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1 I n t r o d u c t i o n  

In April 1993, the Clinton Administration announced a new encryption system 
for the protection of government and civilian telephone conversations. This pro- 
posal, called the Escrowed Encryption Standard (EES), has a number of features 
which led to widespread public outcry [9, 14]: 

- It contains special features to enable government officials to listen in on 
civilian telephone conversations. 

- Many of the technical details of how it will work are secret. 

In this paper we will not consider the moral issues of whether it is right for a 
government to monitor its citizens in this way; instead, we will concentrate on 
the technical means which the Clinton Administration is going to use to do it. 

The details of the mathematical  operations used by the EES are classified. While 
this would be fine for a miliary cryptographic device, it is extremely undesirable 
in a product intended for the general commercial market (e.g. one which is to 
be placed inside every telephone in America): 

- It is unnecessary. 
- It greatly reduces public confidence in the scheme. 
- The secret details are unlikely to remain secret for long. 

Clearly, something in the system has to be secret. The goal of EES is that  
government agencies will be able to tap telephone calls, but no-one else will. 
To achieve this, the government must have, or know, something that  no-one 
else does. This something is the Unit Key (KU), a cryptographic key which is 
different for every telephone. The basic idea is that  if you know a phone's unit 
key you can tap it, and if you don't  you can't. 

In a well-designed system, this would indeed be how it worked. Everything except 
the actual value of the unit keys would be public, and it would be clear to 
everyone that  phones could only be tapped by someone who had obtained a unit 
key through the proper channels. 
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Unfortunately, EES is not quite like that. As well as the unit keys, most of 
the technical information about how the system works is secret. This leaves a 
lingering doubt in people's minds that the undisclosed technical details contain 
a "back door" which enables phones to be tapped by someone who has not 
obtained proper legal authorisation. 

We will describe a number of ways in which the (classified) internal workings 
could have been constructed so as to allow government agencies to by-pass the 
procedural controls, and hence decrypt EES-protected conversations without an 
authorising court order. 

In support of the third claim (that the secret details are unlikely to remain secret 
for long), we will describe a number of experiments which can used to discover 
some of the classified internal details of an EES device. 

2 T e c h n i c a l  O v e r v i e w  

An overview of the EES system is shown in figure 1. Two telephone subscribers 
are engaged in a telephone conversation. Meanwhile, an FBI agent is intercepting 
the call. The possibility exists that some other person (who is not a government 
agent,) might also have physical access to the wires that carry the telephone 
conversation. Briefly, the goal of EES is that the FBI agent will be able to listen 
in on the call, but the other attacker will not. 

To prevent this other attacker from monitoring the call, the voice signal is digi- 
tised and encrypted. This encryption is carried out by a "tamper-proof" device 
within each telephone. Henceforth, we will refer to this "tamper-proof" encryp- 
tion device as an "EES Device". 

Several different models of EES device have been manufactured. The first such 
device, code-named "Clipper", was manufactured by Mykotronx Ltd. of Tor- 
rance, California. Unfortunately, "Clipper" was already a registered trademark 
of the Intergraph corporation. The Intergraph product of the same name is en- 
tirely unrelated, and has nothing to do with telephone tapping. In order to avoid 
perpetuating this source of confusion, we will use the term "EES device" rather 
than the code-name. 

A block diagram of the internals of an EES device is shown in figure 2. The in- 
formation used to construct this diagram came from the Escrow and Encryption 
Standard, FIPS 185 [16]. FIPS 185 acknowledges that the description it contains 
is incomplete, and asserts that "The complete specifications are classified". 

Stored within the device are the unit key (KU) and the family key (KF). The 
unit key is different for every device, while the family key is the same in all 
interoperable devices. 

The EES devices are used in two phases. In the first phase, the two communicat- 
ing EES devices are both loaded with the same value of the session key (KS), 
and they agree upon an ini~ialisation Vector (IV). The session key is generated 
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by some other electronics elsewhere in the telephone; the Initialisation Vector 
is generated by one of the EES devices. In the second phase, the two EES de- 
vices encrypt and decrypt digitised voice using the session key and Initialisation 
Vector. 

The procedure used in the first phase is asymmetrical between the two EES 
devices. A choice is made as to which of the two will generate the Initialisation 
Vector. We will call the device which generates the Initialisation Vector the 
"initiator" and the device which does not generate the Initialisation Vector key 
the "responder". 

The "initiator" EES device is given as input an 80-bit session key (KS), and 
provides as output a 64-bit Initialisation Vector (IV) and a 128-bit Law Enforce- 
ment Access Field (LEAF). According to FIPS 185, the initiator calculates the 
LEAF in the following way: 

1. The session key (KS) is enciphered under the unit key (KU). The mode of 
operation which is used for this encipherment has not been disclosed. Note, 
however, that it cannot be ECB mode, as ECB mode operates on 64-bit 
blocks and the session key is 80 bits long. 

2. An Escrow Authenticator (EA) is computed. The Escrow Authenticator is 
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a form of cryptographic checkvalue. The size of the Escrow Authenticator, 
the algorithm used to compute it, and the inputs to this algorithm have not 
been disclosed. 

3. The enciphered session key, the Device Identifier (DID) and the Escrow 
Authenticator are enciphered under the family key (KF) to form the LEAF. 
The mode of operation which is used for this encipherment has not been 
disclosed. 

The "responder" EES device is given as input the session key (KS), the Ini- 
tialisation Vector (IV), and the Law Enforcement Access Field (LEAF). The 
responder decrypts the LEAF value it is given, using the family key (KF) and 
the function -1 f3 - Part of this decrypted result is the Escrow Authenticator (EA). 
The responder computes the vMue the Escrow Authenticator should have using 
the function f2. If the two values are not the same, the responder refuses to 
function (i.e. it will neither encrypt nor decrypt data). 

Important details which are missing from FIPS 185 include: 

- The size (in bits) of the Device Identifier (DID) and the Escrow Authenti- 
cator ( E A ) . 

- The functions fl ,  f2, f3. 
- The inputs to the function f2. 

- The inputs to the function f4. 

On reading FIPS 185, it is not apparent that there is any connection between 
the Initialisation Vector (IV) and the Law Enforcement Access Field (LEAF). 
Experiments with actual devices reveal that the value of the IV is used in the 
computation of the LEAF. As we shall explain later, this connection between 
the IV and the LEAF is fundamental to the operation of EES. 

To complete the picture, the process used to generate the Unit Key and the Fam- 
ily Key is shown in figure 3. (This figure is derived from an article by Dorothy 
Denning [7]). The first escrow agent supplies KS1, RS1 ("Random Seed"), AI1 
("Arbitrary Input") and KFC1 ("Family Key Component") , while the second 
escrow agent suppl!es KS2, RS2, AI2 and KFC2. The small squares represent 
exclusive-or operations. The rectangles labelled E(KCK) represent encipher- 
ment using KCK as a key. The key generation unit has two outputs (shown on 
the right of the figure). One of these outputs is given to each of the two escrow 
agents. 

The process by which KU and KC1 are generated are not shown on this figure. 
The "interim" key escrow system which is currently operational uses a variant 
of the key generation algorithm from annex C of ANSI X9.17 [7, 1]. In the next 
phase of the deployment of EES, a classified algorithm will be used for key 
generation. 



How to Reverse Engineer an EES Device 309 

80 bits 

KS 

fl 

1 

Unknown 

f2 

DID !A 

1 
f3 

1 
LEAF 

Unknown 

1 
f4 

IV 

128 bits 64 bits 

Fig. 2. Leaf Creation Method 1 (LCM1) 

3 C o r r e c t  u s e  o f  a n  E E S  D e v i c e  

An EES device does not, by itself, constitute a secure communication system. 
A manufacturer  incorporating an EES device into a product (e.g. a telephone) 
must supply additional components before it will work. The design of EES makes 
a number of assumptions about how an EES device will be incorporated into a 
product,  but  FIPS 185 does not make these explicit. To summarise: 

- Some additional means must be provided to transmit  the session key (KS) 
between the communicating parties. The session key must be protected 
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against wiretapping e.g. by encrypting it. Furthermore, the EES encryp- 
tion algorithm (SKIPJACK) will typically not be used for this encryption; 
the EES device will not encrypt any data with SKIPJACK until a session 
key has been exchanged, and you can't exchange a session key until you 
have some means of encrypting it. To break this deadlock, some other form 
of cryptography can be used. For example, the "Capstone" EES device pro- 
vides yet another classified cryptographic algorithm, the NIST Key Exchange 
Algorithm (KEA) for this purpose. 

- The LEAF and IV must also be transmitted between the communicating par- 
ties. For EES to work as its designers intended, these must not be encrypted. 
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If they are, the FBI will be unable to decipher an intercepted telephone call. 

When it comes to incorporating cryptographic devices into products, it is of- 
ten the case that  Murphy's Law applies: "What  can go wrong, will". This is 
particularly true of devices whose internals are classified, and where the person 
designing a system around the device is not permitted to know how to use the 
device correctly. 

It is alleged that  some of the first designers of products based on EES devices 
were not even told that  the FBI-intercept feature was there; they were simply 
told that  the cryptographic algorithm had a 192-bit Initialisation Vector (in fact, 
it has a 64-bit IV plus a 128-bit LEAF, giving a total of 192 bits). 

The two most obvious ways of using an EES device will not work: 

- Taking all the cryptographic variables and transmitting them (unencrypted) 
to the other side won't work. This results in the session key (KS) being sent 
in the clear, thus enabling absolutely anyone to decipher the call. 

- Taking all the cryptographic variables and encrypting all of them won't work 
either, as it will prevent the FBI-intercept feature from operating. 

4 T h e  S k i p j a c k  R e v i e w  P a n e l  

As the internals of the EES device are classified, and as it was designed by an 
organisation whose activities include intercepting large numbers of telephone 
calls, it is reasonable to suspect the existence of some form of "back door" 
which enables the NSA to decipher EES-protected telephone calls without first 
obtaining a court order and following the proper procedures. 

To allay public fears on the issue, the U.S. Government convened an "indepen- 
dent" panel of experts to examine the security of the cryptographic algorithm 
(SKIPJACK) used in EES. This review panel only examined the SKIPJACK 
algorithm itself [4], and did not examine the way it is used by an EES device 1 
As we will show later, even if the SKIPJACK algorithm itself is perfectly good, 
the way in which it is used by the EES device could introduce many security 
loopholes. On top of this, the results of the experiments carried out by the review 
panel fall far short of being a whole-hearted endorsement of SKIPJACK. 

The most significant experiment carried out by the SKIPJACK review panel 
is the cyclic closure test (CCT). The objective of this test is to discover how 
many different possible keys there are. If the number of keys is too small, an 
attacker can break the algorithm by trying all possible keys. The key input to 
the SKIPJACK algorithm is 80 bits long, so it is clear that  there are at most 280 
possible keys. This is a very large number, and should provide adequate security 

1 The review panel originally intended to produce a second report, which would exam- 
ine the security of the way the algorithms were used. This report was never published. 
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for most purposes. However, the possibility remains that the number of different 
keys is much smaller than 2 s~ For example, devices that implement the Data 
Encryption Standard (DES) [11] have a 64 bit key input, but only 56 of these 
bits are used (the remaining 8 bits are used as a parity check). Thus, DES has at 
most 256 different keys, even though it has a 64 bit key input. If you are given a 
black box that implements DES, it is easy to determine that it has at most 256 
keys; a simple experiment will show that the values of 8 of the input bits have no 
effect on the output. Determining effective key size is not always so simple; the 
IBM Commercial Data Masking Facility (CDMF) [8] has only 24o possible keys, 
and yet changing each of its 64 key input bits changes the output. In these more 
complex cases, the cyclic closure test is used to determine the true key size. 

The cyclic closure test is a statistical test. You first choose a key size k, and then 
run the test several times to test the hypothesis that the number of different 
keys is at least 2 k. As this is a statistical test, it is very important that it is run 
multiple times. This is analogous to testing a coin for fairness; if it comes up 
heads once, this means nothing; if it comes up heads twice in row, this could be 
a co-incidence; if it keeps on coming up heads, something is seriously wrong. 

The Skipjack review panel ran the CCT 1,000 times to test the hypothesis that 
there are at least 240 distinct keys. These 1,000 samples gave a strong indication 
that SKIPJACK really does have at least 24~ keys. However, 24o is not big 
enough to provide adequate security. Algorithms such as CDMF have 24~ keys, 
and they are known to be reasonably easy to break by exhaustive search. 

The more interesting test is for the hypothesis that SKIPJACK has at least 256 
distinct keys. That is, does it have at least as many keys as DES, the 1970's 
algorithm which it is intended to replace. Unfortunately, the review panel only 
published the result of one run of the test for this hypothesis. As the CCT is a 
statistical test, a single run is almost meaningless. However, it is worth noting 
that for the one run they published, the measured cycle length (28,767,197) was 
shorter than the expected cycle length (168,216,976). If this happens consistently, 
then there is strong evidence that SKIPJACK has fewer than 256 keys, rather 
than the 2 s~ which its proponents claim. In fact, the review team did run the 
test again, although they did not publish the second result [5]. The second time, 
the measured cycle length was also shorter than it should be. 

5 E x p e r i m e n t a l  A p p a r a t u s  

The experiments described in the next section require access to an EES device. 
One way to obtain such a device would be to obtain an EES-protected telephone 
and dismantle it. The EES devices used in telephones are often of the surface- 
mounted "Quad flat pack" type and are soldered to the printed circuit board. 
This makes it troublesome to remove the device without destroying it. However, 
most university electronics laboratories will have equipment for doing this. 

An alternative means of obtaining an EES device is to use the identification 
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smart-cards (code-name "Tessera" 2) used in the U.S. Defense Message System. 
The Tessera card has the great advantage that  it is designed to be plugged into a 
computer  (via the PCMCIA socket on an IBM-compatible laptop). This means 
that  it can be used to perform the experiments described in this section without 
needing the use of a soldering iron. 

There are some significant differences between the facilities provided by a tele- 
phone-oriented EES device such as "Clipper" and a computer-oriented EES de- 
vice such as the Tessera card: 

1. Some of the devices intended for use in telephones only support one crypto- 
graphic mode of operation (typically, OFB mode). The Tessera card supports 
all the FIPS 81 modes [12], including Electronic Codebook Mode. 

2. The Tessera card imposes an additional layer of key management protocols 
on top of EES. Functionally, the Tessera card can be regarded as two different 
devices on one chip: an EES device, and another processor which mediates 
all accesses to the EES device. It has been alleged that  this second processor 
is based on an ARM 600 series macrocell. No EES device lets the user choose 
the Initialisation Vector; the Tessera card does not let the user choose (or 
even know) the session key either. 
Tessera provides two basic means of setting up a session key: a shared key 
can be established between two cards using the NIST KEA algorithm, or a 
previously saved session key can be reloaded. The operation to reload a key 
takes as input an 80 bit key and 16 bits of redundancy, all encrypted under a 
master  key which is unique to the device. The Tessera card will only reload 
a key if the 16 bits of redundancy take on the correct value. Furthermore, 
the device master key is different for each card, and is not revealed to the 
owner of the card. Note that  this makes it impossible for the owner of the 
device to either choose or to determine the value of a session key. 

After I had started work on this paper, the Tessera cards were withdrawn 
and replaced with a new computer-based EES device, which was code-named 
"Fortezza". The change in name was because "Tessera" (like "Clipper") was 
already a registered t rademark of another company. The Fortezza card also in- 
corporated a technical change which was intended to prevent the LEAF-forging 
attack described by Matt  Blaze [3]. After it has rejected several false LEAFs in 
succession, the Fortezza card goes into a state in which it does nothing until it 
is reset. 

This modification does not actually prevent the LEAF-forging attack: it merely 
makes it slower. For example, the LEAF-forger can just  reset the card each time 
it goes into this state. However, this is probably enough to prevent people from 
using LEAF-forging as a practical way to defeat the key escrow system. It was 
doubtful whether anyone would do this with the Tessera card, as 40 minutes is 

Tessera is the Latin word for a clay tile. Such tiles were used as primitive identity 
cards in the Roman empire. 
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a long time to wait every time you send a message. The Fortezza card makes 
LEAF-forging take even longer than 40 minutes, and hence it is very unlikely 
that  anyone would use this a means to defeat the escrow system. 

However, there are other reasons for creating forged LEAFs. Some of the exper- 
iments described in this paper depend upon the ability to create forged LEAFs. 
These experiments are still possible with the Fortezza card, but take longer. They 
could be redesigned to take account of the different performance characteristics 
of the Fortezza card. For example, in many cases there are two possible experi- 
ments, one which involves generating a large number of real LEAFs, and another 
which involves verifying a large number of fake LEAFs. With the Tessera card, 
there is no reason to choose one of these experiments over the other. With the 
Fortezza card, experiments which involve generating LEAFs are much quicker 
than experiments which involve verifying fake LEAFs. 

6 Experiments 

6.1 R e - R u n  Cycl ic  C lo su re  Tes t  

R a t i o n a l e  As described in the previous section, the SKIPJACK review panel 
decided to stop running the cyclic closure test on the SKIPJACK algorithm 
just as the results began to look interesting (i.e. began to provide evidence of a 
weakness in the algorithm). It would be interesting to continue the test, to find 
out if the results obtained by the SKIPJACK review panel were a statistical 
fluke or a real sign of weakness. 

The cyclic closure test is a "black box" test; it does not require use of any 
information about the internals of the algorithm under test. Thus it is often 
possible to perform the cyclic closure test using only a hardware implementation 
of a secret algorithm. Unfortunately, it is not possible to perform this test using 
either the Tessera card or the telephone-oriented EES devices. 

This experiment (or rather, non-experiment!) is included for two reasons: 

- The fact that  this experiment can't  be performed is very significant. If the 
Skipjack algorithm was actually a weak algorithm, it would be very hard for 
users to discover this. 

- This experiment might be possible with EES devices other than the Tessera 
card or Clipper. 

M e t h o d  The cyclic closure test involves finding a cycle in the following itera- 
tion: 

xi+l -~ E(d,  xi) 
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Where E(d, k) is the result of encrypting d with key k in Electronic Codebook 
Mode, and d is a data block chosen at random. 

The telephone-oriented EES devices cannot be used for this test, as they are only 
capable of OFB-mode encipherment with an internally generated IV. A device 
which supported OFB-mode with an externally-supplied IV could still be used 
for the cyclic closure test (simply keep the IV constant). However, the telephone- 
oriented devices generate a new IV at random each time they are loaded with a 
new key. This ruins the cyclic closure test, as the ever-changing IV will prevent 
the iteration from settling down into a repeating cycle. 

The Tessera card also cannot be used for this test, as it does not allow the user 
to choose a session key. It is interesting to note that this test would be possible 
if the Tessera card did not put any redundancy in saved session keys. The test 
would be run as follows: encrypt d under the current session key, pretend that 
the result is a saved session key, "reload" it, and repeat. This gives the following 
iteration: 

= E(a, KM)) 

Where KM is the (unknown) device master key. Note that encryption and de- 
cryption are both reversible operations, so decrypting a key with KM permutes 
the key space without changing its size. Thus, signs of weakness found with 
this modified iteration are just as valid as those found using the standard cyclic 
closure test. 

However, the 16 bits of redundancy prevent us from using this trick; the device 
will usually detect that the input to the reload operation is not a genuine saved 
key (it will be fooled one time in 216 , but this isn't often enough to be useful for 
the CCT). 

Resources  Needed  This estimate of resources is somewhat hypothetical, as 
this experiment isn't possible for the reasons outlined above. However, if an EES 
device without these restrictions was obtained, the resources required would be 
approximately as follows. 

Assuming that the true key size is 56 bits (rather than 80 as is claimed) the cyclic 
closure test will take on average 2 • 22s iterations to find a cycle. Assuming that 
each key change takes 50ms (the Tessera card is rather slow at changing keys) 
then the cyclic closure test will take 310 days. To give statistically significant 
results, this test must be run at least three times. Thus, the total resources 
needed to perform this test are about 3 machine-years. 

Note that if the true key size is greater than 56 bits, this test will not need any 
more time. If a cycle is not found after the expected number of iterations, then 
the run should be terminated. If all three runs are terminated without finding a 
cycle, then it is possible to reject the hypothesis that the the key size is 256 or 
smaller. 
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O p p o r t u n i t i e s  fo r  p a r a l l e l i s m  Clearly, each of the runs of the cyclic closure 
test can be run in parallel. Hence this experiment could be performed in one 
year using three devices rather than three years using one device. If a very large 
number of devices are available, and it is desired to perform the test quickly, 
then it is possible to use alternative algorithms which permit  a greater degree 
of parallelism. Some algorithms of this type are described in a paper by Michael 
Wiener [17]. 

6.2 S e a r c h  fo r  E q u i v a l e n t  K e y s  

R a t i o n a l e  As the cyclic closure test cannot be performed with the Tessera card, 
it is necessary to use some other test for effective key size. The test described 
in this section tests the size of the key space by searching for pairs of keys 
which have the same effect on all plaintexts. If the true key size is less than the 
claimed 2 s~ there will be many such pairs. Finding even one such pair would 
reveal interesting information about the internal structure of the SKIPJACK 
algorithm (analagous to the existence of weak keys in DES [10]). Finding many 
such pairs would be proof of a serious weakness in the algorithm. 

This test is not quite as satisfactory as the cyclic closure test, for at least the 
following reasons: 

- It requires at least O(22s) 64-bit words of disc space. Th e  cyclic closure test 
needs only a very small about of disc space and memory. 

- We have a reason to believe that  SKIPJACK will fail the cyclic closure test 
(the results of the Skipjack review panel). We have no reason to suppose that  
this alternative test will be as good at detecting SKIP JACK's weaknesses. 

M e t h o d  Repeat the following at least 22s times: 

1. Get the Tessera card to generate a random session key. (It can do this, even 
though it won't reveal the value of the key it has generated). 

2. Use the "save key" transaction to save this key (encrypted under the device 
master key!) to external storage. 

3. Encrypt a fixed test pattern (0, say) in ECB mode using the session key, and 
save the result. 

The results of encrypting 0 under different keys can then be ~orted in order to 
find matches. A match can be caused in any of the following three ways: 

1. The Tessera card generated the same session key on more than one occasion. 
This case can be recognised by comparing the saved session keys (which 
are in enciphered form). If the two session keys are equal, then their enci- 
phered forms will also be equal, as the enciphered form does not contain any 
randomness to prevent comparison. 
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2. The two keys have different effects in general, but happen to give the same 
result when enciphering 0. 
This case can be recognised by reloading the saved session keys, and using 
them to encipher other values (e.g. 1, 2, . . . )  The existence of such pairs of 
keys is to be expected, and is not a sign of weakness in the algorithm. 

3. The two keys have the same effect on all (or nearly all) inputs. 
This case can be recognised by re-loading the saved session keys, and us- 
ing them to encipher some randomly-chosen values. If the two keys have 
the same effect on a large number of randomly-chosen inputs, then this is 
strong evidence that  they have the same effect on most inputs. If this case 
is encountered, it is a sign of weakness in the algorithm. 

6.3 C h e c k  t h a t  IV is u s e d  as an  I n i t i a l i s a t i o n  Vec to r  

R a t i o n a l e  This experiment confirms that the "IV" parameter which is exchanged 
between EES devices is the same us the Initialisation Vector that  the device ac- 
tually uses when it encrypts or decrypts. An alternative possibility would be 
that  "IV" is the Initialisation Vector enciphered under a key common to all EES 
devices. 

M e t h o d  One EES device (the "initiator") is used to generate an IV and LEAF 
for session key kl. The initiating device is then used to encipher a sample message 
in OFB mode. A second EES device (the "responder") is used to decipher this 
message twice, in two different ways: 

- Firstly, the responder is put into OFB mode and used to decipher the mes- 
sage. 

- Secondly, the responder is put into ECB mode. The responder is used to 
decipher the message, with the OFB mode chaining being implemented in 
software external to the device. This is possible because OFB mode is defined 
in terms of invocations of a "black box" which provides ECB mode. 

If the "IV" input to the device was not the same as the Initialisation Vector 
used by the device in OFB-mode chaining, then these two decipherments would 
give different answers. 

R e s u l t s  This experiment has been carried out with a Tessera card by Matt  
Blaze [2]; both decipherments are the same. A similar experiment using CBC 
mode instead of OFB mode also showed that  on-chip chaining and software 
chaining gave the same answer. 
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Conclusions  The "IV" input really is the Initialisation Vector, and it is not 
enciphered. Furthermore, we can conclude that when OFB mode is selected, the 
device really does encipher and decipher in OFB mode (rather than some other 
keystream mode). 

F u r t h e r  Remarks  We can also conclude that the mode of operation is not one 
of the variables which are used to compute the Escrow Authenticator (EA). If 
the mode of operation were an input to EA, it would be impossible to use a 
LEAF generated by an initiator in one mode with a responder in a different 
mode. 

However, even if the mode of operation was an input to the Escrow Authentica- 
tor, it would still be possible to perform this experiment. The reason for this is 
that the Initialisation Vector has no effect in ECB mode. A modified version of 
this experiment would involve two LEAFs, one (L1) for OFB mode, session key 
kl and Initialisation Vector VI', and the other (L2) for ECB mode, session key kl 
and Initialisation Vector V2. As the device chooses its own IV when generating 
a LEAF, V1 r V2. The software emulation of OFB mode would input kl, L2 and 
V~ to the EES device, but would use V1 as the real Initialisation Vector in the 
software emulation of chaining. 

6.4 D e t e r m i n e  whe the r  device checks session key equals enc iphe red  
session key 

Ra t iona le  A "responding" EES device is supplied with the session key via two 
different paths: 

- Via a key management mechanism external to the device. We shall call this 
the "clear text session key". 

- Via the LEAF, which contains the session key enciphered under the initia- 
tor's unit key and the shared family key. We shall call this the "enciphered 
session key". 

Given these inputs, a device might do one of the following things: 

- Use the clear text session key, and ignore the enciphered session key. 
- Use the enciphered session key, and ignore the clear text session key. 
- Check that the two versions of the key are equal, and signal an error condition 

if they are not equal. 

If there is no "back door" in the key escrow mechanism, the responding device 
should not be able to use either the second or the third of these possible methods. 
The Unit Key is supposed to be secret and unique to every device. Hence the 
responding EES device should not know the unit key of the initiating device, 
and so should not be able to extract the session key from the LEAF. 
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However, the question still remains. It is theoretically possible that some of the 
claims made about the device are false, that in fact there is no unit key, and 
the responding device does check that the two values of the key are equal. It is 
desirable to have an experiment to show that the device does not perform this 
check. 

M e t h o d  The first EES device (the "initiator") is used to generate an IV and 
LEAF for a particular session key (kl). This IV and LEAF are loaded into a 
second EES device (the "responder"), but with a different session key (k2). A 
data block of 64 bits is encrypted using the initiating device, and the resulting 
ciphertext is decrypted using the responding device. For the purposes of this 
experiment, it does not matter which of the supported modes of operation is 
used for this encryption and decryption (although initiator and responder must 
use the same mode). 

R e s u l t s  Most of the time, the responding device will detect that the session key 
has been modified. The Tessera card reveals that it has detected the tampering 
by refusing to perform encipherment or decipherment with the modified session 
key. 

Some of the time (1 in 216 for the Tessera card [3]) the responding device accepts 
the modified session key. In these cases it is possible to continue the experiment 
and to attempt to decipher the block of ciphertext. The result of this decipher- 
ment is nearly always different from the original input plaintext. 

Conc lus ions  It is possible to reject the hypothesis that the responding device 
only uses the enciphered session key. If the responder only used the enciphered 
session key, it would decrypt the ciphertext block with kl, and hence recover the 
original plaintext. Instead, the responder decrypts the ciphertext block with k2; 
as this ciphertext was produced by enciphering with kl (not k2) this results in 
a block which is almost always different from the original input. 

The observed behaviour can be explained by any of the following hypotheses: 

- The responder does not check that the session keys are equal; it only checks 
the value of the Escrow Authenticator (EA). 

- It does check that the session keys are equal, but never acts upon the result. 
This is equivalent to the above! 

- The responder extracts the session key from the LEAF, computes a hash of 
the key which is different from the Escrow Authenticator (EA), and uses 
this other hash to check if the two keys are equal. While this is theoretically 
possible, it makes no sense! 

Given the above experiment, and the claim that the unit keys are unique to each 
device, it seems likely that the responder does not check the encrypted session 
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key in the LEAF. Furthermore, we can conclude that the size of the Escrow 
Authenticator is at least 16 bits. If the Escrow Authenticator was smaller, then 
modified session keys would be accepted more frequently. 

F u r t h e r  Remarks  It is theoretically possible that the Escrow Authenticator 
is larger than 16 bits, but the responding device only checks 16 bits of it. Why 
would the device be designed to do this? One possible reason is as follows: by 
rejecting LEAFs with a bad EA, the responding device is revealing valuable 
information about the secret family key, KF. An attacker who does not know 
KF can still use a responding EES device as an oracle to provide answers to 
certain questions about the internals of a LEAF. Indeed, most of the experiments 
described in this paper are different methods of using a responder as an oracle. To 
prevent this type of attack on the family key, it would be better if a responding 
EES device always accepted a LEAF, regardless of the value of EA. However, if 
responding devices never checked EA, then it would be very easy to by-pass the 
key escrow mechanism (e.g. by not transmitting the LEAF at all). 

A compromise between these positions would be for the responding devices to 
only check part of the EA. The devices would check enough of the EA to make 
it hard to bypass the key escrow system, but not enough of it to give an attacker 
perfect information about the LEAF. 

How big should the LEAF be, and how many bits of it should be checked? 
Enough bits should be checked to make it inconvenient to forge an acceptable 
LEAF. If t is the time taken for a device to generate a single LEAF, and k is the 
number of bits that are checked, t • 2 k should be an inconveniently long time. A 
value of 50 ms for t and 16 for k results in LEAF forgery requiring 55 minutes, 
which is certainly inconvenient. 

The Escrow Authenticator should contain enough extra bits to make it reason- 
ably likely that a forged LEAF will not be a perfect forgery. However, the EA 
cannot be made very large because there is limited amount of space in the LEAF 
(128 bits). A LEAF size of 18 bits (with 16 of them checked) would mean that a 
single forged LEAF has a 75% chance of not being perfect. An 18-bit EA would 
ensure that anyone who forges LEAFs regularly will almost certainly create some 
imperfect forgeries. 

If the responding devices do not check these extra bits, does it matter that 
they are there? It does, because there might be specialised equipment (such as 
the FBI intercept processors) that does check the additional bits. This would 
enable government officials (who have the special equipment) to detect attempts 
at LEAF forgery. Note that for this to work, the extra two bits do not even 
need to be the output of a strong hash function; it will even work if they are 
always zero. This would allow this function to be concealed even from people 
who have access to the (classified) description of the internals of the device; 
the specification could say "these two bits always zero (reserved for future use)" 
without arousing suspicion as to their true purpose. Indeed, it would be sufficient 
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to make the serial number two bits longer, and to arrange that no EES device 
is ever manufactured with the top two bits of its serial number non-zero. Then, 
if an intercept processor sees a LEAF containing a serial number with either of 
the top two bits set, it has strong evidence that the LEAF has been forged. 

It is worth noting that in Dorothy Denning's original description of Clipper [6], 
the serial number is described as being 30 bits long. As the LEAF is 128 bits 
long, and the encrypted session key is 80 bits long, this would leave 18 bits for 
the Escrow Authenticator (EA). Subsequent descriptions of Clipper take care to 
avoid mentioning the length of EA [16]. 

6.5 D e t e r m i n e  whether  the session key affects EA 

M e t h o d  The first EES device (the "initiator") is used to generate an IV and 
LEAF for a particular session key (kl). This IV and LEAF are loaded into a 
second EES device (the "responder"), but with a different session key (k2). 

Resu l t s  This experiment was first performed by Matt Blaze [3]. Most of the 
time, the responding device will refuse to encrypt using the modified session 
key. Given that the responder does not make use of the session key inside the 
LEAF, this means that the value of the session key affects the value of EA. 

6.6 D e t e r m i n e  whether  the IV affects EA 

M e t h o d  The first EES device (the "initiator") is used to generate an IV and 
LEAF for a particular session key (kl). This session key and LEAF are loaded 
into a second EES device (the "responder"), with a different IV. 

Resul ts  Most of the time, the responding device will refuse to encrypt using 
the modified IV. 

Conclus ions  There are two possible explanations for this behaviour: 

1. The value of the IV is an input to the function (f2) used to compute EA. 
If the IV is modified, the responder will compute a different value of the 
Escrow Authenticator from that contained in the LEAF, and so will reject 
the LEAF. 

2. The IV is an input to the function (f3) used to encipher the LEAF. That 
is, IV is used as an Initialisation Vector for two different encipherments: the 
encipherment of the user-supplied data with the session key KS, and the 
encipherment of the LEAF with the family key KF. 
If the IV is modified, the responder will incorrectly decipher the LEAF, the 
EA contained within the incorrectly deciphered LEAF will not match the 
recomputed EA, and so the responder will reject the LEAF. 
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F u r t h e r  R e m a r k s  Encrypting two different messages with the same key and 
the same IV is usually a bad idea, as it makes some additional cryptanalytical at- 
tacks possible. However, what may be happening with EES is that two different 
messages (the LEAF and the user data) are enciphered with the same IV but dif- 
ferent keys. This is certainly unusual, but does not seem to be cryptographically 
weak. 

6.7 D e t e r m i n e  w h e t h e r  f~ is a checksum 

Ra t iona l e  If the function f2 (used to compute EA) was one of the commonly- 
used error detecting codes (such as a simple checksum, a CRC, or Fletcher's 
algorithm), then it would be possible to produce false LEAF values in a much 
more efficient way that that proposed by Matt Blaze [3]. Hence, it is likely 
that the designers of EES made the function f~ a cryptographically strong hash 
function. This experiment determines whether or not this is the case. 

M e t h o d  Use an "initiating" EES device to produce a LEAF (L1) and IV (V1) 
for key kl. For each of the common error detecting codes, calculate values of the 
key (ks) and IV (V2) which give the same error detection code as k~ and 1/1. For 
some codes, doing this requires knowledge of the order in which k and V occur 
in the input to f2; simply try all possible orderings. 

Are the modified key and IV, together with the original LEAF, accepted by 
a "responding" EES device? If they are, repeat the experiment with different 
values of kl. If the fake k2 and V2 are always accepted, then the function f2 has 
been found. 

F u r t h e r  R e m a r k s  With the Tessera card, it is impossible for the user to select 
the session key, so this experiment is restricted to changing the Initialisation 
Vector. Furthermore, if the Initialisation Vector is also used as the IV in the 
decipherment of the LEAF (as suggested in section 6.6) then it will not be 
possible to derive useful information about f~ by changing IV. This experiment 
is only really informative with EES devices that allow the user to select a session 
key. 

6.8 D e t e r m i n e  w h e t h e r  DID or  encrypted session keys affects EA 

M e t h o d  With a fixed value of the session key (kt) and a fixed value of the 
IV (V1), try random values of the LEAF until two LEAF values (L1 and L~) 
are found that will be accepted by a responding device. Then the following two 
equations hold: 

f31(L1) = (E~, D~, f2(kl, V1, E~, D~, . . .)) 
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f31(L~) = (E~2, D~, f2(kt ,  V1, E~, O~, . . . ) )  

One in 216 LEAF values will be accepted, so this can be done in a few hours. It 
is highly likely that these two fake LEAF values will contain different encrypted 
session keys. That is, E~ r E~. 

With one fake LEAF (say L1), keep the IV fixed at V1 and find other values of 
the session key that will be accepted by a responding device. Call these k~. 

Vi : f31 (L1) = (E~, D~, f2(k~, V1, E~, D~I,...)) 

Check to see whether these ki are also accepted by a device given the other fake 
LEAF. If they are always accepted, then the following equation holds: 

Vi : f f l ( L 2 )  ' ' ' ' ' : ( E 2 ,  D 1 ,  f2(ki,  Vl �9 .) , E2, D2, �9 

That is, changing the values of the Device ID (DID) and the encrypted session 
/ ! ! ! key from (El, D1) to (El, D2) does not change the set of keys (k') for which the 

value of f2 is constant. 

If f2 were a simple function, this fact would not allow us to draw any conclusions 
about its inputs. For example, f2 might be a checksum of all the inputs (including 
E and D), with E~I+D~ = E~+D~2. However, if f2 is a collision-free hash function, 
it would follow that E and D could not be inputs to f2! 

Note that this experiment will still work even if the IV is used in the decipher- 
ment of the LEAF (as suggested in section 6.6). 

6.9 D e t e r m i n e  w h e t h e r  e n c r y p t e d  session keys affects E A  

M e t h o d  With two different session keys (kl and ks), use an initiating device 
to generate (IV, LEAF) pairs until an IV collision is found. That is, we have two 
LEAFs generated by the same device (with the same DID)  with the same IV 
but different session keys. 

Repeat this process until many such pairs are found. Eventually, a pair will be 
found where kl is accepted with the second LEAF as well as the first. Call these 
two LEAFs L1 and L2. 

Then find session keys ki such that ki is accepted with L1 and V.1. If these keys 
are also accepted with L2 and V2, then the enciphered session key is probably 
not used in the computation of EA.  If these keys are usually rejected, then the 
enciphered session key is used in the computation of EA.  

Note that this experiment will still work even if the IV is used in the decipher- 
ment of the LEAF (as suggested in section 6.6). 
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R e s o u r c e  R e q u i r e m e n t s  Assuming that IVs are randomly generated, about 
232 IVs will need to be generated before an IV collision is found. If it takes 
significantly fewer or more at tempts to find a collision, this is very interesting: 

- If it takes longer, then the initiating device must have some memory; perhaps 
the IV is the result of encrypting a counter with a key stored inside the device. 
If this is the case, then this experiment cannot be completed. 

- If a collision is found sooner, then the IV is not as random as it should be. 
Perhaps a few bits of the IV are being used to leak part of the session key 
(or even the unit key!) to an eavesdropper? This would be very bad! 

Assume that  it does indeed take 2 z2 attempts to find a collision. One in 216 of 
these collisions will have the additional property that  kl is accepted with both 
IVs. Thus the total number of trims needed is less than 24s. (It is less because 
there are economies of scale wh'en searching for multiple collisions). 

This is undoubtedly an expensive and time-consuming experiment. However, it 
only needs to be done once for the algorithm. The discussions of DES breaking 
machines usually hypothesise an attacker being prepared to do an 0(256) search 
for each key she wishes to break. Here, it is only necessary to do an 0(248 ) search 
once; this will reveal a (classified) fact about every EES device in existence. 

7 Other Observations 

As far as we know, there has never been a good description of the internals 
of an EES device in the unclassified literature. Attempts to reverse engineer 
these devices have led to a better description of their internal workings than 
has previously been available. This in turn led to some new observations on the 
security of the scheme [13]. 

7.1 F o r g e r y  

The telephone-oriented EES devices only support Output Feedback Mode. This 
mode does not provide integrity or authentication, although someone who had 
not examined the scheme in detail might be fooled into thinking that  it does. 
The fact that  OFB mode is unsuitable for integrity or authentication has been 
known for at least ten years [15]. The new observation is that  a workable key 
escrow system would need to have authentication as well as confidentiality. 

Consider the following scenario. A person is on trial for a criminal offence, and 
the only evidence for the prosecution is an intercept of a telephone cM1 that  
was protected by an EES device. The prosecution shows that  the ciphertext 
can be decrypted into intelligible speech by an intercept processor loaded with 
the escrowed copy of the defendant's telephone's unit key. The content of the 
telephone conversation is clearly incriminating. However, the defendant denies 
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that they made the telephone call. The compression algorithms used in EES 
telephones distort speech, so it is hard .to recognise the voice. The prosecution 
argues that since only the defendant's escrowed key will decipher the call, it 
must be the case that it was made from the defendant's telephone. 

The defence argues that the call has been forged in the following manner. Given 
the ciphertext (from wiretapping) and the plaintext (either as the output from 
an intercept processor, or from a bug in the same room as the telephone) it is 
possible to exclusive-or them together to recover the key stream. This key stream 
can then be exclusive-ored with an entirely different plaintext to produce a forged 
ciphertext. This forged ciphertext will be converted into the forged plaintext 
when fed into the intercept processor. 

Based on this argument, juries may well be persuaded to disregard evidence 
from EES intercepted telephone calls. As the stated purpose of EES is to aid 
law-enforcement, this is a serious blow to its credibility. 

Alternatively, all this "cryptographic magic" may convince a jury that EES 
provides absolute proof that a person made a particular call. This carries a 
grave risk of innocent people being convicted on the basis of falsified evidence. 

Note that access to the escrowed keys is not needed to make a forgery. Anyone 
with access to the output from an intercept processor can make such a forgery, 
regardless of whatever physical and procedural controls are used to restrict access 
to the actual keys. 

7.2 Masque rade  

Another attack on the EES protocols has been found by Moti Yung and Yair 
Frankel. Their attack has some similarities with the forgery attack described 
in the previous section, in that it shows the need for authentication as well as 
confidentiality in an escrow system. Their attack proceeds as follows. Suppose 
Alice initiates a conversation with Bob, and Bob later initiates a conversation 
with Chris. If Bob gets to choose his session key (KS) with Chris, then Bob can 
re-use the session key and IV he shared with Alice. Furthermore, Bob can give 
Chris a copy of Alice's LEAF, rather than a new LEAF created by Bob. This 
has two unfortunate consequences: 

- If they only have a wiretap warrant for Bob (and not Alice or Chris), the 
FBI may experience a certain amount of difficulty in tapping the call between 
Bob and Alice; the enciphered session key inside the LEAF Bob sends will 
not be decipherable with Bob's escrowed unit key. 

- Bob may be able to incriminate Alice. Bob (knowing that Chris's phone is 
tapped) could say something incriminating in his call to Chris. When the FBI 
decipher the LEAF Bob sent (to determine who called Chris), they will find 
Alice's Device Identifier. Furthermore, when they have obtained a wiretap 
warrant for Alice and an escrowed copy of Alice's unit key, they will discover 
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that  decipherment of the contents of the LEAF with Alice's unit key yields 
the session key, and that  decipherment of the message with this session key 
yields the incriminating plaintext. This can then be used to convince a jury  
that  Alice is guilty. 

- Alternatively, Alice actually makes the incriminating telephone calls to Chris. 
When Alice is caught and prosecuted, Alice's lawyer claims that  Alice is an 
innocent victim of an attack carried out by Bob (as described above). 

While the forgery attack can be prevented by using a different mode of opera- 
tion, this attack works against all modes. However, the key management system 
used to exchange session keys can be chosen so as to prevent this attack (e.g. 
by preventing either party from choosing what the session key will be). The Es- 
crowed Encryption Standard (FIPS 185) makes no mention of how session keys 
are to be exchanged, so a manufacturer can make a product which is vulnerable 
to this attack whilst still being compliant with FIPS 185. 

7.3 T h e  Ro le  o f  t h e  IV 

Suppose that  Alice and Bob frequently talk to each other using EES telephones, 
and that  their conversations are reasonably short (a few minutes, say). Further- 
more, suppose that  Alice wishes to defeat the key escrow mechanism without 
Bob knowing. To do this, Alice can build a modified EES telephone that  uses 
Matt  Blaze's LEAF-forging attack [3]. This attack has the disadvantage that  
it takes Alice a long time to forge a LEAF for each call - -  40 minutes with a 
Tessera card, and even longer with a Fortezza card. 

Alice might try to optimise this attack by computing a forged LEAF once, and 
re-using this forged LEAF for each of her telephone conversations with Bob. 
What  are the problems with this optimisation? 

If she uses the same key too often, Alice increases her vulnerability to at- 
tacks based on differential or linear cryptanalysis. However, if SKIPJACK is 
safe against these attacks for one long phone call, then it is also safe against 
these attacks for a series of short phone calls with the same key. So this isn't a 
problem. 

It 's also true that  if this re-used session key is ever compromised (e.g. by phys- 
ical means, such as a bug inside Bob's telephone), then all of Alice and Bob's 
conversations are compromised. However, it is a design assumption of EES that  
the FBI can no longer afford to do this sort of close-in monitoring, and so Alice 
feels safe from this too. 

What  really stops Alice from using this optimisation is that  the Initialisation 
Vector affects the value of the LEAF. To re-use a forged LEAF, Alice must 
re-use the Initialisation Vector as well as the session key, as these are both cryp- 
tographically bound to the LEAF. Re-using the same key and IV renders Alice 
vulnerable to easy cryptanalytical attacks, particularly as the telephones use 
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OFB mode for encipherment. The exclusive-or of two ciphertext conversations 
will be the exclusive-or of the plaintexts (the keystream cancels out), and there is 
enough redundancy in digitised speech to enable both plaintexts to be recovered 
from their exclusive-or. 

Note that this is very dependent on the mode of operation that is used. If CBC 
mode was used instead of OFB mode, Alice could successfully re-use a LEAF. 
To do this, Alice would tell Bob the same IV each time, but would actually use 
a different IV. As CBC mode is resynchronising, this works; Bob hears a few 
milliseconds of noise at the start of a call (too little to arouse suspicion), and 
then the call proceeds normally. OFB mode is not resynchronising. If Alice tries 
this trick with OFB mode, Bob will hear nothing but static. 

Hence, we observe that tying the IV to the LEAF increases the security of 
the system against attempts to use unescrowed keys; but that this additional 
protection is only obtained with some modes of operation (e.g. OFB mode). 
However, OFB mode was a bad choice of mode for reasons explained in the 
previous section. We conclude that a version of EES which worked (in so far as 
such a thing is possible at all!) would have had to use a mode of operation which 
supports non-repudiation and isn't resynchronising. 
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