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Abs t rac t .  A number of keystream generators have been proposed which 
are based on Fibonacci sequences, and at least one has been fielded. They 
are attractive in that they can use some of the security results from the 
theory of shift register based keystream generators, while running much 
more quickly in software. However, new designs bring new risks, and 
we show how a system proposed at last year's workshop, the Fibonacci 
Shrinking Genertor (FISH), can be broken by an opponent who knows 
a few thousand words of keystream. We then discuss how such attacks 
can be avoided, and present a new algorithm, PIKE, which is based on 
the A5 algorithm used in GSM telephones. 

1 Introduct ion 

For many years, cryptologists have studied keystream generators based on linear 
feedback shift registers [1]. When implemented in hardware, such systems can 
use a relatively small number of gates for a given level of security; they were 
very popular in the days before very large scale integration, and are still used in 
applications such as mobile communications where low power consumption, and 
thus low gate count, are a priority. 

However, most cryptographic algorithms are now implemented in software, 
and shift register generators tend to be slower in software than many alterna- 
tives. One problem is that  many of them are easier to attack if their feedback 
polynomials are sparse (or have sparse multiples). This leads a prudent designer 
to specify a large number of feedback taps, or even to make the feedback depend 
on the key. While simple to implement in hardware, such schemes are tricky to 
program. 

Consider for example the shrinking generator [2]. Although this is a modern 
algorithm, designed for efficient hardware implementation, it is scarcely faster in 
software than DES. The best way its implementers could find to update its key- 
dependent shift registers was to multiply the current state vectors by suitable 
binary matrices [3]. 
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2 G e n e r a t o r s  b a s e d  o n  F i b o n a c c i  s e q u e n c e s  

The performance problem has led some designers of fast software encryption al- 
gorithms to abandon the shift register tradition in favour of nonlinear finite state 
machines [4] [5]. However, we have relatively little theory on these comparable 
to the cycle length and linear complexity results which can often be obtained for 
shift register systems, and this has led some designers to use shift register ideas 
to design generators based on generalised Fibonacci sequences [6] [7]. 

A generalised Fibonacci sequence is the sequence generated by a monic re- 
currence relation. More specifically, we will consider si = a n - l s i - 1  + an -2s i -2  + 
... + a ls i - , ,+z  + aosi-,~ (mod m), where m is a convenient power of 2. 

The characteristic polynomial of such a sequence is X n + ~ a i X  i, and there 
are conditions on this polynomial which are necessary and sufficient for the 
sequence it generates to have maximal length [8]. These conditions are not quite 
the same as those on shift register polynomials, but they coincide for trinomials 
of degree greater than two. In passing we should note that  the least significant 
bits of a Fibonacci sequence form a linear feedback shift register sequence with 
characteristic polynomial Z '~ + ~ a~Z i, where a~ =_ ai (mod 2). 

3 T h e  F i b o n a c c i  S h r i n k i n g  G e n e r a t o r  

We will now show how to break Siemens' Fibonacci shrinking generator (FISH), 
which was presented at the 1993 Cambridge Algorithms workshop [6], and is 
based on the shrinking generator. 

It is driven by two Fibonacci sequences, which are called A and S. These start 
off with key material and thereafter satisfy the following recurrence relations: 

ai = ai-5~ + ai-24 (mod 232) (1) 

s~ = si-52 + si-19 (mod 232) (2) 

The least significant bits of si are now used to shrink ai to zi and si to hi. 
We will write the j - th  bit of ai as ai,j, so that  our shrinking rule is the following: 
if si,0 = 1, then we append ai to the sequence zk, and si to hk. 

Next, writing @ for bitwise xor and )~ for bitwise and, ci is given by: 

c2i = z~i ~ (h2~ /X h2~+l) (3) 

~2i+1 = ~21+~ (4) 
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Finally, the output  keystream ri is derived from ci by swapping the bits C(2i),j 
and c(2i+l),j whenever h(2i+l),j = 1. 

Now the first observation to be made about this generator is that  the least 
significant bits of A make up a standard shrinking generator sequence; {zj,0} is 
just  {ai,0} shrunk by {si,0}. By guessing {sl,0}, we can break this sequence by 
brute force with an average of 251 trials. 

However, we can do significantly better  than this. Our fish recipe will have 
two steps: we will first find ways to speed up the keysearch, and secondly show 
how to reconstruct the whole key given its least significant bits. 

3.1 Sparsity and the shrinking generator 

As mentioned in [2], the use of sparse shift registers in the shrinking generator 
can be dangerous. In fact, since A enjoys the trinomial relation (1), we will 
find that  1/8 of these triples {a~,0, a(i+31),0, a(~+55),0) will show up in zi,0. Their  
separation is a random quantity, determined by S, but if we look near the likely 
separations, say z(i-12),0 + zi,o + z(i+ls),o, we will expect to see this relation 
holding more often than random. In fact one can look at all the likely separations, 
z(~-,),0 + zi,o + z(i+y),o, where x is between (say) 12 and 19, and y is between 9 
and 15. 

To estimate the work factor of an attack based on this, note that  every bit 
in zi,0 will be the middle bit in one relation in A. Thus there is a probability 
of one quarter than the other two bits are in zi,j, and about  12% that  both of 
them will be within the ranges mentioned. If zi,0 = 1, and we find that  z(i-19),0 
�9 .. z(i-12),0 = 11110111 while z(i+9),o ... z(i+xb),0 = 111111, we can try the six 
relations (0,1,1) in the knowledge that  we have a 12% chance that  one of them 
is actually a relation in A. So whenever we have enough keystream to look for a 
pat tern as advantageous as this, we can expect to perform about 25 keysearches 
to recover the state of S. 

Once we succeed in guessing a relation, we have a divide and conquer attack 
on S. If, for example, we find one at z(i-l~),0 + zi,0 + z(i+15),0, then precisely 15 
of s(i-31),0, ..., si,0 are one, together with precisely 12 of si,0, ..., s(i+24),0; and 
we can derive 3 of these last 25 bits from the others using the relation (2). This 
reduces the attack complexity significantly (but it is still well over 24o trials). 

The next point is that  we can cut the complexity of each key trial from 
O([A] 3) to O(IAI) by using a trick from [9]; rather than recovering IAI bits from 
the keystream, solving for a~,0 using linear algebra and testing this prediction 
against the rest of the keystream, we simply insert bits from the keystream 
into al,0 one at a t ime until the recurrence relation gives us a clash. Absent an 
implementation, we expect that  about 21A I bits would suffice to detect almost 
all bad choices of S, it is also significant that  this kind of keysearch can be 
implemented fairly efficiently in hardware. 
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The  most  impor tan t  point, however, is that  we get side information f rom the 
higher order bits of ri about  which of the possible triples z(i-~),0 + z~,0 + z(i+y),0 
represents an actual relation in the A generator. To see this, consider a series of 
ou tput  words ri. For brevity, we show only the 16 r ightmost  (least significant) 
bits: 

ro = 0 1 1 0 1 0 1 0 1 1 0 1 0 1 1 0  

r l  = 1 0 1 0 0 0 1 1 0 1 0 1 1 0 1 0  

r2 = 1 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1  

r 3  = 0 0 1 1 1 0 0 1 1 0 0 1 1 0 1 1  

. .  

Now when h(2i+l),j = 0, z(2i+l) , j  = r(2i+l) , j ;  else z (2 i+l) , j  = r(2i),j. Thus, 
whenever r(2i+l),j = r(2i) , j  , this is equal to z(2i+l),j. So the above table of ri,j 
gives us a part ial  table for zi,j: 

z0 = ???77????777???0  

Z I ~-- 7 7 1 0 7 0 1 7 7 1 0 1 7 7 1 0  

z2 = ? ? ? ? ? 7 ? ? ? ? ? ? ? ? ? 1  

z3 = 0071????10717?11 

. . .  (6) 

In other words, we get about  half the bits of the z(2i+l), which is a quarter  
of z~ or an eighth of a~. From here things are straightforward; given about  212 
words of keystream, for example,  we would expect to find about  one real and 
three false hits of the form 

zi-~ = 7777?77?77?70110 

zi = ??77777?77771011 

zi+y = 7???77777?770001 (7) 

Finding such pat terns  reduces the at tack complexity from about  25 key- 
searches to about  two of them. 

As we get more keystream, we will expect to find relations with x and y 
significantly more or less than the mean.  For example,  with 20 million words of 
keyst ream we would expect to find a relation which was four s tandard deviations 
bet ter  than  (7), such as x = 6 and y -- 8. In this case, a keysearch would involve 
about  239 trials. 
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3.2 R e c o n s t r u c t i n g  the  rest o f  the  k e y  

Given si,o and ai,0, we next reconstruct the higher order bits of ai; we know about  
every eighth bit of ai,j for each j .  The tables in [10] show that  with a correlation 
of 0.125 and a trinomial recurrence relation, a reconstruction will succeed when 
the length of available keystream is somewhere between 550 and 5500 bits long 
(and nearer the former). Of course, this recurrence relation operates modulo 2 k 
for 1 < k < 31 rather than over GF(2) ,  so we have to deal with carry bits as 
they arise; to do this, we use an algorithm like that  in [11] to reconstruct first 
ai,1, then ai,2 and so on up to ai,31. 

Once we have ai, we can get the  higher order bits of si using those bits of 
ri where r(2i),j ~ r(2i+l),j. Comparing these with our reconstructed values of zi 
gives us about  half of the values of h(2i+l),j, and thus an eighth of the values of 
si 5. From this, a correlation attack can proceed as before from si,o to si,1, si,2, 
and so on up to si,3~. 

4 An improved Fibonacci generator 

The above break, together with Cain and Sherman's recent break of the Gifford 
cipher [12], inspires us to ask whether we can find a Fibonacci generator which 
is both fast in software and reasonably strong. We find some ideas in A5. 

This is the algorithm used in many GSM telephones to encrypt voice traffic. 
It consists of three shift registers of lengths 19, 22 and 23, with sparse feedback 
taps, which are interlocked in the sense that  a threshold function of the middle 
bits of each register is used to decide which registers are clocked in any given 
cycle (usually two of  them are) [13]. 

The best known attack on A5 consists of guessing the state of two of the 
registers and then working back from the keystream to get the state of the third. 
There has been controversy about the work factor involved in each key trial, and 
at least one telecom engineer has argued that  this is about 212 operations giving 
a real attack complexity on A5 of 252 rather than the 24o which one might naively 
expect. As we understand that  a hardware keysearch unit is under design, we 
expect that  this debate will be settled shortly. 

Nonetheless, A5 passes all the standard series randomness tests [14]; its only 
known weaknesses are that  its registers are too short, and that  it has a minimum 

42k cycle length of ~ , where k is the length of the longest shift register [15] (the 
cycle length is not a concern in the GSM protocol, as the generator is re-keyed 
after each packet). A5 is also efficient; the main engineering constraint on GSM 
equipment is bat tery life, and so one may surmise that  its developers sought to 
produce an algorithm of adequate strength, but with the smallest possible gate 
count. In this, they appear to have done a competent job; and this motivates us 
to look for a fast software algorithm which is uses the underlying ideas of A5. 
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Our proposal is therefore as follows. We start  off with the three Fibonacci 
generators whose relations are: 

ai ---- ai-55 + ai-24 (mod 232) (8) 

ai = a i -57  + a i - 7  (mod 232) (9) 

ai = a i -ss  -4- ai-19 (mod 232) (10) 

We next observe that  in FISH, had th.e control bits been the carry bits rather 
than the least significant bits, then our attack would have been much harder; 
so we will use the carry bits as controls. If all three of them are the same, then 
we will step all three generators; if not, we will step those two generators whose 
carry bits agree. This control will be delayed eight cycles; after we update  the 
state, we inspect the control bits and write one control nybble to a register which 
is shifted four bits with the next update. With some processors, it may be more 
convenient to use the parity bits as a control; this appears to be an acceptable 
variant. 

The  next keystream word is the xor of the least significant words of all three 
generators. Note that  this algorithm should be slightly faster than FISH, as 
each keystream word will take on average 2.75 generator updates to compute 
rather than 3; and finally, in order to ensure that  we use only a small fraction 
of the minimum sequence length, we specify that  the generator should be re- 
keyed after 232 words have been generated. The keying method is not part  of 
this description, but clearly a short user supplied key can be expanded using a 
hash function such as SHA to provide the 700 bytes of initial state. 

We call this algorithm PIKE; the pike is at the top of the food chain of our 
local waters, being longer, leaner and meaner than the other fish. Fishermen are 
of course invited to t ry  their arm. 

A c k n o w l e d g e m e n t s :  David Wheeler first expressed doubt about the non- 
linear combining operations in FISH; Don Coppersmith pointed out the vulner- 
ability of the sparse shrinking generator; David Wheeler pointed out the efficacy 
of using carry bits as controls; and Gideon Yuval remarked at the workshop that  
pari ty might be more convenient on some processors. 
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