentials for which the first-round input has 
weight 1. If the second-round input also has weight 1, then the second-round 
output must have weight 8--as follows from the proof of Claim 3--and hence the 
differential has very low probability. Suppose then that the second-round input 
has weight 2. From Table 4 we see that the two non-zero bytes must be bytes 
4 and 8, or bytes 6 and 8, or bytes 7 and 8. But the third-round input cannot 
then have weight 1 since, by Table 6, the two non-zero bytes in the round-2 
input would then have had to be bytes 1 and 2, or bytes 1 and 3, or bytes 1 
and 5. Nor could the third-round input have weight 2, since Table 6 shows that 
the two non-zero bytes in the round-2 input would then have had to be bytes 2 
and 3, or bytes 2 and 4, or bytes 2 and 5, or bytes 2 and 6, or bytes 3 and 4, or 
bytes 3 and 5, or bytes 3 and 7, or bytes 5 and 6, or bytes 5 and 7. Nor could 
the third-round input have weight 3, since Table 6 shows that the two non-zero 
bytes in the round-2 input would then have had to be bytes 1 and 2, or bytes 1 
and 3, or bytes 1 and 4, or bytes 1 and 5, or bytes 1 and 6, or bytes 1 and 7. The 
third-round input can indeed have weight 4, which gives round-input weights 
that sum to 7, but to give larger probability than the differential in Claim 4 at 
least three of the non-zero bytes would have to be logarithmic bytes--Table 7 
shows that all four bytes then must be logarithmic bytes (bytes 2, 3, 6 and 7) and 
that the two non-zero bytes in the round-2 input would have had to be bytes 2 
and 5, or bytes 4 and 7, which is again a contradiction. That the second-round 
input cannot have weight 3 follows immediately from Table 4. Still considering 
a weight-1 first-round input, suppose that the second-round input has weight 
4. From Table 4, these non-zero bytes must be bytes 4, 6, 7 and 8, or bytes 2, 
4, 6 and 8, or bytes 3, 4, 7 and 8, or bytes 5, 6, 7 and 8. It follows then from 
Table 8 that the third-round input cannot have weight 1. The third-round input 
can indeed have weight 2, which gives round input weights that again sum to 
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7, but the probability of such a differential will not be larger than that of the 
differential in Claim 4 since only two of the four non-zero bytes in the round-2 
input are logarithmic bytes. We conclude that no three-round differential with 
a weight-1 first-round input can have larger probability than the differential in 
Claim 4. 

We now consider the case where the first-round input has weight 2. Suppose 
that the second-round input has weight 1. From Table 6 it follows that this 
non-zero byte must be byte 4, or byte 6, or byte 7. It then follows further from 
Table 4 that the input to round three must have weight at least 4--when this 
weight is 4, the differential is less probable than that in Claim 4 because there 
is no "one-dimensional" intermediate set of mid-round outputs. Suppose next 
that the second-round input has weight 2. It then follows from Table 6 that the 
two non-zero bytes in the second-round input must be bytes 2 and 4, or bytes 
2 and 6, or bytes 3 and 4, or bytes 3 and 7, or bytes 4 and 6, or bytes 4 and 
7, or bytes 5 and 6, or bytes 5 and 7, or bytes 6 and 7. None of these pairs can 
give a third-round input of weight 1 or weight 3 as follows from Table 6. Several 
of these pairs can be seen from Table 6 to admit third-round inputs of weight 2 
but require byte transitions from 128 to 128 in the second round and hence, by 
Table 3, give probability 0 for the second-round transition. The second-round 
input can indeed have weight 4 and, in fact, the differential of Claim 4 is of this 
type and was chosen to give a round-3 input of weight 1 via a one-dimensional 
intermediate set of mid-round outputs so as to maximize its probability in this 
class. 

We now must consider the case when the first-round input has weight 3. 
Table 9 shows that weight 1 is impossible for the second-round input and that 
weight 2 is possible only if the two non-zero bytes are bytes 2 and 8, or bytes 3 
and 8, or bytes 4 and 8, or bytes 5 and 6, or bytes 6 and 8, or bytes 7 and 8. 
But, according to Table 6, none of these pairs can lead of a third-round input 
with weight less than 4. Hence, a three-round differential with first-round input 
of weight 3 will be much less probable than that in Claim 4. 

That weight-4 first-round inputs cannot give a three-round differential with 
probability larger than that in Claim 4 will be evident from the treatment of 4- 
round differentials that follows. First-round inputs of weight 5 or more obviously 
need not be considered. 

6.5 F o u r - r o u n d  Quasi -di f ferent ia ls  

In light of the lengthy argument required to establish Claim 4 for three-round 
differentials, the reader will be pleasantly surprised to see that the four-round 
case follows from the former with very little additional work. In fact, the most 
likely four-round differential begins with the previously determined most likely 
three-round differential. 

Claim 5 The 4-round quasi-differential ([03, 18, 04], [2, 1, 2, 1, 2, 1,2, 1]) with the 
expanded view 
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(1) ([0 a, 18, 04], [03, 128, 04], [0,128, 0, 128, 0, 128, 0,128]) 
(2) ([0,128,0,128,0,128,0,128], [0, b, o , -b,  o , -b ,  o, hi: b odd, [b, 0, b, 0~]) 
(3) ([c, 0, b, 05]: c odd, [128, 0,128, 05], [03, 128,041), 
(4) ([03,128, 04], [03 , 1, 04], [2,1, 2,1, 2,1, 2,1] 
has probability 2 -486 and is a most likely 4-round quasi-differential for SAFER. 

The probability of the fourth-round transition is the probability of the byte 
quasi-differential (128, 1) [where 1 could be replaced by any odd byte value], 
which from Table 3 is seen to be 2 -7. Thus, this four-round differential has 
probability 2 -41"6 • 2 -7 = 2 -4s'6 as claimed. Because the additional fourth round 
has a weight-1 input, essentially the same arguments as were just used for the 
3-round case establish that this four-round differential likewise has maximum 
probability. 

Note that the last three rounds of the above four-round differential constitute 
a three-round differential whose first-round input has weight 4. This is the most 
probable three-round differential of this type, but its probability 2 -43.6 is smaller 
by a factor of 4 than the differential in Claim 4. 

6.6 F i v e - r o u n d s  and  More  Quasi -dl f ferent ia ls  

It is an unrewardingly tedious task to try to determine precisely the most prob- 
able differentials for SAFER for five or more rounds. The four-round differential 
of Claim 5 ends with a weight-8 output and hence cannot be extended with an 
additional round to obtain a highly probable five-round differential. Nor can an 
additional low-weight round be placed before these four rounds. The analysis 
that we have done suggests that one will need to specify at least two more byte 
transitions to create a good five-round differential than were necessary to spec- 
ify in order to create the most likely four-round differential. One expects very 
conservatively that the probability of the most probable five-round differential 
differs by a factor of 2 -s [the average probability of a byte transition] or less 
from that of the most probably four-round differential. With virtually no doubt 
then, the most probable five-round differential for SAFER will have probabil- 
ity at most 2 - 5 7  . This is close enough to the average differential probability of 
2 T M  that the attack to find the key of six-round SAFER K-64 by differential 
cryptanalysis would require more computation than a brute-force exhaustive key 
search. For this reason, we abide by our original recommendation of six rounds 
(with a maximnmof ten rounds) for SAFER K-64. For six-round SAFER K-128, 
however, exhaustive key search would be much more complex than the attack 
by differential cryptanalysis, which is why we have recommended at least ten 
rounds (with a maximum of twelve rounds) be used with this cipher. It could 
mislead users were we to allow a 128-bit key rather ~han a 64-bit key when the 
security against differential cryptanalysis would not be substantially enhanced 
by the longer key. 
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7 A Hashing 'Weakness' in SAFER 

Having announced a freely available and non-proprietary cipher, we consider it 
our responsibility to inform present and prospective users of this cipher should 
any significant weaknesses be found in it. The first such 'weakness' of which 
we are aware was discovered by Knudsen [KNU95] two months after the oral 
presentation of this paper and concerns the use of SAFER for hashing. 

It is not uncommon to use secret-key ciphers within a public hashing scheme, 
cf. [LAI93]. The strength of the cipher for such hashing depends on the difficulty 
of producing 'collisions', i.e., of finding two distinct plaintext/key pairs that yield 
the same ciphertext. When the plaintext and ciphertext are 64 bit strings, the 
median number of distinct plaintext/key pairs that must be chosen uniformly 
at random before such a collision is found is about 232. By some very clever 
cryptanalysis, Knudsen devised a method to produce such collisions for six-round 
SAFER K-64 after choosing only about 224 distinct plaintext/key pairs, i.e., 
about 256 times as fast as by random guessing. (Because SAFER K-128 reduces 
to SAFER K-64 when the two halves of the 128-bit key coincide, Knudsen's 
attack also applies to SAFER K-128.) 

Knudsen exploited the fact, which can be seen from Fig. 1 for SAFER K-  
64, that changing one byte of the secret key K1 changes only the byte in this 
same position in all 2r § 1 round keys. This fact appears to be irrelevant for 
encryption because of the diffusing effect of the PHT, cf. Section 4, but it has 
significant implications for hashing. Two round keys differing in only one byte 
will sometimes encrypt a round input to the the same round output. Knudsen 
was able to select two secret keys differing in only one byte in such a way that 
both keys encrypt between 222 and 228 plaintexts in the same way for six rounds. 
This is the phenomenon that he exploited to produce collisions about 256 times 
faster than by random guessing when six-round SAFER is used within standard 
hashing schemes. He also found pairs of secret keys that encrypt about 215 
plaintexts in the same way for eight rounds, but this is not enough to give an 
advantage over random guessing in producing collisions. H also determined that 
there are no pairs of secret keys that encrypt many plaintexts in the same way 
for ten or more rounds. 

Knudsen [KNU95] suggested a new key schedule that could be used with 
"SAFER" and would completely remove the hashing 'weakness' that he ex- 
ploited, but that is somewhat more complicated than the original key schedules, 
which are described in Section 2. Although adopting Knudsen's key schedule 
would certainly be a more elegant cure for the hashing 'weakness' in SAFER, it 
seems preferable to us (in deference to the many users who have already imple- 
mented SAFER in software or in silicon) to abide by the original and simpler key 
schedules and merely to specify that at least ten rounds of S A F E R  be used when- 
ever S A F E R  is embedded in a hashing scheme so that the hashing 'weakness' 
vanishes. 
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8 Concluding Remarks 

We have attempted in the above to give a fairly complete picture of present 
knowledge concerning the security of SAFER. We will continue our own analysis 
of SAFER and will disseminate as rapidly as possible any 'weaknesses' in SAFER 
that we ourselves find or that are brought to our attention. 

It is a pleasure here to acknowledge the contributions of the following Ar- 
menian scientists to the differential cryptanalysis of SAFER that was reported 
here: G. H. Khachatrian, M. K. Kuregian, and S. S. Martirossian. Their earlier 
studies, to which we were privy, were very helpful to us, but the responsibility 
for any errors in the analysis given in this paper rests of course with us. 
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A Tables of PHT Correspondences 

T a b l e  4. Weight-1  inputs  giving a P H T  of weight 1, 2, 3 or 4. 

input  
byte 

1 
1 
1 

2 
3 
4 
5 
6 
7 

input  P H T  
value bytes 

64 4 6 7 8  
128 8 
-64 4 6 7 8 

128 6 8 
128 4 8 
128 2 4 6 8  
128 7 8 
128 5 6 7 8  
128 3 4 7 8  

P H T  
v~ues 

128 128 128 64 
128 
128 128 128 -64 

128 128 
128 128 
128 128 128 128 
128 128 
128 128 128 128 
128 128 128 128 

T a b l e  5. Isolated weight-2 inputs  giving a P H T  of weight 4. 

input  
bytes 
1 2 
1 2 
1 3 
1 3 
1 5 
1 5 
2 7 
3 6 
4 5 

input  
values 
64 64 
�9 64 -64 
64 64 
�9 64 -64 
64 64 
.64 -64 
28 128 
28 128 
28 128 

PHT 
bytes 

2 5 6 8 128 
2 5 6 8 128 
2 3 4 8 128 
2 3 4 8 128 
3 5 7 8 1 2 8  
3 5 7 8 128 
3 4 6 7 128 
4 5 6 7 128 
2 4 6 7 128 

PHT 
v~ues 

128 -64 128 
128 64 128 
128 -64 128 
128 64 128 
128 -64 128 
128 64 128 
128 128 128 
128 128 128 
128 128 128 
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T a b l e  6. Weight-2  inputs  giving a P H T  of weight 1, 2 or 3. 

input  
bytes 

1 2 
1 2 
1 2 
1 2 
1 2 
1 3 
1 3 
1 3 
1 3 
1 3 
1 4 
1 4 
1 4 
1 5 
1 5 
1 5 
1 5 
1 5 

1 6 
1 6 
1 6 
1 7 
1 7 
1 7 
2 3 
2 4 
2 5 
2 6 
3 4 
3 5 
3 7 
5 6 
5 7 

input  
values 
64 128 
64 -64 

128 128 
-64 64 
-64 128 
64 128 

64 -64 
128 128 
-64 64 
-64 128 
64 128 

128 128 
-64 128 
64 128 
64 -64 

128 128 
-64 64 
-64 128 
64 128 

128 128 
-64 128 
64 128 

128 128 
-64 128 
128 128 
128 128 
128 128 
128 128 
128 128 
128 128 
128 128 
128 128 5 6 
128 128 3 4 

P I t T  P H T  
bytes values 

4 7 8[128 128 -64 
] 

2 5  6128 128 64 
6 128 
2 5 6[128 128 -64 

I 

4 7  8128 128 64 
6 7 8 128 128 -64 
2 3 41128 128 64 
4 128 
2 3 4 128 128 -64 
B7 8128  128 64 
2 7 8 128 128 -64 
2 4 6 128 128 128 
27  8128  128 64 
4 6 8 128 128 -64 
35  7128 128 64 
7 128 
3 5 7 128 128 -64 
46  8128 128 64 

5 8 128 128 -64 
5 6 71128 128 128 

5 81128 128 64 
I 

3 6 81128 128 -64 
I 

3 4 71128 128 128 
I 

3 6 81128 128 64 
I 

6 1128 128 
I 

2 4 128 128 
g 7 128 128 
5 7 128 128 
2 6 128 128 

7 128 128 
3 7 128 128 

128 128 
128 128 
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T a b l e  7.  O n e  d i m e n s i o n a l  w e i g h t - 2  i n p u t s  g iving a P H T  of  we igh t  4. 

i n p u t  

b y t e s  

1 2 

1 2 
1 3 
1 3 

1 4 
1 
1 

1 
1 

2 3 

2 4 

2 4 

2 5 

2 6 
2 6 

2 8 

3 4 
3 4 

3 5 
3 7 
3 7 

3 8 

4 6 
4 7 

4 8 

4 8 

5 6 

5 6 

5 7 
5 7 
5 8 

6 7 
6 8 

6 8 
7 8 
7 8 

i n p u t  P H T  

values b y t e s  

a -a 1 2 5 6  

-a 2a 3 4 7 8  

a -a 1 2 3 4  
-a 2a 5 6 7 8  

-a 2a 1 2 7 8  
a -a 1 3 5 7  

-a 2a 2 4 6 8  

-a 2a 1 4 5 8  
-a 2a 1 3 6 8  

a -a 3 4 5 6  

a -a 1 2 3 4  

-a 2a 5 6 7 8  

a -a 2 3 6 7  
a -a 1 3 5 7  

-a 2a 2 4 6 8  

-a 2a 1 3 6 8  

a -a 1 2 5 6  
-a 2a 3 4 7 8  
a -a 2 4 5 7  

a -a 1 3 5 7  
-a 2a 2 4 6 8  

-a 2a 1 4 5 8  

a -a 2 4 5 7  
a -a 2 3 6 7  

a -a 1 3 5 7  

-a 2a 2 4 6 8  

a -a 1 2 5 6  

-a 2a 3 4 7 8  

a -a 1 2 3 4  
-a 2a 5 6 7 8  
-a 2a 1 2 7 8  

a -a 3 4 5 6  
a -a 1 2 3 4  

-a 2a 5 6 7 8  
a -a 1 2 5 6  

-a 2a 3 4 7 8  

PHT 
V a l u e s  

4a  2a 2a a 

4a  2a 2a a 
4a  2a 2a a 

4a  2a 2a a 

- 4 a - 2 a  2a a 
4a 2a 2a a 
4a 2a 2a a 

-4a  2 a - 2 a  a 
- 4 a - 2 a  2a a 

2a a - 2 a - a  

2a a 2a a 

2a a 2a a 

-2a  2a - a  a 

2a 2a a a 
2a 2a a a 

- 2 a - 2 a  a a 

2a a 2a a 
2a a 2a a 

-2a  - a  2a a 
2a a 2a a 
2a a 2a a 

-2a  a - 2 a  a 
- a  - a  a a 

- a  a - a  a 

a a a a 

a a a a 

2a 2a a a 

2a 2a a a 

2a 2a a a 
2a 2a a a 

- 2 a - 2 a  a a 
a a - a  - a  

a a a a 

a a a a 

a a a a 

a a a a 

l excep t ing  t h e s e  

]values of  a 

O, 64, 128, -64 

E), 64, 1 2 8 , - 6 4  
O, 64, 1 2 8 , - 6 4  

O, 64, 1 2 8 , - 6 4  

O, 64, 1 2 8 , - 6 4  
[}, 64, 1 2 8 , - 6 4  

O, 64, 1 2 8 , - 6 4  

O, 64, 128, -64 
O, 64, 128, -64 

O, 128 

O, 128 

[}, 128 

O, 128 
O, 128 

O, 128 

O, 128 

O, 128 
O, 128 

O, 128 
O, 128 
O, 128 

O, 128 

I0 

o 
0, 128 
0, 128 

0, 128 

0, 128 
0, 128 

0, 128 

0 
0 
0, 128 

0 
0, 128 
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Tab l e  8. Weight-4 inputs giving a PHT of weight 1. 

input 
~ t e s  

1 2 3 4  
1 3 5 7  
1 2 5 6  
1 2 3 5  
1 2 3 5  

input 
values 

128 128 128 128 
128 128 128 128 
128 128 128 128 
-64 128 128 128 
64 128 128 128 

PHT 
byte[ 

2 
3i 
51 
8 
8 

PHT 
value 

128 
128 
128 

64 
-64 

Tab l e  9. Weight-3 inputs giving a PHT of weight 2. (No such inputs give a PHT of 
weight 1.) 

input 
bytes 
1 2 3  
1 2 3 -64 
1 2 5  64 
1 2 5 -64 
1 2 7  64 
1 2 7 -64 
1 3 5  64 
1 3 5 -64 
1 3 6  64 
1 3 6 -64 
1 4 5  64 
1 4 5 -64 
23  4128 
2 4 6  64 
2 4 6 -64 
2 5 6128 
3 4 7 64 
3 4 7[-64 
3 5 71128 
5 6 7  64 

5 6 7 -64 

input I 'HT PHT 
values ytes values 

64 128 128 81128 64 
128 
128 
128 
128 
128 
128 
128 
128 
128 
128 
128 
128 
128 
128 
128 
128 
128 
128 
128 
128 

128 81128 -64 
128 81128 64 
128 81128 -64 
128 81128 64 
128 81128 -64 
128 81128 64 
128 81128 -64 
128 81128 64 
128 81128 -64 
128 81128 64 
128 81128 -64 
128 81128 128 
128 81 64 64 
128 81-64 -64 
128 5 81128 128 
128 81 64 64 
128 81-64 -64 
128 81128 128 
128 7 81 64 64 
128 7 81-64 -64 
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T a b l e  10. Weight-3 inputs giving a PHT also of weight 3. 

input 
bytes 

1 2 3  
1 2 4  
1 2 4  
1 2 4  
1 2 5  
1 2 6  
1 2 6 128 
1 2 6 -64 
1 3 4  64 
1 3 4 128 
1 3 4 -64 
1 3 5 128 
1 3  7! 64 
1 3 7 128 
1 3 7 - 6 4  
1 5 6  64 
1 5 6 128 
1 5 6 - 6 4  
15 7 64 
1 5 7 128 
1 5 7:-64 
2 3 6  64 
2 3 6 -64 
2 3 7 128 
2 3 7 128 
2 4 5  64 
2 4 5 -64 
25  7128 
25  7128 
3 4 5  64 
3 4 5 -64 
3 5 6 128 
3 5 6 128 

input 
values 

128 128 128 
64 64 128 

128 128 
-64 -64 
128 128 
64 64 

128 
-64 
64 

128 
-64 
128 

64 
128 
-64 
64 

128 
-64 
64 

128 
-64 
128 
128 

64 
-64 
128 
128 

64 

-64 
128 
128 

64 
-64 

PHT PHT 
bytes values 

4 6 8i128 128 128 
4 5 6i128 128 64 

128 2 4 81128 128 128 
128 4 5 6i128 128 -64 
128 6 7 81128 128 128 
128 26  71128 64 128 
128 5 7 8i128 128 128 
128 2 6 7i128 -64 128 
128 3 4  6i128 64 128 
128 2 6 81128 128 128 
128 3 4 61128 -64 128 
128 4 7 81128 128 128 
128 24  71128 64 128 
128 3 7 81128 128 128 
128 2 4 71128 -64 128 
128 3 6 71128 128 64 

128 5 6 8i128 128 128 
128 3 6 71128 128 -64 
128 4 5 71128 128 64 
128 3 4 81128 128 128 
128 4 5 71128 128 -64 
128 2 6 81128 -64 64 
128 26  81128 64 -64 
128 2 4 81128 -64 64 
128 2 4  81128 64-64  
128 5 6 8i128 -64 64 
128 56  8i128 64-64  
128 5 7 81128 -64 64 

128 57  8i128 64-64  
128 3 4 81128 -64 64 
128 34  8i128 64-64  
128 3 7 81128 -64 64 
128 37  8i128 64 -64 
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B P r o g r a m  f o r  S A F E R  K - 1 2 8  

The following is a TURBO PASCAL program that implements encryption with 
the cipher SAFER K-128: 
P R O G R A M  Full_r _Rounds_max_l 2_of_S AFERK128_cipher;  
VAR al,a2,a3,a4,ab,a6,aT,a8, bl,b2,b3,b4,bb,b6,b7,bS, r: byte; 

k: ARRAY[1..25,1..8] OF byte; ka, kb: ARRAY[1..8] OF byte; 
ij,flag: integer; logtab, exptab: ARRAY[0..255] OF integer; 

PROCEDURE matl(VAR al, a2, bl, b2: byte); 
BEGIN b2:= al + a2; bl := b2 § al; END; BEGIN 
{The powers of the primitive element 45 of GF(257) are computed and put in 
table "exptab". Logarithms are put in table "logtab" .} 

logtab[1]:= 0; exptab[0]:= 1; 
FOR i:= 1 TO 255 DO 
BEGIN 

exptab[i]:= (45 * exptab[i - 1]) mod 257; logtab[exptab[i]]:= i; 
END; 
exptab[128]:= 0; logtab[0]:= 128; exptab[0]:= 1; 
flag:= 1; writeln; 
writeln('Enter number of rounds r (max. 12) then hit CR.'); 
readln(r); writeln; 
REPEAT 
BEGIN 

writeln('Enter plaintext in 8 bytes (integers from 0 to 255)'); 
writeln ('separated by spaces, then hit CR.'); 
readln(al, a2, a3, a4, ab, a6, a7, a8); 
writeln('Enter left half of key (Ka) in 8 bytes then hit CR.'); 
readln(ka[1],ka[2],ka[3],ka[4],ka[5],ka[6],ka[7],ka[8]); 
writeln('Enter right half of key (Kb) in 8 bytes then hit CR.'); 
readln(kb[1] ,kb[2] ,kb[3] ,kb[4] ,kb[5] ,kb[6] ,kb[7] ,kb[8]); writeln; 
writeln('Key Ka is', ka[1]:4,ka[2]:4,ka[3]:4,ka[4]:4, 

ka[5]:4,ka[6]:4,ka[7]:4,ka[S]:4); 
writeln('Key Kb is', kb[1] :4,kb[2] :4,kb[3] :4,kb[4] :4, 

kb[5]:4,kb[6]:4,kb[7]:4,kb[8]:4); 
writeln('PLAINTEXT is ',al:8,a2:4,a3:4,a4:4,a5:4,a6:4,a7:4,aS:4); 
{The next instructions implement the key schedule that derives keys 
K1, K2, ... K2r§ from the 128 bit input key (Ka, Kb).} 
{K1 is set equal to Kb.} 
FOR j:= 1 TO 8 DO k[lj] := kb[j]; 
{Each byte of the key Ka is right rotated by 3.} 
FOR j:= 1 TO 8 DO ka[j]:= (ka[j] shr 3) + (ka[j] shl 5); 
FOR i:= 1 TO r DO 
BEGIN 

FOR j:= 1 TO 8 DO 
BEGIN 

{Each byte of keys Ka and Kb is further left rotated by 6.) 
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ka[j]:= (kay] shl 6) + (kay] shr 2); kb~]:= (kb~] shl 6) q- (kb[j] shr 2); 
{The key biases are added to give the keys K2i and K2i+l.} 
k[2*ij]:= ka[j] + exptab[exptab[18*i+j]]; 
k[2*i+l j] := kb[j] + exptab[exptab[18*i+9+j]]; 

END; 
END; 
FOR i:= 1 TO r DO {The r rounds of encryption begin here.} 
BEGIN 

{Key, 2i-1 is mixed bit and byte added to the round input.} 
al := al xor k[2*i-1,1]; a2:= a2 + k[2'i-1,2]; 
a3:= a3 + k[2'i-1,3]; a4:= a4 xor k[2'i-1,4]; 
a5:= a5 xor k[2'i-1,5]; a6:= a6 + k[2'i-1,6]; 
a t : =  a7 + k[2'i-1,7]; a8:= a8 xor k[2'i-1,8]; 
{The result now passes through the nonlinear layer.} 
bl :=exptab[al] ;b2 :=logtab[a2] ;b3 :=logtab[a3] ;b4:=exptab[a4]; 
b5:=exptab[a5];b6:=logtab[a6];bT:=logtab[aT];b8:=exptab[a8]; 
{Key 2i is now mixed byte and bit added to the result.} 
b l :=  bl + k[2*i,1]; b2:= b2 xor k[2'i,2]; 
b3:= b3 xor k[2'i,3]; 54:= b4 + k[2'i,4]; 
b5:= b5 + k[2'i,5]; b6:= b6 xor k[2'i,6]; 
b r : =  b r  xor k[2'i,7]; b8:= b8 + k[2'i,8]; 
{The PHT of the result is now computed to complete the round.} 
matl(bl ,  b2, al, a2); matl(b3, b4, a3, a4); 
matl(b5, b6, a5, a6); mat�94 b8, at, a8); 
matl(al ,  a3, bl, 52); matl(a5, aT, b3, 54); 
matl(a2, a4, 55, b6); matl(a6, aS, b7, 58); 
matl(b�94 b3, al, a2); matl(b5, b7, a3, a4); 
matl(b2, b4, a5, a6); marl(b6, b8, a7, a8); 
writeln('after round',i:2,a1:8,a2:4,a3:4,a4:4,a5:4,a6:4,a7:4,a8:4); 

END; 
{Key 2r+l is now mixed bit and byte added to form the cryptogram.} 
al := al xor k[2*r+l,1]; a2:= a2 + k[2*r+l,2]; 
a3:= a3 + k[2*r+l,3]; a4:= a4 xor k[2*r+�94 
a5:= a5 xor k[2*r+1,5]; a6:= a6 + k[2*r+1,6]; 
a t : =  a7 + k[2*r+l,7]; aS:= aS xor k[2*r+1,8]; 
writeln('CRYPTOGRAM is',al:8,a2:4,a3:4,a4:4,a5:4,a6:4,a7:4,a8:4) ;writeln; 
writeln('Type 1 & CP~ to continue, 0 & CR to stop.');readln(flag); 

END 
UNTIL flag = 0; 

END. 
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C Examples 

Key Ka is 8 
Key Kb is 8 
after round 1 101 
after 2 102 
after 3 114 
after 4 117 
after 5 132 
after 6 199 
after 7 40 
after 8 166 
after 9 178 
after 10 107 
after 11 246 

of SAFER K-128 

7 6 5 4 3 2 
7 6 5 4 3 2 

round 
round 
rouDd 
round 
round 
round 
round 
round 
round 
round 

42 122 106 63 111 225 
122 66 171 75 196 228 
219 165 207 71 24 132 

53 164 99 161 204 201 
77 246 149 5187182 
89 95 137 71 106 55 

214 206 250 209 115 253 
126 11244 39 244 4 
50 26 234 35 53 4 
97 193 179 197 19 126 

216 224 225 46 28 176 

E n c r y p t i o n  

1 
1 

227 
30 

155 
48 
27 

152 
33 
61 

119 
173 

2 
after round 12 47 211 218 110 13 45 17 209 

K e y K a i s  1 2 3 4 5 6 7 8 
K e y K b i s  8 7 6 5 4 3 2 1 
after round 
after round 
after round 
after round 
after round 
after round 
after round 
after round 
after round 
after round 
after round 
after round 

1 245 
2 154 
3 179 
4 25 
5 46 
6 130 
7 5 
8 37 
9 126 
10 204 
11 254 
12 224 

74 156 7 16 15 87 214 
238 95 247 240 190 143 127 

1 127 195 35 207 215 252 
120 166 188 225 251 99 51 
38 108 134 111 249 162 200 

171 126 19 101 109 29 199 
15 205 166 46 98 19 78 

162 212 102 129 250 124 2 
21 150 201 83 135 164 152 

215 66 130 100 178 191 96 
153 253 121 114 99 71 84 
39 89 225 161 235 19 140 

R e f e r e n c e s  

[BIH90] E. Biham and A. Shamir, ~'Differential CryptanMysis of DES-like Cryptosys- 
tems," pp. 2-21 in Advances in Cryptology-CRYPTO '90 (Eds. A. J. Menezes 
and S. A. Vanstone), Lecture Notes in Computer Science No. 537. Heidelberg 
and New York: Springer, 1991. 

[BIH93] E. Biham and A. Shamir, Dilferential Cryptanalys~s of the Data Encryption 
Standard. New York: Springer, 1993. 

[HAR95a] C. Harpes, "A Generalization of Linear Cryptanalysis Applied to SAFER," 
Technical Report, Signal and Info. Proc. Lab., Swiss Federal Inst. Tech., 
Zurich, March 9, 1995. 
(http ://www. isi. ee. ethz. ch/isiworld/isi/research/) 

[HAR95b] C. Harpes, G. G. Kramer and J. L. Massey, "A Generalization of Linear 
Cryptanalysis and the Applicability of Matsui's Piling-Up Lemma," to be 
presented at EUROCRYPT '95. 



SAFER K-64: One Year Later 241 

[HUB90] K. Huber, "Neue Kryptographische Verfahren dutch Kombination yon Op- 
erationen in endlichen KSrpern mit der schnellen Walshtransformation," un- 
published manuscript, presented and distributed to participants at the Telesec 
Arbeitskreis Kryptosysteme, Darmstadt, Germany, Oct. 2, 1990. 

[KNU95] L. R. Knudsen, "A Weakness in SAFER K- 64," manuscript submitted to 
CRYPTO '95, Feb. 16, 1995. 

[LAI91] X. Lai, J. L. Massey and S. Murphy, "Markov Ciphers and Differential Crypt- 
analysis," pp. 17-38 in Advances in Cryptology-EUROCRYPT '91 (Ed. D. 
W. Davies), Lecture Notes in Computer Science No. 547. Heidelberg and New 
York: Springer, 1991. 

[LAI93] X. Lai and J.L. Massey, "Hash Functions Based on Block Ciphers," pp. 55-70 
in Advances in Cryptology-EUROCRYPT '92 (Ed. R. A. Rueppel), Lecture 
Notes in Computer Science No. 658. Heidelberg and New York: Springer, 1993. 

[MAS94] Massey, J. L., "SAFER K-64: A Byte-Oriented Block Ciphering Algorithm," 
pp. 1-17 in Fast Software Encryption (Ed. R. Anderson), Proceedings of the 
Cambridge Security Workshop, Cambridge, U. K., Dec. 9-11, 1993, Lecture 
Notes in Computer Science No. 809. Heidelberg and New York: Springer, 1994. 

[MAT93] M. Matsui, "Linear Cryptanalysis Method for DES Cipher," pp. 386-397 in 
Advances in Cryptology- EUROCRYPT '93 (Ed. T. Helleseth), Lecture Notes 
in Computer Science No. 765. New York: Springer, 1994. 

[MAT94] M. Matsui, "The First Experimental Cryptanalysis of the Data Encryp- 
tion Standard," pp. 1-11 in Advances in Cryptology-CRYPTO '9~ (Ed. Y. 
G. Desmedt), Lecture Notes in Computer Science No. 839. Heidelberg and 
New York: Springer, 1994. 

[PER94] S. R. Perkins, "Linear Cryptanalysis of the SAFER K-64 Block Cipher," 
Diploma Thesis, Signal & Info. Proc. Lab., Swiss Fed. Inst. of Tech., Zurich, 
15 July 1994. 

[SCH92] C. P. Schnorr, "FFT-Hash II, Efficient Cryptographic Hashing," pp. 45-54 
in Advances in Cryptology-EUROCRYPT '92 (Ed. R. A. Rueppel), Lecture 
Notes in Computer Science No. 658. Heidelberg and New York: Springer, 1993. 

[VAU95] S. Vaudenay, "On the Need for Multipermutations: Cryptanalysis of MD4 
and SAFER," pp. 286-297 in this volume. 


