
On Fibonacci Keystream Generators

Ross Anderson

Computer Laboratory,. Pembroke Street, Cambridge CB2 3QG
Email: r j al4@cl, cam. ac.uk

Abs t rac t . A number of keystream generators have been proposed which
are based on Fibonacci sequences, and at least one has been fielded. They
are attractive in that they can use some of the security results from the
theory of shift register based keystream generators, while running much
more quickly in software. However, new designs bring new risks, and
we show how a system proposed at last year's workshop, the Fibonacci
Shrinking Genertor (FISH), can be broken by an opponent who knows
a few thousand words of keystream. We then discuss how such attacks
can be avoided, and present a new algorithm, PIKE, which is based on
the A5 algorithm used in GSM telephones.

1 Introduct ion

For many years, cryptologists have studied keystream generators based on linear
feedback shift registers [1]. When implemented in hardware, such systems can
use a relatively small number of gates for a given level of security; they were
very popular in the days before very large scale integration, and are still used in
applications such as mobile communications where low power consumption, and
thus low gate count, are a priority.

However, most cryptographic algorithms are now implemented in software,
and shift register generators tend to be slower in software than many alterna-
tives. One problem is that many of them are easier to attack if their feedback
polynomials are sparse (or have sparse multiples). This leads a prudent designer
to specify a large number of feedback taps, or even to make the feedback depend
on the key. While simple to implement in hardware, such schemes are tricky to
program.

Consider for example the shrinking generator [2]. Although this is a modern
algorithm, designed for efficient hardware implementation, it is scarcely faster in
software than DES. The best way its implementers could find to update its key-
dependent shift registers was to multiply the current state vectors by suitable
binary matrices [3].

On Fibonacci Keystream Generators 347

2 G e n e r a t o r s b a s e d o n F i b o n a c c i s e q u e n c e s

The performance problem has led some designers of fast software encryption al-
gorithms to abandon the shift register tradition in favour of nonlinear finite state
machines [4] [5]. However, we have relatively little theory on these comparable
to the cycle length and linear complexity results which can often be obtained for
shift register systems, and this has led some designers to use shift register ideas
to design generators based on generalised Fibonacci sequences [6] [7].

A generalised Fibonacci sequence is the sequence generated by a monic re-
currence relation. More specifically, we will consider si = a n - l s i - 1 + an -2s i -2 +
... + a ls i - , ,+z + aosi-,~ (mod m), where m is a convenient power of 2.

The characteristic polynomial of such a sequence is X n + ~ a i X i, and there
are conditions on this polynomial which are necessary and sufficient for the
sequence it generates to have maximal length [8]. These conditions are not quite
the same as those on shift register polynomials, but they coincide for trinomials
of degree greater than two. In passing we should note that the least significant
bits of a Fibonacci sequence form a linear feedback shift register sequence with
characteristic polynomial Z '~ + ~ a~Z i, where a~ =_ ai (mod 2).

3 T h e F i b o n a c c i S h r i n k i n g G e n e r a t o r

We will now show how to break Siemens' Fibonacci shrinking generator (FISH),
which was presented at the 1993 Cambridge Algorithms workshop [6], and is
based on the shrinking generator.

It is driven by two Fibonacci sequences, which are called A and S. These start
off with key material and thereafter satisfy the following recurrence relations:

ai = ai-5~ + ai-24 (mod 232) (1)

s~ = si-52 + si-19 (mod 232) (2)

The least significant bits of si are now used to shrink ai to zi and si to hi.
We will write the j - th bit of ai as ai,j, so that our shrinking rule is the following:
if si,0 = 1, then we append ai to the sequence zk, and si to hk.

Next, writing @ for bitwise xor and)~ for bitwise and, ci is given by:

c2i = z~i ~ (h2~ /X h2~+l) (3)

~2i+1 = ~21+~ (4)

348 R. Anderson

Finally, the output keystream ri is derived from ci by swapping the bits C(2i),j
and c(2i+l),j whenever h(2i+l),j = 1.

Now the first observation to be made about this generator is that the least
significant bits of A make up a standard shrinking generator sequence; {zj,0} is
just {ai,0} shrunk by {si,0}. By guessing {sl,0}, we can break this sequence by
brute force with an average of 251 trials.

However, we can do significantly better than this. Our fish recipe will have
two steps: we will first find ways to speed up the keysearch, and secondly show
how to reconstruct the whole key given its least significant bits.

3.1 Sparsity and the shrinking generator

As mentioned in [2], the use of sparse shift registers in the shrinking generator
can be dangerous. In fact, since A enjoys the trinomial relation (1), we will
find that 1/8 of these triples {a~,0, a(i+31),0, a(~+55),0) will show up in zi,0. Their
separation is a random quantity, determined by S, but if we look near the likely
separations, say z(i-12),0 + zi,o + z(i+ls),o, we will expect to see this relation
holding more often than random. In fact one can look at all the likely separations,
z(~-,),0 + zi,o + z(i+y),o, where x is between (say) 12 and 19, and y is between 9
and 15.

To estimate the work factor of an attack based on this, note that every bit
in zi,0 will be the middle bit in one relation in A. Thus there is a probability
of one quarter than the other two bits are in zi,j, and about 12% that both of
them will be within the ranges mentioned. If zi,0 = 1, and we find that z(i-19),0
�9 .. z(i-12),0 = 11110111 while z(i+9),o ... z(i+xb),0 = 111111, we can try the six
relations (0,1,1) in the knowledge that we have a 12% chance that one of them
is actually a relation in A. So whenever we have enough keystream to look for a
pat tern as advantageous as this, we can expect to perform about 25 keysearches
to recover the state of S.

Once we succeed in guessing a relation, we have a divide and conquer attack
on S. If, for example, we find one at z(i-l~),0 + zi,0 + z(i+15),0, then precisely 15
of s(i-31),0, ..., si,0 are one, together with precisely 12 of si,0, ..., s(i+24),0; and
we can derive 3 of these last 25 bits from the others using the relation (2). This
reduces the attack complexity significantly (but it is still well over 24o trials).

The next point is that we can cut the complexity of each key trial from
O([A] 3) to O(IAI) by using a trick from [9]; rather than recovering IAI bits from
the keystream, solving for a~,0 using linear algebra and testing this prediction
against the rest of the keystream, we simply insert bits from the keystream
into al,0 one at a t ime until the recurrence relation gives us a clash. Absent an
implementation, we expect that about 21A I bits would suffice to detect almost
all bad choices of S, it is also significant that this kind of keysearch can be
implemented fairly efficiently in hardware.

On Fibonacci Keys t ream Generators 349

The most impor tan t point, however, is that we get side information f rom the
higher order bits of ri about which of the possible triples z(i-~),0 + z~,0 + z(i+y),0
represents an actual relation in the A generator. To see this, consider a series of
ou tput words ri. For brevity, we show only the 16 r ightmost (least significant)
bits:

ro = 0 1 1 0 1 0 1 0 1 1 0 1 0 1 1 0

r l = 1 0 1 0 0 0 1 1 0 1 0 1 1 0 1 0

r2 = 1 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1

r 3 = 0 0 1 1 1 0 0 1 1 0 0 1 1 0 1 1

. .

Now when h(2i+l),j = 0, z(2i+l) , j = r(2i+l) , j ; else z (2 i+l) , j = r(2i),j. Thus,
whenever r(2i+l),j = r(2i) , j , this is equal to z(2i+l),j. So the above table of ri,j
gives us a part ial table for zi,j:

z0 = ???77????777???0

Z I ~-- 7 7 1 0 7 0 1 7 7 1 0 1 7 7 1 0

z2 = ? ? ? ? ? 7 ? ? ? ? ? ? ? ? ? 1

z3 = 0071????10717?11

. . . (6)

In other words, we get about half the bits of the z(2i+l), which is a quarter
of z~ or an eighth of a~. From here things are straightforward; given about 212
words of keystream, for example, we would expect to find about one real and
three false hits of the form

zi-~ = 7777?77?77?70110

zi = ??77777?77771011

zi+y = 7???77777?770001 (7)

Finding such pat terns reduces the at tack complexity from about 25 key-
searches to about two of them.

As we get more keystream, we will expect to find relations with x and y
significantly more or less than the mean. For example, with 20 million words of
keyst ream we would expect to find a relation which was four s tandard deviations
bet ter than (7), such as x = 6 and y -- 8. In this case, a keysearch would involve
about 239 trials.

350 R. Anderson

3.2 R e c o n s t r u c t i n g the rest o f the k e y

Given si,o and ai,0, we next reconstruct the higher order bits of ai; we know about
every eighth bit of ai,j for each j . The tables in [10] show that with a correlation
of 0.125 and a trinomial recurrence relation, a reconstruction will succeed when
the length of available keystream is somewhere between 550 and 5500 bits long
(and nearer the former). Of course, this recurrence relation operates modulo 2 k
for 1 < k < 31 rather than over GF(2) , so we have to deal with carry bits as
they arise; to do this, we use an algorithm like that in [11] to reconstruct first
ai,1, then ai,2 and so on up to ai,31.

Once we have ai, we can get the higher order bits of si using those bits of
ri where r(2i),j ~ r(2i+l),j. Comparing these with our reconstructed values of zi
gives us about half of the values of h(2i+l),j, and thus an eighth of the values of
si 5. From this, a correlation attack can proceed as before from si,o to si,1, si,2,
and so on up to si,3~.

4 An improved Fibonacci generator

The above break, together with Cain and Sherman's recent break of the Gifford
cipher [12], inspires us to ask whether we can find a Fibonacci generator which
is both fast in software and reasonably strong. We find some ideas in A5.

This is the algorithm used in many GSM telephones to encrypt voice traffic.
It consists of three shift registers of lengths 19, 22 and 23, with sparse feedback
taps, which are interlocked in the sense that a threshold function of the middle
bits of each register is used to decide which registers are clocked in any given
cycle (usually two of them are) [13].

The best known attack on A5 consists of guessing the state of two of the
registers and then working back from the keystream to get the state of the third.
There has been controversy about the work factor involved in each key trial, and
at least one telecom engineer has argued that this is about 212 operations giving
a real attack complexity on A5 of 252 rather than the 24o which one might naively
expect. As we understand that a hardware keysearch unit is under design, we
expect that this debate will be settled shortly.

Nonetheless, A5 passes all the standard series randomness tests [14]; its only
known weaknesses are that its registers are too short, and that it has a minimum

42k cycle length of ~ , where k is the length of the longest shift register [15] (the
cycle length is not a concern in the GSM protocol, as the generator is re-keyed
after each packet). A5 is also efficient; the main engineering constraint on GSM
equipment is bat tery life, and so one may surmise that its developers sought to
produce an algorithm of adequate strength, but with the smallest possible gate
count. In this, they appear to have done a competent job; and this motivates us
to look for a fast software algorithm which is uses the underlying ideas of A5.

On Fibonacci Keystream Generators 351

Our proposal is therefore as follows. We start off with the three Fibonacci
generators whose relations are:

ai ---- ai-55 + ai-24 (mod 232) (8)

ai = a i -57 + a i - 7 (mod 232) (9)

ai = a i -ss -4- ai-19 (mod 232) (10)

We next observe that in FISH, had th.e control bits been the carry bits rather
than the least significant bits, then our attack would have been much harder;
so we will use the carry bits as controls. If all three of them are the same, then
we will step all three generators; if not, we will step those two generators whose
carry bits agree. This control will be delayed eight cycles; after we update the
state, we inspect the control bits and write one control nybble to a register which
is shifted four bits with the next update. With some processors, it may be more
convenient to use the parity bits as a control; this appears to be an acceptable
variant.

The next keystream word is the xor of the least significant words of all three
generators. Note that this algorithm should be slightly faster than FISH, as
each keystream word will take on average 2.75 generator updates to compute
rather than 3; and finally, in order to ensure that we use only a small fraction
of the minimum sequence length, we specify that the generator should be re-
keyed after 232 words have been generated. The keying method is not part of
this description, but clearly a short user supplied key can be expanded using a
hash function such as SHA to provide the 700 bytes of initial state.

We call this algorithm PIKE; the pike is at the top of the food chain of our
local waters, being longer, leaner and meaner than the other fish. Fishermen are
of course invited to t ry their arm.

A c k n o w l e d g e m e n t s : David Wheeler first expressed doubt about the non-
linear combining operations in FISH; Don Coppersmith pointed out the vulner-
ability of the sparse shrinking generator; David Wheeler pointed out the efficacy
of using carry bits as controls; and Gideon Yuval remarked at the workshop that
pari ty might be more convenient on some processors.

R e f e r e n c e s

[1] RA Rueppel, 'Analysis and Design of Stream C•hers' , Springer Verlag Commu-
nications and Control Engineering Series (1986)

[2] D Coppersmith, H Krawczyk, Y Mansour, "The Shrinking Generator", in Ad-
vances in Cryptology - C R Y P T O '93, Springer LNCS v 773 pp 22-39

352 R. Anderson

[3] H Krawczyk, "The Shrinking Generator: some practical considerations", in Fast
Software Encrvption, Springer LNCS v 809 pp 45-46

[4] DJ Wheeler, "A Bulk Data Encryption Algorithm", in Fast Software Encryption,
Springer LNCS v 809 pp 126-134

[5] P Rogaway, D Coppersmith, "A Software-Optimised Encryption Algorithm", in
Fast Software Encryption, Springer LNCS v 809 pp 56-63

[6] U B15cher, M Dichtl, "Fish: a fast software stream cipher", in Fast Software
Encryption, Springer LNCS v 809 pp 41-44

[7] JD Golid, "Linear Cryptanalysis of Stream Ciphers", this volume
[8] RP Brent, "On the periods of generalised Fibonacci sequences", in Mathematics

of Computation v 63 no 207 (July 1994) pp 389-401
[9] RJ Anderson, "Solving a Class of Stream Ciphers", in Cryptologia v X I V no 3

(July 1990) pp 285-288
[10] W Meier, O Staffelbach, "Fast Correlation Attacks on Certain Stream Ciphers",

in Journal of Cryptologyv 1 (1989) pp 159-176
[11] DJC MacKay, 'A Free Energy Minimization Framework for Inference Problems

in Modulo 2 Arithmetic" in this volume pp 179-195
[12] T R Cain, AT Sherman, "How to break Gifford's Cipher", in Proceedings of

the 2nd A CM Conference on Computer and Communications Security (Faiffax,
1994) pp 198-209

[13] RJ Anderson, "A5 (Was: HACKING DIGITAL PHONES)", message number
<2ts9a0$9Sr@lyra. csx. cam. ac. uk> posted to usenet newsgroup s c i . c ryp t , 17
Jun 1994 13:43:28 GMT.

[14] M Roe, private communication
[15] WG Chambers, "On Random Mappings and Random Permutations", this vol-

ume pp 22-28

