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Abst rac t .  In this paper a number of binary cyclotomic generators based 
on cyclotomy are described. A number of cryptographic properties of the 
generators are controlled. A general approach to control the linear com- 
plexity and its stability for periodic sequences over any field is shown. 
Two bridges between number theory and stream ciphers have been" estab- 
lished, and the relations between the design and analysis of some stream 
ciphers and some number-theoretic problems are shown. A number of 
cryptographic ideas are pointed out. 

1 I n t r o d u c t i o n  

The word cyclotomy means "circle-division" and refers to the problem of dividing 
the circumference of the unit circle into a given number, n, of arcs of equal 
lengths [19]. Our interest in the theory of cyclotomy has stemmed from the rather 
remarkable fact that  the cyclotomic numbers represent actually the difference 
property and the nonlinearity of some cryptographic functions from residue rings 
Zp's to some abelian groups. The DSC and ADSC generators described in [11] 
are actually the cyclotomic generators of order 2. In this paper we describe some 
keystream generators based on the theory of cyclotomies modulo a prime p, a 
square of a prime, and the product of two distinct primes. These generators are 
all special natural  sequence generators of Figure 1 [11], where a cryptographic 
function f(x), which is a mapping from a residue ring ZN to an abelian group 
(G, +),  applies to the register of the modulo N ring counter. In the upper part of 
Figure 1, i.e., the modulo N ring counter, the ~ N  denotes the integer addition 
modulo N,  the symbol i denotes the content of the register of the counter which 
is updated with each clock. Thus, the register of the ring counter outputs cycles 
through the elements 0, 1, ..., N of the residue ring Zlv. That  is, if the register of 
the counter has value i at t ime t, then its value at t ime t +  1 is ( i+ 1) rood N, here 
and hereafter the z rood N is defined to be the least positive integer congruent 
to x modulo N. The semi-infinite sequence z c~ i.e., the output  sequence of the 
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Modulo N ring counter 

f(z) I 

Fig. 1. The natural sequence generator 

NSG, is defined by zi - f( i  + io mod N), where i0 is the initial value of the 
register of the ring counter which is the key of the generator. The cryptographic 
function f(x) and the modulus N are assumed not to be secret parameters of 
the generator. 

For the binary natural sequence generator the following cryptographic anal- 
yses are equivalent: 

1. differential analysis of the cryptographic function f(x); 
2. nonlinearity analysis of the cryptographic function f(x); 
3. autocorrelation analysis of the cryptographic function f(x); 
4. autocorrelation analysis of the output sequence; 
5. two-bit pattern distribution analysis of the output sequence; 
6. stability analysis of the mutual information I(i; zizi+t- 1), here and hereafter 

z ~ denotes the output sequence of the NSG. 
7. transdensity analysis of the additive stream cipher system with this NSG 

as the keystream generator by which we mean the analysis of the probabil- 
ity of agreement between two encryption resp. decryption transformations 
specified by two encryption resp. decryption keys [11]. 

By equivalence we mean one analysis results in another analysis. 
We now prove the equivalences between the above seven analyses and show 

that an ideal difference property of the cryptographic function f(x),  by which 
we mean that the difference parameters defined below are approximately the 
same, ensures automatically an ideal nonlinearity of the cryptographic function 
f(x),  an ideal autocorrelation property of f(x),  an ideal autocorrelation property 
of the output sequence z ~ , an ideal two-bit pattern distribution property of 
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the output  sequence z ~ , and an ideal balance between the mutual  information 
I(i;  z iz i+t-1)  for all possible (zi, zi+t-1) E Z2 x Z2, where t is arbitrary. In what 
follows ZN denotes the residue ring modulo an integer N. 

Consider now the NSG of Figure 1. Assume that (G, +) is the abelian group 
over which the keystream sequence is constructed, and ]G I = n. For each i E G 
let Ci = {x E ZN : f ( x )  = i}. The ordered set {Co, C1, " " ,  Cn-1} is called the 
characteristic class. For any ordered partition {Co, C 1 , ' " ,  C~- l}  of ZN,  there 
exists a function f ( x )  with this partition as its characteristic class. The differen- 
tial analysis of the system is the analysis of the following difference parameters: 

d ] ( i , j ; w )  = ICi (3 (Cj + w)l , ( i , j )  e G • G, w E ZN.  

There are some elementary facts about these difference parameters [11], which 
represent some conservations between the difference parameters. 

To see why the analysis of the difference parameters can be regarded as a 
kind of differential analyses, we take (G, +) = (Z2, +). Consider the input pairs 
(x, y) such that x - y = a, and consider the difference of the corresponding 
output  pairs. Then we have the following expressions 

I((,,v):/(,)-J(y)=l, ~-v=a}l = at(~ dt(1,0;~) 
{(x,y):x-y=a} N "4- N 

{(a,y):f(x)-y(y)=O, x-y=a}I di(O,O;a ) dy (1,1;a) 
I{(x,y):x-y=all ---- g + N ' 

These two expressions show that the difference parameters can be regarded as 
partial differentials or directional differentials of the function f ( z ) .  

In what follows we prove the equivalences between the above seven analyses 
for the binary NSG (natural sequence generator). 

E q u i v a l e n c e  b e t w e e n  d i f fe ren t i a l  a n d  n o n l i n e a r i t y  ana lyses :  The non- 
linearity analysis of the cryptographic function f (x)  refers to the analysis of the 
probability p ( f ( x  + a) - f ( x )  = b). It can be easily seen 

N p ( f ( x )  - f ( y )  = 1) = d](0, 1; a) + dy(1, 0; a), 
N p ( f ( x )  - f ( y )  = O) = d](O,O;a)+ d](1, 1;a) 

(1) 

and 

2 d f ( 0 , 0 ; - a )  = ICo] - Ic l l  + N p ( f ( x  + a) - f ( x )  = 0), 
2dr (1, 1 ; - a )  = ICll - Ic01 + N p ( f ( x  -4- a) - f ( x )  = 0), 
2d](1, 0 ; - a )  = 2d](0, 1 ; - a )  = N - N p ( f ( x  + a) - f ( x )  = 0). 

(2) 

Then formulae (1) and (2) show the equivalence. 
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Equ iva l ence  b e t w e e n  d i f fe ren t i a l  a n d  a u t o c o r r e l a t i o n  ana lyses :  The 
autocorrelation analysis of f (x )  refers to the analysis of the autocorrelation 
function 

1 C/(a) = ~ ~ (-1)  f( '+a)-f(~).  

X6ZN 

It is easily verified 

NC](a)  = N - 4d](1, 0; a) (3) 

and 

4dy (0, 0; a) = 4lC0J - N + N C j ( a ) ,  

4d/(1, 1; a) =;4tC1 [ - N + N C y ( a ) ,  

4dy (1, 0; a) = 4dy(0, 1; a) : N -  NCj(a) .  
(4) 

Combining formulae (3) and (4) proves the equivalence between differential anal- 
ysis and autoeorrelation analysis of f (x) .  

The autocorrelation analysis of the output binary sequence z ~ refers to the 
analysis of the autocorrelation function 

1 
C~(a) = ~- E ( - 1 / ' + ~ - z "  

i~ZN 

Apparently by the definition of the NSG we have 

Cz (a) = C/(a),  for each a. 

Thus, the above formulae (3) and (4) are also true we replace 6'] (a) with Cz (a). 
This fact shows the equivalence between the differential analysis and the auto- 
correlation analysis of the output sequence z ~ .  

Equ iva l ence  b e t w e e n  d i f fe ren t i a l  a n d  t w o - b i t  p a t t e r n  d i s t r i b u t i o n  ana l -  
yses:  The two-bit pattern distribution analysis of z ~ is concerned with how the 
two-bit patterns are distributed in a circle of length N in the sequence. For each 
fixed t with 0 < t < N - 1 the vector (zl, zi+t) takes on elements of Z~ • Z2 
when i runs from 0 t o , N -  1. Let n[(zi, zi+t) = (a, b)] denote the number of times 
with which the vector (zl, zi+t) takes on (a, b) 6 Z2 • Z2 when i runs from 0 to 
N - 1. Then we have obviously 

n[(zi, zi+t) = (a, b)] = d](a, b;- t ) .  (5) 

Thus, for the binary NSG each difference parameter represents in fact the number 
times a two-bit pattern appears in a circle of length N of the binary output  
sequence z ~ . 
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Equiva lence  b e t w e e n  different ial  and  m u t u a l  i n fo rma t ion  analyses:  
Given two bits z~ and zi+t of the output sequence of the binary NSG. It is cryp- 
tographically interesting to know how much information these two bits gives to 
the value of the register of the counter in the binary NSG at the time the output 
bit z~ was produced. It is easy to verify 

and 

I(i; zizi+t) = log2 N - log 2 d] (zi, zi+t; - t ) ,  bits (6) 

d/(zi,  zi+t; - t ) ' =  N2 -x(i;z'z~+'}, (7) 

where the mutual information I(i; ziz~+t) is measured in bits. Formulae (6) and 
(7) show clearly the equivalence. In addition they show that the difference pa- 
rameters are in fact a measure of uncertainty. 

Equiva lence  b e t w e e n  differential  and  t r an sdens i t y  analysis:  In a cipher 
system it is possible for two keys to determine the same encryption (resp. de- 
cryption) transformation. Even if the two transformation are distinct, it is cryp- 
tographically interesting to know the the probability of agreement between the 
two transformations. The control of this probability of agreement can prevent 
a cipher from any key approximation attack, that is, to use one key to decrypt 
the message encrypted by another key. Let Ek (resp. Dk) denote the encryption 
(resp. decryption) transformation specified by the key k. The analysis of the 
density (briefly, transdensity analysis) of a cipher system refers to the analysis 
of the probability of agreement p(Ek(m) = Ek,(m)), where m can be confined 
on plaintext blocks or without restriction [11]. 

For the additive binary stream cipher with the binary NSG as its keystream 
generator this probability can be expressed easily as 

p(Ek = Ek,) = Cz(k - k' modN)  ~ C y ( k -  k' modN) ,  (8) 

because of the additive structure of the additive stream cipher and the fact that 
the keystream sequences specified by all keys are shift versions of each other. 
Thus, the equivalence follows easily from formula (8). 

So far we have proved the equivMences between differential and other six 
analyses. Thus, the equivMences among the seven analyses follows. 

In addition, there is no tradeoff between all the above seven aspects and the 
linear complexity and its stability aspects for this generator (we will see this 
fact in later sections). This means that it is possible to design the NSG so that 
it has not only an ideal property for all the seven aspects in the usual senses, 
but also a large linear complexity and ideal linear complexity stability for the 
output sequence. It is because of these facts and that every periodic sequence 
can be produced by the natural sequence generator that the generator was called 
a natural one [11]. 

Formulae 1-8 clearly show that to ensure an ideal property for all the seven 
aspects, it suffices to control the difference property of the cryptographic function 
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f (x ) .  Thus, in what follows we will concentrate on the control of the difference 
property o f f ( x ) ,  of the linear complexity, and of the sphere complexity of the 
output sequence of each specific NSG. 

2 Cyclotomy and its cryptographic importance 

The motivation of the investigation of cyclotomic numbers is related to the 
outstanding Waring problem, difference sets, and the solution of equations over 
finite fields [7, 9, 17]. Cyclotomic numbers invented by Gauss turn out to be 
quite valuable in the design and analysis of some keystream generators. 

Let N = df + 1, be a odd prime and let 0 be a fixed primitive element 
of ZN. Denoting the multiplicative subgroup (0d) as Do, we see that  the coset 
decomposition of Z~v with respect to the subgroup Do is then 

Z~v = u d - I D  �9 
i = 0  ~ ' 

where D~ = OiDo for 0 < i < d - 1. The coset Dl is called the index class l [3] or 
cyclotomic class l [19]. Let (l, m)d denote the number of solutions (x, y) of the 
equation 

l = x - y ,  (x,y) EDl  x D m ,  

which were called cyclotomic numbers [2, 3, 8, 12], or equivalently, 

(l, m)a = IDl Ca (D.~ + 1)l. 

Apparently, there are at most d 2 distinct cyclotomic numbers of order d and 
these numbers depend not only on N, d, I, m, but also on which of the r  
primitive elements of ZN is chosen. 

There are some elementary cyclotomic facts which are very important  to our 
cryptographic applications, because they indicate several kinds of conservations 
between the cyclotomic numbers. They are the theoretical bases of the need of 
keeping the stability of local nonlinearities of some cryptographic functions. 

We now see the meaning of the cyclotomic numbers from another viewpoint. 
From the definition we know the set {(l, m)d : l = 0, 1 , . - . ,  d -  1} represents how 
the set Dm + 1 is distributed among the cyclotomic classes. Note 

ID~ n (D~ + Ok)l = IVl+N_l_k  N (Dm+N-l-k + 1)l 

for each k, we see that  the d sets of numbers {(l, m)d : l = O, 1 , . . . ,  d - 1} for 
m ---- 0, 1 , . . . , d -  1, represents also the distribution of the elements of any set 
D,~ + w with w # 0. 

As seen above, cyclotomic numbers represent in fact the difference property 
of the partitions {Do,D1, "" ,Dd-1}. So they should have connections with 
difference sets. ActuMly, the investigation of residue difference sets is the main 
motivation of the calculation of cyclotomic numbers [3, 19]. Now we see the 
cryptographic importance of cyclotomy. 
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Let the symbols as before. What  we want to do now is to construct cryp- 
tographic functions from ZN to an abelian group (G, +) of d elements, where 
G = { g o , g l , " ' , g d - 1 } .  Let 

Co -- De U {O}, C i = D i ,  i = l , . . . , d - 1 .  

Without  concerning the implementation problem, we define a function from ZN 
to (G,-t-) as: f (x)  = gi iff x e Ci. 

If i .  j r 0, then we have 

df(g~,gj; O k) = (i + N - 1 - k , j  + N - 1 - k)d. 

On the other hand, we have 

dr(go,go; O k) = I ( D Y - l - k  U {0}) n (DN- I - k  U {0} q- x)l. 

It follows that  

0 < df(go,go;O k) - (N - 1 - k , N  - 1 - k)d < 2. 

Similarly, we have 

0 <_ dy(go,gl;O k) - ( N -  1 - k , N - k ) d  <_ 1. 

and 

0 < df(gl,go;O k) - ( N -  k , N -  1 -  k)d <_ 1. 

Thus, we arrive at the conclusion that  the difference parameters are almost the 
same as the cyclotomic numbers. 

3 A basic theorem and main bridge 

Before describing some binary cyclotomic generators, we introduce the sphere 
complexities and show why it is necessary to control the sphere complexity for 
those cyclotomic sequences described later. 

Let x and y be finite sequences of length n over GF(q), WH(z) denote the 
Hamming weight, and dH(x, y) -- WH(x - y), the Hamming distance between 
x and y. Let O(x, y) = {y:  0 < dH(X, y) < u} be the sphere without center x. 
The sphere complexity [10] is defined by 

SC~(z )=  rain L(y). 
yeO(~,u) 

here and hereafter L(x) denotes the linear complexity or linear span of x. 
Similarly, let s ~ be a sequence of period N (not necessarily least period) 

over GF(q). The sphere complexity [10] of periodic sequences is defined by 

SC~(s ~ )  = min min L(s ~176 + t~ ) ]  
O < v < u  W H ( t N ) = v , p e r ( t ~ ) = N  " J 
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where per(too) = N denotes that too has a period N, and t N = to t l . . . tN-1 .  

That the control of the sphere complexity of keystream sequences for addi- 
tive synchronous stream ciphers is cryptographically necessary follows from the 
fact that there is a polynomial-time algorithm which determines a LFSR with 
approximately the same output as the original keystream sequence, provided 
that the linear complexity of the keystream sequence has a bad stability. This 
algorithm can be roughly described as follows. 

If the sphere complexity SCk(s ~176 = l of the binary semi-infinite sequence 
soo is small for some very small integer k, then theoretically the sequence soo 
can be written as 

Soo : too -I- Woo, 

where s ~176 t ~ and w ~ all have a period N with respect to which the sphere 
complexity is concerned, and L( t  ~ )  = l, and the Hamming weight WH(w N) ~ k. 
The task of this polynomial-time algorithm is to construct a LFSR of length l 
which produces the sequence t ~ or another LFSR which outputs a sequence 
with the probability of agreement with the original sequence soo no less than 
1 - k / g .  

Suppose that a cryptanalyst gets a piece of the sequence soo, say S. Then 
the piece must be written as S = T + W, where T and W are the corresponding 
pieces of the periodic sequence too and woo respectively. Since the k is very 
small, with a very high probability, which depends on the length of S and the 
pattern distribution of s ~176 , it holds S = T. In this case if the length of S is large 
than 2l, then applying the Berlekamp-Massey algorithm [14] to S will give an 
LFSR which produces the sequence t ~ with the probability of agreement with 
soo being no-less than 1 - k / N .  

If S r T, the Hamming weight of S - T must be very small since k is very 
small. Then by changing a few bits in S the cryptanalyst gets T. However, he/she 
does not know the actual sequence S - T. But he/she can first get a number of 
sequences Si by changing only one bit in the ith position of S for all i, in this way 
he/she gets m modified versions of S, where m is the length of S. Then apply 
the Berlekamp-Massey algorithm to each modified version to get a LFSR. After 
that use these LFSRs to decipher a long piece of ciphertext. If one LFSR has a 
probability of correct decipherment no less than 1 - k / N ,  then the cryptanalyst 
accept this LFSR for approximating the original keystream generator. Otherwise 
changing two bits each time in S gives m ( m  - 1)/2 modified versions of S, 
then apply the Berlekamp-Massey algorithm to these modified version to see 
whether an acceptable LFSR is obtained. If not, try to modify three bits to 
get m ( m  - 1 ) ( m -  2)/6 versions, and apply the Berlekamp-Massey algorithm 
to the modified versions again. Since k is very small, the cryptanalyst must get 
an acceptable LFSR after repeating the procedure a number of times. Since 
the complexity of the Berlekamp-Massey algorithm is of order O(m2), where 
m is the length of the input sequence, the complexity of this approximation 
algorithm must be polynomial. The smaller the k, the less the complexity of this 
approximation algorithm. This algorithm clearly shows the importance of the 
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sphere complexity. It is quite clear that if SCr r = l is small, with the above 
algorithm a cryptanalyst must succeed in get a LFSR with the probability of 
agreement with the original generator larger or equal to 1 - 6/N. 

We describe the above algorithm here in order to show the cryptographic ne- 
cessity of controlling the sphere complexity for our binary cyclotomic sequences 
for additive stream ciphering. The necessity of controlling the linear complexity 
of keystreams for additive stream ciphering follows from the efficient Berlekamp- 
Massey algorithm. After having shown the need for controlling the linear and 
sphere complexity for cyclotomic sequences, we now prove some theorems which 
will be needed when we control these complexities for those sequences. 

Basic T h e o r e m  1 Let N = p~l ...p~,, where P l , ' " , P t  are t pairwise distinct 
primes, q a positive integer such that gcd(q, N) = 1. Then for each nonconstant 
sequence s ~ of period N over GF(q), we have 

. . ,  

1. L(s ~)  >_ max{ordpl(q),..., ordp,(q)}; 
2. SCk(s ~)  >_ max{ordp,(q),..., ordpt(q)}, 

if k < min{WH(sg), N - Wn(sN)}, 

here and hereafter L(s ~)  and SCk(s ~)  denole the linear and sphere complex- 
ity of the sequence respectively, WH(x) the Hamming weight of x, and s y = 
8 0 8 1  . . . 8 N _  1 .  

Proof: Let K be a field of characteristic p, the n a positive integer not divisible 
by p, and ~ a primitive nth root of unity over K, the nth cyclotomic polynomial 
is defined by 

= 1 1  - 
s = l , g c d ( s , n ) = l  

To prove the theorem, we need the following properties of the cyclotomic poly- 
nomial (see Lidl and Niederreiter [13] for proof). 

1. Qn(x) is independent of the choice of ~. 
2. deg(Qn(x)) = r 
3. The coefficients of Qn(x) belong to the prime subfield of K. 

4. x" - 1 = I-[din Qa(z). 
5. If K = GF(q) with gcd(q, n) = 1, then Qn factors into r distinct monic 

irreducible polynomials in K[x] of the same degree d, where d is the least 
positive integer such that qd = 1 mod n, i.e., d is the order (or exponent) of 
q modulo n, denoted as ord(q) modulo n or ord,(q). - 

It is easily seen that ordpk (a) >_ ordp (a) for any prime p and any positive in- 
teger a with gcd(a,p) - 1. By assumptions and the above basic property 5 the 
polynomial x n - 1 is equal to the product of r distinct monic irreducible 
polynomials over GF(q)[x] of the same degree d, where d is the least positive 
integer such that qd _ 1 mod n, i.e., d is the order (or exponent) of q modulo 
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n. Since the minimum polynomial of each sequence of period N over GF(q) di- 
vides z N - 1 and z y - 1 = r ln lg  Qn(z), we consider the orders ordn(q) for each 
possible divisor n of N. 

I f n  divides N, there are integers h~l, ..., hG, where 1 < hij < e i j  for 1 _< j < s 
and 1 < s < t, such that  n = p~:l . . .p~:, .  By the Chinese Remainder Theorem 
and the above conclusions 

ordn (q) = lcm{ordp~ (q) , . . . ,  ordp:, (q)} 

> max{ordp~ (q), . . . ,  ordp~, (q)} 

> min{ordp~ (q), . . . ,  ordp, (q)}. 

Thus, the conclusions of this theorem follow. QED 
One can see that  the above lower bound is optimal. I f t  = 1 and el = 1, then 

we have the general lower bound for sequences of a prime period. I f t  = 1, then it 
gives a lower bound for the linear complexity and sphere complexity of sequences 
with period being a prime power. Most of the theorems and corollaries in the 
paper are special cases of the above basic theorem, that  is why we call it a basic 
theorem. We say that  it is a bridge between number theory and stream ciphers 
because it makes a clear connections between the linear and sphere complexity 
of sequences and quite a number of number-theoretic problems such as primes 
of special forms (e.g., Sophie German primes, Stern primes, twin primes) and 
their distributions, primality testing, primitive roots and their distributions, and 
primitivity testing. Some of these connections will be made clear in Sections 4-7. 

This basic theorem shows that  it is usually quite easy to control the global 
linear and sphere complexities. However, it seems fairly difficult to control the 
local linear and sphere complexities. It is worthy to note that  here we use the 
speciality of period to control the linear and sphere complexities, while some 
cryptographic functions are traditionally used to control the global linear com- 
plexity in the literature. Thus, we stress the importance of period. 

4 Cyclotomic generator of order 2k 

Binary sequences with prime period are cryptographically attractive due to the 
following theorems about the linear and sphere complexities, which follow easily 
from Basic Theorem 1. 

T h e o r e m  1. I f  N is prime, then for any nonconstant sequence s ~176 of period N 
over GF(2) and over GF(2 s mod N) with gcd(s, N - 1) = 1 and with 2 s rood N 
being a power of a prime, 

1. L(s ~ > ordN(2); 
ordN(2), i l k  < min{WH(sN), N - W H ( s N ) } ;  

2. SCk(s ~~ = O, otherwise. 

Proof: Setting t = 1 and el = 1 in Basic Theorem 1 proves the theorem. QED 
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T h e o r e m 2 .  I f  N = 4t + 1 is prime and t is a odd prime, then for any non- 
constant sequence s ~176 of period N over GF(2) and over GF(28 rood N) with 
gad(s, N - 1) = 1 and with 2 s rood N being a power of a prime, 

1. L(s  c~ = N or N - 1 ;  
N or N - 1 ,  i f k  < m i n { W U ( s N ) , N -  WH(sN)};  

2. SCk(s  ~ )  = O, otherwise. 

Proof: Recall that  a is a primitive root modulo an integer N if and only if 
ordN(a) = r  where r is the Euler function. Since both N = 4t + 1 and t 
are primes, it is seen that  2 is a primitive root of N. Then the conclusion of this 
theorem follows from Theorem 1. QED 

T h e o r e m  3. Let N = 4 t -  1 be a prime with t odd. I f  ( N -  1)/2 is prime (i. e., it 
is a Sophie Germain prime), then for any nonconstant sequence s ~ of period N 
over GF(2) and over GF(2  8 mod N) with gad(s, N -  1) = 1 and with 2 8 mod N 
being a power of a prime, 

1. L(s ~ )  = N or N - 1 ;  
N or  N - 1, ilk < min{WH(sN),N- W H ( s N ) } ;  

2. SCk(s  ~ )  = O, otherwise. 

Proof: By the special form of the prime N it is easy to see that  2 is a primitive 
root modulo N. Then  the conclusion of this theorem follows from Theorem 1. 
QED 

T h e o r e m 4 .  Let N = 4t + 1 be a prime with t odd and t = tit2, where t l  and 
t2 are primes. I f  

2 2 t l r  2 2 t 2 r  

then for any nonconstant sequence s ~176 of period N over GF(2 8 mod N) (espe- 
cially over GF(2) )  with gad(s, g - 1) = 1 and with 2 8 mod N being a power of 
a prime, 

1. L(s ~176 = N or N - 1 ;  
g or N -  1, / fk  < m i n { W H ( s N ) , N -  WH(sg)};  

2. SCk(s  ~176 = O, otherwise. 

Proof: Note that  ordN(2) divides r = N - 1 = 4tlt~ and that  t l  and t2 are 
primes. It then follows by the two inequalities in the assumptions of the theorem 
that  the order of 2 must be equal to N - 1. Combining this fact and Theorem 1 
proves the theorem. QED 

T h e o r e m h .  Let N --- 4t - 1 be a prime with t odd and 2 t -  1 --- t i ts ,  where t l  
and t2 are primes. I f  

2 t l r  2 ~ r  

then for any nonzero sequence s ~176 oj  period N over GF(2) and over GF(2  8 mod 
N) with gad(s, N - 1) = 1 and with 2 8 mod N being a power of a prime, 
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1. L(s ~)  = N or N - 1 ;  
N o r N - 1 ,  

2. SCk(s ~)  = O, otherwise. 
i l k  < min{WH(sg), N - WH(sN)}; 

Proof: With the same arguments as in Theorem 4 we see that the order of 2 
mod/flo N is N - 1. Combing this fact and Theorem 1 yields the conclusion of 
this Theorem. QED 

After having proved the above theorems, which are needed to control the 
linear complexity and sphere complexity of the cyclotomic sequences of order 
2k, we now describe the binary cyclotomic generator of order 2k. Let prime 
N = 2k f  + 1, and Do, D1, ..., D2k:-I be the cyclotomic classes of order 2k 
defined as before. If we choose the mapping 

H(x) " -  (i (N-1)/2k rood N) mod 2 

as the cryptographic function for the NSG of Figure 1, then we have the binary 
cyclotomic generator of order 2k. 

It is not difficult to verify that each difference parameter of the above cryp- 
tographic function H(x) for the binary cyclotomic generator of order 2k can be 
expressed as the sum of k 2 cyclotomic numbers of order 2k. Thus, if the cyclo- 
tomic numbers of order 2k have an ideal stability, the formulae in Section 1 show 
that we have an ideal property for the seven aspects described in Section 1 if k is 
small enough. Even if the cyclotomic numbers of order 2k are stable to an ideal 
extent, the largeness of the k may lead to a relatively bad difference property 
of the cryptographic function. Thus, only those generators derived from small k 
are cryptographically attractive. 

Theorems 1-5 clearly show how to control the linear complexity and its sta- 
bility for the output sequence of the binary cyclotomic generator of order 2k. 
By Theorem 1, to control the linear complexity and its stability of the output 
sequences of the binary cyclotomic generators, it suffices to choose the prime N 
such that ordN(2) is large enough. The best choices for the primes are Sophie 
Germain primes, i.e., primes p such that 2p+ 1 is also a prime, and Stern primes, 
i.e., primes p = 4t + 1 with t also prime. 

If k = 1, then it is called the binary cyclotomic generator of order 2. The 
binary cyclotomic generators of order 2 can be further classified into DSC (dif- 
ference set characterized) and ADSC (almost difference set characterized) gener- 
ators which correspond the cases N = -1  mod 4 and N = 1 mod 4, respectively 
[11]. In the case k = 1 the output sequence of the DSC and ADSC generators 
are the 0-1 version of the Legendre sequences with a slight modification of the 

values for ( ~ )  for i = 0, 1,..-, and a proper choosing of the prime p. 

A DSC generator with a Sophie Germain prime has the following crypto- 
graphic attributes: its output sequences have maximum linear complexity by 
Theorem 3; best autocorrelation property by the formula for cyclotomic num- 
bers of order 2 or the difference set property of the set f - l (1 )  and formula (3), 
where f (x)  = (z (N-I)/2 mod N) mod 2; best linear complexity stability by The- 
orem 3; the cryptographic function f(x) has best nonlinearity with respect to 
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Fig. 2. The two-prime generator of order 2k including the twin-prime generator 

the additions of ZN and Z2 by the difference set property of f-1 (1) and formula 
(1). The ADSC generator with a Stern prime has almost the same cryptographie 
attributes. 

5 T w o - p r i m e  c y c l o t o m i c  g e n e r a t o r  o f  o r d e r  2 

Let p and q be two distinct odd primes with gcd(p - 1, q - 1) -- 2, and 

/~={0}, P={p ,  2p,.--,(q-1)p}, Q = { q , 2 q , . . . , ( p - 1 ) q } .  
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Furthermore, let g be a fixed common primitive root of both primes p and q, 
d = g c d ( p -  1, q -  1) and de = ( p -  1)(q - 1). Then it is proved in [21] there exits 
an integer z such that  

Z~q--- {gSx i : s = O ,  1 , . . . , e - 1 ;  i = O ,  1 , . . . , d - 1 } .  

The set Z~q is also called the reduced residue system modulo N - pq. In 
Whiteman's  generalized cyclotomy the index class or cyclotomic class Di consists 
of e numbers and is defined by 

D~ = {g 'x  i : s = 0, 1 , . . . , e -  1} 

and the generalized cyclotomic number (i, j)d by 

( i , j )d = I(Di + 1)MDjl.  

There are d cyclotomic classes Do," �9 ", Dd-1, which form a partition of Z$q. 
We now analyze the relation between the difference property of the partition 

of Zpq and the generalized cyclotomic numbers. It is obvious that  x E Z~q. 
Assume that  the order of x modulo N is m. Then m _> d. Let w E Z~q. Then 
there must exist two integers s and t with 0 < s < e - 1, 0 < t < d -  1 such 
that  w = gsxt.  Because x d - gu for some fixed u such that  0 < u _< d - 1, the 
difference parameter can be expressed as 

d( i , j ;w)  = ](Di +gSxt)  M (Dj)[, 0 < i, j < d -  1; w e Z~v, 

= [(D(rn-t+i)mod d -]- 1) N D(m-t+j)mod dl 

= ( ( m - t + i )  m o d d , ( m - t + j ) m o d d ) a .  

This means that  for each (i, j;  w) with 0 <_ i, j <_ d -  1, w E Z~q, the difference 
parameter d(i, j; w) is in fact one cyclotomic number. We will discuss the case 
for w • Z~q later. 

As seen above, the index classes Do , - . . ,  Dd-1 is a partition of Z~v. Since 

R = { 0 } ,  P = { p ,  2 p , . . . , ( q - 1 ) p } ,  Q - - { q , 2 q , . . . , ( p - 1 ) q } ,  

the sets D o , . . . ,  Dd-1; R; P; Q form a partition of ZN. To extend the partition 
of Z~v to ZN, we have to study the difference property between the above sets. 
The following conclusions have been proven or are implied in [21]: 

1. For any r E P U Q, it holds 

d(0, 1;r) = ](Do + r) M D1] = ( p -  1 ) ( q -  1)/d ~. (9) 

2. For a n y r E P U Q a n d a n y l < k < d - l ,  i tholds  

d(0, k; r) = [(D0 + r) M Ok[ = (p -- 1)(q -- 1)/d 2. 

3. Let symbols as before, then 

d(0,0;r)  = I(D0 +r) nO01 
_ J ' ( p - 1 ) ( q - l - d ) / d  2,rEP,r~Q; 
- 1 . ( q - 1 ) ( p  1 d)/d2, r E Q , ' r ~ P .  
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Since x E Z~ and a = gU for some u with 0 < u < d - 1, for each r we have 

d(i,j;r) = ](Di + r ) M D j l  

= Ix~-~(D~ + r) n x~-~D~l 
= d(0, (j + d - i) mod d; xd-ir mod N). 

If r E P (or Q), then x d-i E P (or Q). 
For the partition D o , . . . ,  Dd-1 of Z~v and w r 0, combining the above results 

we obtain 

{ (p-1)(q-1) /d  ~, i c y ,  wEPUQ; 
d(i,j;w)= (p 1)(q 1-d) /d  2, i= j ,  w E P ,  w ~ Q ;  

(q 1)(p 1-d) /d  2, i=j ,  w~Q, w~P;  
(i ~, f ) a  for some (i~, f ) ,  otherwise. 

In order to put the elements of R, P, Q to some of the Di's to get a partition 
of ZN with good difference property, we need the following result proved by 
Whi teman [21]: 

ID0n(Q+r ) l  = (p-1)/d; I f r ~ Q M n .  

To design the two-prime cyclotomie generator of order 2, we need functions 
from Zpq to Z2 with good nonlinearity with respect to the additions of the 
two rings. Due to the inspiration of Whiteman's  result, we now consider the 
characteristic function of the partition {R U Q u Do, P U D1} = {Co, C1} of 
Zpq. In what follows in this section we assume that d = g c d ( p -  1, q - 1) = 2. 
To analyze the function, we need the generalized cyclotomic numbers of order 2 
obtained by Whiteman [21]. 

Let symbols as before. If f f '  is even, we have (0, 0) = (1, 0) = (1, 1) and two 
different cyclotomic numbers 

( 0 , 0 ) =  ( p - 2 ) ( q - 2 ) + 1  ( 0 , 1 ) =  ( p - 2 ) ( q - 2 ) - 3  (10) 
4 ' 4 

If f f f  is odd, we have (0, 1) = (1, 0) -- (1, 1) and 

(0, 0) = (p - 2)(q - 2) - 1 -  3 (0, 1) = (p - 2)(q - 2) - 1 (11) 
4 ' 4 

We now analyze the difference property of the partition {Co, C1} of Zpq. Note 
that  

de(0,  0; r) = [[(R + r) U (Q + r) u (D0 + r)] M [a  U Q u Do]l. 

Setting 

a(0, 0; r) = [(Q + r) N Q[ + [(Q + r) N Do[ + I(Do + r) M Q[ + [(Do + r) M Do[, 

we can prove 

o < de(O, O; r ) -  a(O, O,r) < 2. 
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So our task now is to estimate the a(0, 0; r) with r # 0. One simple fact is 

p -  2, r E Q; 
I ( Q + r ) n Q I  = o, r EPUZ;q ;  

Note that  if r E P ,  then it is possible to have Q + r c Do. Thus, for each r we 
have the following two apparent facts: 

o < I(Q+r) nDol <_p- 1; 

o < I q n ( D o + r ) l  <_p-1.  

It follows that 

Setting 

and 

we get 

](D0 + r) U D01 _< a(0, 0; r) < 3p - 4 + ](Do + r) U Do]. 

( p - 2 ) ( q - 2 ) + 3  ( p - 1 ) ( q - 3 )  ( p - 3 ) ( q - 1 ) }  
B max{ 

4 ' 4 ' 4 

(p-2)(q-2)-3 (p-1)(q-3) (p-3)(q-1)}, 
C rain{ 

4 ' 4 ' 4 

C <_ a(O,O;r) <_ 3 p -  4 + B, 

and therefore 

C <_ dc(O,O;r) < 3 p -  2+B.  

We can similarly prove that for each r r 0, it holds 

C <_ dc(1,1;r) < 3 q - 4 +  B. 

In what follows we analyze de(l, 0; r ) a n d  dc(O, 1; r). By definition we have 

de(l, 0; r) -= I(C1 + r) M Col = I[(P + r) u (D] + r)] rq (R o Q u Do)l 
= I(P + r) n RI + I(P + ~) n QI + I(P + ~) n Dol 

+I(D~ + ~) n RI + I(D1 + ~) n QI + I(D~ + r) n Dol. 

If r d P,  then by formula (9) we have 

I(O~ + r ) n  Dol = ( p -  1) (q-  1)/4. 

In addition we have apparently 

I(P + r) nQI  = I( P +  r) n D01 = I(D1 + r) n R I = 0 

I(P + r) M R[ --1, 0 < [ ( O I + r )  M Q I < p - 1 .  
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Hence, we obtain in the case r E P 

1+  ( p -  1)(q-4 1) _< dc(1,0;r) _< ( p -  1)(q-4 1) +P.  

If r E Q, we can similarly prove 

(p-1)(q4 - 1 )  _< dc(1, 0; r) _< (p-1)(q4 - 1 )  + q - 1 .  

If r E Z~q \ P U Q u R, then by the formulae (10) and (11) we get 

(p -- 2) (q -- 2) -- 3 < [ ( D I + v )  N D 0 [  ( p - 2 ) ( q - 2 ) - t - 3  
4 - 4 

In addition we have apparently 

I(P + r) n RI = o 
o _< I(P + r) n QI <_ min{p - 1, q - 1} 
0 _< I (P+  r )nDol  _< q -  1 

0 <_ I(D1 + r ) n Q I  _< p -  1 

0 _< I(D~ + r) n RI <_ 1. 

It follows in this case that 

(v-2-)(q-2)-3 < de(l ,  0; r) 4 
1 _< (v-t)(q-1)4 + min{p - 1, q - 1} + ~(p + q) + 7" 

Combining the results for the three cases, we obtain 

(; - 2)(q4- 2) - 3 _< ~c(1, o; r) _< ( ; -  i)(q4 - i) + E ,  

where 

3 1 
E = max{p ,q -  1 ,min{p-  1 , q -  1} + ~ (p+  q) + 7}. 

Similarly, one can prove 

( p - 2 ) ( q 4 - 2 ) - 3  _< dc(0,1; r) _< (p-1)(q4 - 1 )  + E ,  

Summarizing the above analysis, we obtain the difference property of the 
above cryptographic function Fc (x), as described by the following theorem�9 



46 C. Ding 

T h e o r e m  6. Let 

a--- ( p - 2 ) ( q - 2 ) - 3  d =  ( p - 1 ) ( q - 1 )  
4 ' 4 ' 

and 

b = m a x {  ( p - 2 ) ( q 4 - 2 ) + 3 , ( p - 1 ) ( q 4  - 3 ) ' ( P - 3 ) ( q 4  - 1 ) }  

c = m i n {  ( p - 2 ) ( q 4 - 2 ) - 3 , ( p - 1 ) ( q 4  - 3 ) ' ( P - 3 ) ( q 4  -1 )}"  

then we have 

c < de(O,O;r) < 3 p -  2 + b, 
c <_ dc(1, 1;r) < 3 q -  4 +  b, 
a <_ dc(1,O;r) <_ d + E ,  
a < dc(O, 1;r) < d + E ,  

for each r ~5 0 mod N, where 

1 
E = m a x { p , q -  1 , m i n { p -  1, q -  1} + ~ ( p +  q) + ~}. 

This theorem tells us that if IP - q[ is small enough, the cryptographic func- 
tion Fc(x) has an ideal difference property. Thus, the other six aspects are 
automatically ensured due to our formulae in Section 1. In this case, the facts 
that Ic01 = ( ; -  1)(q - 1)/2 + q and ICll = (p- 1)(q - 1)/2 + p -  1, show that 
the function has also good balance. It is called a cyclotomic generator because 
the difference property and the nonlinearity of the above cryptographic function 
depend on the generalized cyclotomy developed by Whitman. 

It is not difficult to see that the characteristic function of the partition 
{Co, C1} can be expressed by 

1, j E R U Q ;  
F c ( j ) =  O, j E P; 

(1 + (ps163 otherwise. 

With this cryptographic function the binary two-prime cyclotomic generator of 
order 2 is depicted in Figure 2, where p and q are distinct odd primes and k = 1, 
the | and @ denote bit multiplication and bit-XOR operations, and the other 
parts have the same meanings as those of Figure 1. 

On the other hand, the two primes should be chosen properly for the purpose 
of controlling the linear complexity and the linear complexity stability of the 
output sequence. In fact we have generally the following result, which is a special 
case of Basic Theorem 1. 

T h e o r e m  7. Let N = rs be a product of two distinct primes, u an integer with 
gcd(u, N) = 1. Then for any nonconstant sequence s ~ of period N over GF(u) ,  
it holds 
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1. L(s ~) > min{ordr(u), ords(u)}; 
2. SCk(s  c~ >__ min{ordr(u), orals(u)}, i l k  < min{WH(sN), N - WH(sN)}, 

where SCk(s  ~176 denotes the sphere complexity of the sequence, WH(s N) the 
Hamming weight of the finite sequence, ordr(u) the order of u modulo r. 

Proof: Setting t -- 2 and el = e2 = 1 in Basic Theorem 1 proves this theorem. 
QED 

As consequences of the above theorem, we have the following corollaries: 

C o r o l l a r y 8 .  Let r -= 4 t 1 + 1 ,  s -= 4 t2+1 ,  r ~ s. I f  r, s, t l  and t2 are odd 
primes, then for any nonconstant binary sequence of period N = rs, 

1. L(s ~~ > m i n { r -  1, s -  1} 
2. SCk(s  ~176 > r a i n { r -  1, s -  1}, i l k  < m i n { W H ( s N ) , N  - WH(sN)}. 

Proof: Note that  the proof of Theorem 2 shows that  ordr (2) -- r -  1 and ord8 (2) -- 
s -  1, that  is, 2 is a primitive root of both r and s. Combing these two facts and 
Theorem 7 proves this corollary. QED 

C o r o l l a r y 9 .  Let r = 4rl - 1, s = 4sl - 1, (r - 1)/2 and (s - 1)/2 are all odd 
primes. I f  r > 5 and s > 5, then for each nonconstant binary sequence s ~ of 
period N = rs, we have 

1. L(s ~ > min{r - 1, s -  1}; 
2. SCk(s  ~ )  >_ m i n { r -  1, s -  1}; if  k < min{WH(slV), N - W H ( s N ) ] .  

Proof: The Proof of Theorem 3 shows that  2 is a common primitive root of r and 
s. Combining this and Theorem 7 yields the conclusion of this corollary. QED 

C o r o l l a r y  10. Let r = 4rl + 1, s : 4sl - 1. I f  r, rl, s, (s - 1)/2 all odd primes, 
then for each nonconstant binary sequence s ~176 of period N : rs, we have 

1. L(s ~ )  > m i n { r -  1, s - 1}; 
2. SCk(s  ~ )  > m i n { r -  1, s -  1}; i l k  < m i n { W H ( s N ) , N  - WH(sg ) ) .  

Proof: The proofs of Theorems 2 and 3 show that  2 is common primitive root of 
both r and s. Combing this and Theorem 7 proves this corollary. QED 

The above theorem and its three corollaries clearly show how to control the 
linear complexity and its stability for the output sequence of the binary two- 
prime generator of order 2. 

Summarizing the above results, we see that  the parameters should be chosen 
such that  

1. p and q both are large enough with g c d ( p -  1 , q -  1) -- 2; 
2. IP - ql is small enough, compared with pq; 
3. ordp(2) and ordq(2) both are large enough. 
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It should be made clear that  the special properties of the primes p and q 
determine partly the quadratic partition of the primes, and thus contributes 
to the stability of the cyclotomic numbers, and consequently to the difference 
property and other six aspects described in Section 1. 

Generally speaking, the two-prime generator is more flexible, due to the fact 
that  we have much freedom to select the primes. 

The best choices for the p and q are the twin primes. They ensures the best 
difference property and nonlinearity of the cryptographic function according to 
generalized cyclotomic numbers of order 2 (see [21]). In this case the output  
sequence of generator is the characteristic sequence of the twin-prime difference 
set with parameters (.N, h, A) = (p(p ~ 2), (N - 1)/2, ( g  - 3)/4) (see [21]). Note 

(2t + 1) 2 , i f  p =  4t + 1; 
n = h - A =  4t2, i f p = 4 t - 1 .  

It follows from [11] that  the linear complexity of the output sequence is N or 
N - 1, provided that  p = 4 t +  1. I fp  = 4 t +  1, then N + 2  = 4 ( t+  1) - 1. It follows 
that  p and p + 2 has no common primitive root 2 if p = 4t + 1. Nevertheless, the 
output sequence has best linear complexity. 

I fp  = 4t - 1, it is possible for p and p + 2 to have common primitive root 2. 
Assume that  they have common primitive root 2, then by Theorem 7 we have 

1. L(z ~176 > p -  1; 

2. SCk(z ~) _> p -  1, if k < min{WH(zN), N -  WH(z~)} .  

Because the eryptographic function is the characteristic function of a twin- 
prime difference set, all the seven aspects described in Section 1 are optimal. 

The output sequence of the two-prime cyclotomic generator of order 2 is 
an extension of 0-1 version of the Jacobi sequence in the sense that  the values 
at the special sets Q, P and R are modified. In addition, the condition that  
g c d ( p -  1, q -  1) = 2 is essential to the generator. It is because of this condition 
that  the generalized cyclotomic numbers of 6rder 2 ensure an ideal difference 
property of the cryptographic function. Without this condition it cannot be 
called a cyclotomic generator. 

6 T w o - p r i m e  g e n e r a t o r  o f  o r d e r  4 

To design cryptographic functions from Zpq to Z4, we follow the same approach 
as in the foregoing sections. Let p = 4 f  + 1 and q = 4 f  ~ + 1 with gcd(f, f / )  = 1. 
Then d = gcd(p - 1, q - 1) = 4 and e = 4 f f  t. Define the function 

1, j E {0, q ,2q , . . . ,  ( p -  1)q]; 
F(j) = O, j E {p, 2p, . ' . ,  ( q -  1)p}; 

((j(q-1)/4 rood q) mod 2) G ((j(p-1)/4 modp)  mod 2) @ 1, j E Z;,q. 

With this F(x) we describe a generator based on the generalized cyclotomy of 
order 4, as depicted in Figure 2 with k = 2. 
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If we define the function F*(x) from Z~q to Z~ by 

F*(j )  = ((j(q-1)[4 mod q) mod 2)@ ((j(p-1)/4 modp) mod 2)|  1, j E Zpq. 

Then it is easy to know that F*(x) has characteristic set C1 = Di U Dj t2 Q, 
where Q = {0, q, 2q, . . . ,  ( p -  1)q), Di and Dj are two of the four generalized 
cyclotomic classes developed by Whitman [21]. Thus, an ideal stability of the 
generalized cyclotomie numbers of order 4 ensures an ideal difference property 
and nonlinearity of the above function F(x) .  

Fortunately, the generalized cyclotomic numbers of order four have an ideal 
stability [21]. Thus, it follows from the formulae in Section 1 and the relation be- 
tween cyclotomic numbers and the difference parameters described in Section 2 
that we have ensured an ideal property for all the seven aspects described in 
Section 1. 

The control of the linear complexity and its stability for the output sequence 
of the binary two-prime cyclotomic generator of order 4 is the same as that of 
order 2. By Theorems 6 and 7 the parameters should be chosen such that 

1. p and q both are large enough with gcd(p - 1, q - 1) = 4; 
2. IP - q[ is small enough, compared with pq; 
3. ord v(2) and ordq(2) both are large enough. 

7 P r i m e - s q u a r e  g e n e r a t o r  

Sequences with period of the square of a odd prime are cryptographically at- 
tractive due to the following theorems about their linear complexity and linear 
complexity stability which follow easily from Basic Theorem 1. 

T h e o r e m  11. Let r be a odd prime, N = r e and q an integer with gcd(q, N) = 1. 
Then for any nonconstant sequence of period N over GF(q), 

1. L(s  ~176 > ordr(q) ; 
2. SC~(s ~ )  > ord~(q), i l k  < m i n { W H ( s N ) , N  - WH(sN)}. 

Proof: Setting t = 1 in Basic Theorem 1 proves this theorem. QED 

T h e o r e m  12. Let r be a odd prime, N = r 2 and q a primitive root modulo r 
and r 2 does not divides q , - I  _ 1, then for any nonzero sequence of period N over 
GF(q), 

1. n (  s ~176 must be equaI to one of { v/-N, v / 'N-1 ,  N -  x / 7 ,  N -  x / T  + I, N -  I, N ) ; 
2. SCk(s  ~176 _> x/ -N-  1, / fk  < min{WH(sg), g -  WH(sg)) .  

Proof: Since q is a primitive root of r and r 2 does not divides q~-i _ 1 by 
assumptions, it is known that q must be a primitive root of r 2 (for proof, see [1]). 
Thus, by the basic properties of cyclotomic polynomial presented in the proof 
of Basic Theorem 1 we know that the cyclotomic polynomials Qr (z) and Qr~ (z) 
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are irreducible over GF(q) .  Again from the properties of cyclotomic polynomials 
it follows 

x N - 1 = ( x -  1 )Qr(x )Qr~(z ) .  

Note that  deg(Qr(x)) = r - 1 and deg(Q~(x))  = r(r  - 1) since q is a common 
primitive root of r and r 2. Combining these fact and the fact that  the minimum 
polynomial of each sequence of period N over G F ( q )  divides x N - 1 proves this 
theorem. QED 

Thus, the best primes p for binary sequences of period p2 are the non- 
Wieferich primes with base q, i.e., those described by the above theorem, which 
is related to the Fermat  quo~ien~ and some other number-theoretic problems. We 
prove these two theorems here because we need them to control the linear and 
sphere complexities of the output sequences of the prime-square generator. 

If we choose one of the following functions 

1, x E R; 
F c ( x )  = (xp(V_l)/2 m o d p 2 ) m o d  2, otherwise 

and 

0, x E R; 
F c ( x )  = (xV( v-l)~2 m o d p  2) rood 2, otherwise 

for the cryptographic function of Figure 1, where N = p2, then we have the 
binary prime-square cyclotomic generator. 

To describe the difference property of the above two cryptographic functions, 
we give a brief introduction to the cyclotomic numbers modulo p~. Let p be a 
odd prime. By the Chinese Remainder Theorem there is a common primitive 
root a modulo both p and p2. Setting Do = (a2), a multiplicative subgroup of 
Zp~, and D1 = c~D0. Then the eyelotomic numbers of order 2 modulo p2 are 
defined by 

(l, m)= = n (Din + 1)1, 0 < l ,m  < 1. 

We need the following theorem, which was conjectured by the author and 
proved by D. Pei [16], to ensure an ideal property for all the seven aspects 
described in Section 1. 

T h e o r e m  13. 

(0, 1) = (0, O) = (1, 1) - p(p - 3) 
4 ' 

I f p  = 1 mod 4, we have 

(0, 1) = (1, O) = (1, 1) - p(p - 1) 
4 ' 

Let symbols as before. I f  p = 3 mod 4, we have 

o) - p( ;  
3) 

4 

(0 ,  O) - -  p ( p  - 1) 
4 

m + p .  

- -  - - p .  
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Let {Co, C1} be the characteristic class of the above function Fc(x), then 
similar to Section 2 it is easily verified that the difference parameters of the above 
function are approximately the same as the four cyclotomic numbers defined for 
the modulus N = p~. Thus, an ideal difference property and therefore an ideal 
property for the other six aspects are ensured by the formulae described in 
Section 1. 

8 B e h i n d  t h e  c y c l o t o m i c  g e n e r a t o r s  

There are several cryptographic ideas behind the construction of these cyclotomic 
generators. The first one is the order of choosing the design parameters for the 
generator. Contrary to the traditional approach, we first control the period of 
the output sequence. This will automatically ensure the linear complexity and 
its stability aspects only with the condition that the sequence is not a constant 
sequence. Then we choose the cryptographic function for other purposes. This 
approach is intended to avoid unnecessary tradeoffs. 

The second cryptographic idea behind the design and analysis of cyclotomic 
generators is the idea of introducing good partners, in order to get a stable 
system. In particular, we search for pairs of period and finite field so that it is 
easy to control the linear complexity and its stability for those sequences over 
those fields with corresponding partner periods. This has been shown clearly by 
the theorems and corollaries concerning linear and sphere complexities. We say 
that such pairs work in harmony with respect to the aspects of linear complexity 
and its stability. For example, some Mersenne and Fermat primes are not good 
partners of the field GF(2), since it is difficult to control the linear complexity 
and its stability for binary sequences with period of some Fermat and Mersenne 
primes. This is because that the order of 2 modulo these primes is quite small. 
From Basic Theorem 1 and its corollaries it is rational to use ordN(q) as a 
measure on the partnership between an positive integer N and an integer q with 
respect to the linear and sphere complexity aspects when designing sequences of 
period N over GF(q) ,  where gcd(N, q) = 1. We say that q and N are the best 
partners when q is a primitive root modulo N. 

Another kind of partnership is to find an integer r which is a power of prime 
such that lcm{ord m (r) , . . - ,  ordp~ (r)} is large enough when designing sequences 
of period N = Pl"" "Ph over GF(r),  where P l , ' " , P h  are distinct primes (see 
Basic Theorem 1). We say that r is a best common partner of Pl, �9 �9 ", Ph if r is a 
common primitive root of these primes. 

The third cryptographic idea is to use some techniques of ensuring "good + 
bad = good". With a simple argument each cryptographic function employed in 
the generators described in the foregoing sections can be expressed as 

F ( . )  = H ( a ( . ) ) ,  

where G(x)  is a mapping from ZN to U which is a subgroup of the group (Z~v , .) 
with order d, and H ( x )  a mapping from U to Zd. The nonlinearity of G(x)  
with respect to (ZN, +) and (U, .) is determined mainly by the (generalized) 
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cyclotomic numbers of order d, which usually have an ideal stability; while the 
function H(x) is almost linear (or with good linearity) with respect to (U, .) 
and (Zd, +). Thus, it is clear that one cryptographic idea behind the cyclotomic 
generators is 

"GOOD + BAD = GOOD". 

The fourth cryptographic idea is to use cryptographic functions f(x) from an 
abelian group (G1, +) to another abelian group (G2, +) such that [G2[ does not 
divide [GI[. We say that such a func.tion is linearly non-approximatable, since 
there is no linear mapping other than the zero constant function from (G1, +) 
to (G2, +). This technique makes any linear approximation attack with respect 
to the two operations out of sense. It should be pointed out that the nonlin- 
earity definition based on the minimum correlation (measured in probability of 
agreement, or distance [15] between a function and all affine functions) is not ra- 
tional in many cases. This definition makes no sense for the above cryptographic 
functions. 

The fifth cryptographic idea is to make use of the relativity about nonlinearity 
and linearity. It is a common fact that the nonlinearity and linearity are relative 
to the operations considered, and that both linear components and nonlinear 
components should be employed in many cipher systems. To find out some cryp- 
tographic functions with good nonlinearity with respect to some operations, one 
may try to find some linear cryptographic function with respect to some other 
operations and use them in the context of the former operations. This is to say 
that bad things in one sense may be good ones in another sense, and one way to 
get goodness is to use badness in a proper way and proper context. To illustrate 
this philosophy, we first take the corresponding function G(x) = x (p-1)/d mod p 
used to construct the cyclotomic generator of order 2k. Then G(x) is linear with 
respect to (Z~, .) and (U, .), where U is the multiplicative subgroup of Z~ with 
order d. But G(x) has ideal nonlinearity with respect to (Zp, +) and (U, +) if 
we define G(0) to be any fixed element of U..And we use G(x) in the context 
of the later pair of operations exactly. The same idea has been used for other 
generators. 

To illustrate the relativity of linearity and nonlinearity, we prove the following 
theorem. 

T h e o r e m  14. For every nonzero linear function L(x) from F = GF(q m) to 
K = GF(q) with respect to the additions of the two fields, its nonlinearity with 
respect to (F*, x) and (K, +) is optimal, as described by 

{ qm-t_ 1 
p(L(x)-L(x/a)=b)=p(L(x(l-a-l))=b)= qm-1 ' / f b = O '  

ra--1 

q~-l ,  i f b # O ,  

which holds for c~ E F with a # 1, and each b E K. 

Proof: For any nontrivial linear mapping L(x)from F to K the kernel L -1 (0) is 
an Abelian subgroup of (F, +) and thus L(z) takes on each element of K equally 
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likely, that is, q,~-I times. Confining the linear mapping on F* = F \ {0} and 
using the above fact proves the theorem. QED 

This theorem clearly shows the cryptographic importance of linear functions 
from F = GF(q rn) to K = GF(q) with respect to the additions of the two fields, 
especially the trace functions. Actually all the cryptographic functions for the 
cyclotomic generators are composition functions of linear functions with respect 
to different pairs of operations. It may be possible to employ this idea to design 
some block ciphers. 

9 S o m e  r e l a t e d  n u m b e r - t h e o r e t i c  p r o b l e m s  

In the paper at least two bridges between some number-theoretic problems and 
the design and analysis of the natural sequence generator have been established. 
These bridges may play an important role in the interactions between number 
theory and stream ciphers, and particularly in the design and analysis of the 
cyclotomic generators described in this paper. 

The first one is the bridge supported by Basic Theorem 1 and the theorems 
and corollaries concerning linear and sphere complexities. The reason for calling 
it a bridge has already made clear in Section 3. Obviously, there are more results 
which can be derived from Basic Theorem 1. If we go across this bridge from the 
stream cipher side, we shall encounter at least the following two basic number- 
theoretic problems when we are designing sequences of period N over GF(q) 
with ideal linear and sphere complexities (see Basic Theorem 1). 

Basic  P r o b l e m  1 Find large positive integers N 's  and positive integers q's 
which are powers of primes such that 

1. gcd(N, q) = 1; 
2. For any faetor of N, ord (q) = 

Basic  P r o b l e m  2 Find large positive integers N ' s  and positive integers q's 
which are powers of primes such that 

1. gcd(N, q) = 1; 
2. N has a few factors; 
3. For any factor n of N, ord•(q), a factor ore(n), is as large as possible. 

Attacking these two basic problems and many of its subproblems and vari- 
ants will involve many, if not most, number-theoretic problems. Among them 
are the searching for special primes, such as Fermat primes, Mersenne primes, 
Stern primes, prime repunits, and twin primes, the distribution of special primes, 
primitivity testing, the distribution of primitive roots. These facts have already 
been shown clearly by all the theorems concerning the linear and sphere com- 
plexities proved in this paper. We need special primes for these generators, and 
have to know whether they exist. And if they exist, we have to know how to find 
large special primes. 
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We need not only twin primes for our twin-prime generator, but also spe- 
cial twin primes. The most interesting twin primes are those having a common 
primitive root 2 (the best common partner of the twins). However, some twins 
have, others don't .  Problems as to which twins have the common primitive root 
2 and how to find them are naturally important  to the design of the twin-prime 
generators. By introducing sexes to twin we can solve one cryptographic problem 
for the twin-prime generator. 

Let (p,p+2) be a pair of twin primes and p = Z(p) mod 4, where ~(p)  = +1. 
Then we call ~(p)  the sex characteristic of the twins. If the twins (p,p + 2) = 
( 4 t - 1 , 4 t  + 1) for some t, then we say that  the twins have the same sex; otherwise, 
we say that  they have different sexes. 

In the above definitions, we say that  twin primes (p, p + 2) have same sex, 
because in the expression of the form 4u =t: 1, the u's for both p and p + 2 are 
the same, and have therefore the same parity, i f p  = 4t - 1. I f p  = 4t + 1, then 
p + 2 = 4(t + 1) - 1 and t and t + 1 have different parities. That  is why we call 
them twins with different sexes. This discussion has also proved the following 
property of twins. 

T h e o r e m  ( T h e  Sex  P r i n c i p l e  o f  T w i n s  ) I f  the smaller of the twins has sex 
characteristic -1 ,  then the twins have the same sex; otherwise, they have differ- 
ent sexes. 

T h e o r e m l 5 .  I f  p and p + 2 have the same sex, then it is possible for them to 
have common primitive root 2 (a common best partner); otherwise, they never 
have. 

Proof: With the help of the Law of Quadratic Reciprocity it is easy to see that  
a necessary condition for 2 to be a primitive root of a prime N is N = 8k • 3 
for some k. Combining this fact and the definition of sexes proves the theorem. 
QED 

Thus, the cryptographic importance of classifying twin primes into two classes 
according to their sexes for the design of the twin-prime generator clearly follows 
from the above theorem. Before searching for twins with the same sex, we have to 
know the distribution of the two classes. Solving this problem and  searching for 
twin primes with the same sex are important  design problems for the twin-prime 
generator. 

The second bridge we set up when we design these cyclotomic generators 
is supported by the relations between the difference parameters of the crypto- 
graphic function f (x ) ,  and the nonlinearity measure, the autocorrelation func- 
tions, mutual  information, and two-bit pattern distributions, as described by the 
formulae in Section 1. 

At one side of the second bridge are the autocorrelation property, the two- 
digit pat tern distribution property of the output  sequences, and the difference 
property and nonlinearity of the cryptographic functions of the NSG; while at 
the other side are cyclotomy-related problems and the Riemann Hypothesis for 
Curves over Finite Fields, which was proven to be true by Weft in 1948 [20]. 
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We call it another bridge between number theory and stream ciphers because it 
makes a clear connection between the above set of cryptographic problems and 
the set of number-theoretic problems. 

Related to cyclotomic numbers and their stability are the quadratic parti- 
tion of primes and of some integers, the theory of quadratic forms, genus theory, 
class field theory, residue difference sets, group character, and character sums. 
In what follows we give a brief explanation to why these problems are related to 
the design of the cyclotomic generators. It is a pity that  we cannot show here 
how some of these problems are related to the design and analysis of the cyclo- 
tomic generators since doing so must involve quite a number of number-theoretic 
concepts. However, pointing out some relations between design problems of cy- 
clotomic generators and a number of number-theoretic problems might be helpful 
for those who are interested in these generators. Let us begin with the stability 
of cyclotomic numbers. 

We now consider the binary cyclotomic generator of order 4 in Section 4. Let 
N = 4 f  + 1 be a chosen prime for the generator. Let N = x 2 + 4 y  2, x = 1 mod 4, 
here y is two valued, depending on the choice of the primitive root [8]. There 
are five possible different cyclotomic numbers in the case f even; i.e., (0,0), 
(1,3)=(2,3)=(1,2), (1,1)=(0,3), (2,2)=(0,2), (3,3)=(0,1) and 

( 0 , 0 )  = ( p -  11 - 6 x ) / 1 6 ,  

(0, 1) = (p - 3 + 2x  + 8 y ) / 1 6 ,  

(o,  2) = ( ;  - 3 + 2 ~ ) / 1 6 ,  

(0, 3) = ( ;  - 3 + 2~ - s v ) / 1 6 ,  

(1, 2) = ( p +  1 -  2 x ) / 1 6 .  

For the case f odd, there are at most five distinct cyclotomic numbers, which 
a r e  

(0, 0) = (2, 2) = (2, 0) = (p - 7 + 2x)/16, 

(0, 1) = (1, 3) = (3, 2) = (p + 1 + 2x - 8y)/16, 

(1, 2) = (0, 3) = (3, 1) = (p + 1 + 2x + 8y)/16, 

(0, 2) = ( ;  + 1 - 6 x ) / 1 6 ,  

the rest = ( p -  3 -  2x)/16, 

w h e r e p = x  2 + 4 y  2 a n d x = l m o d 4 .  
Although these formulas show a roughly ideal stability of cyclotomic numbers 

of order 4, the actual stability depends on the quadratic partition p = x 2 -4- 
4y 2 and x = 1 mod4 .  If there is a big difference between Ixl and ]yh then 
there is a considerable difference between the cyclotomic numbers. And it is not 
difficult to give examples to show there do exist primes such that  there is a 
considerable difference between z 2 and y2 in their quadratic partitions. Thus, 
choosing large special primes to ensure better stability of cyclotomic numbers is 
cryptographicMly necessary. 
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There are two approaches to do this. The first approach is to use traditional 
methods to get first large primes. Then use some special algorithm to get the 
partition and see whether it results in an ideal stability of cyclotomic numbers. 
This special algorithm should be related to classical problems about quadratic 
partitions such as the number of solutions of such a quadratic partition. Another 
approach is to consider directly for given n the set 

{x 2 + ny 2 : x ,y  E Z}. 

If there are infinitely many primes in the set, we can search for the primes 
which give an ideal stability of cyclotomic numbers. With this approach the first 
problem we have to solve is whether there are infinite many primes in the above 
set. The Dirichlet theorem about primes in arithmetic progression does not help 
here. However, with some results from class field theory we can get a positive 
answer for each n [5]. 

If one has a quick look at eaci~ set of cyclotomic formulae known today, one 
will find that  they have the same form. Behind this uniformity of all cyclotomic 
numbers is the Riemann Hypothesis for Curves over Finite Fields, which can be 
described as follows. 

R i e m a n n  H y p o t h e s i s  for  Curves  over  F i n i t e  Fie lds :  Suppose that  
F(x, y) is a polynomial of total degree d, with coefficients in GF(q) and 
with g zeros (x, y) E GF(q) x GF(q). Suppose that  F(x, y) is absolutely 
irreducible, i.e., irreducible not only over GF(q), but also over every 
algebraic extension thereof. Then 

[N - ql -< 2 g v ~ +  el(d), 

where h i s  the genus of the curve F(x, y) = 0 and cl(d) is a constant 
depending on d. 

This theorem, proven by Weil [20], not only indicates the uniformity of the 
form of cyclotomic formulae, but also can be used to set up bounds for pattern 
distributions in the output sequences of the cyclotomic generators. With the Weft 
Theorem one can see some cryptographic meanings of the genus of curves. For 
details about the Weft Theorem, the reader is referred to [18]. Since cyclotomic 
numbers are related to characters and character sums [8, "9, 12], the cyclotomic 
generators are naturally related to character and character sums. In fact many 
of the cryptographic functions f (x)  employed here are group characters. 

One part of the design and analysis of these eyclotomic generators is to solve 
the following basic prQblem at the number-theory side of the second bridge. 

Bas ic  P r o b l e m  3 Let N be a positive integer, and ZN denote the residue ring 
modulo N. Find partitions {Co, C1} of ZN, i.e., 

Co ('] C1 : ~), Co l,.J C1 = Z N  , 

such that 

Ic01 g/2, 1611 z N/2, (12) 
]Ci Cl (Cj + r)l ~-, N/4 
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for each nonzero r of ZN, and each i , j  E Z2 --" {0, 1}. Here and hereafter A ,~ B 
means that A = t3 4- O(B*) for some e with 0 < e < 1_ 

2" 

For our cryptographic application we hope that  A ~ B means that  A is as 
near to B as possible. But for the flexibility of the solutions of the above basic 
problem, we give such a definition of A ~ B. 

The characteristic function of a partition {Co, C1} of ZN satisfying (12) en- 
sures that  it has an ideal difference property, and therefore an ideal property 
for the other six aspects described in Section 1. But to ensure an ideal pattern 
distribution property for various pattern lengths is to solve the following more 
general basic problem. 

Bas ic  P r o b l e m  4 Let C =- {C0,C1} be a partition of ZN, ro, r l , . . . , r s _ l  be s 
pairwise distinct elements of ZN, and 

Dio..._, (to, r -1) �9 " ,  = nk=0(C   + rk ) ,  

. _ l ( r 0 ,  �9 " ' ,  r -l) = I +  k)l, 

where io , . . . , i s -1  E Z2. Then {Cio...i,_~(ro,'",r~-l) : i 0 , . . . , i ~ - i  e Z2} forms 
a partition of ZN. 

Find partitions {Co, C1} of ZN such that 

N 
dio...i,_~ ( t o , . . . ,  rt-1) ~ 2-- T (13) 

holds for each t with 1 < t < [log 2 N], and for each set of pairwise distinct 
elements ro , . . ' ,  rs-1 of ZN. 

The conditions here include those of Basic Problem 3. They ensure that  the 
output  sequence of the NSG employing the characteristic function of the parti- 
tion has an ideal pattern distribution for each pattern with length t satisfying 1 < 
t < [log 2 N],  and also an ideal mutual information stability I ( i ;  z~lz~ ~ . . .  z~ , ) .  It 
is noted that  these higher order difference parameters Dio...i._l(ro,..., rs-1) are 
exactly measures on patterns distributions of binary sequences. 

One class of solutions to Basic Problem 3 is those partitions C = {Co, C1} 
of ZN such that  Co is a residue difference set of ZN with.]Cll ,~ ]Co]. However, 
difference sets exist only for those N = 3 rood 4. For N = 1 rood 4 there may 
exist some partitions {Co, C1} of ZN with almost the same difference property. 
These are partitions {Co, C1} of ZN with C1 being an almost difference set. 

Let N be a odd number, and D = { d l , . . . ,  dk} a subset of an abelian group 
(G, +).  If for each of  half of the nonzero elements a's of ZN, the equation 

has exactly A solutions (d~, dj) with d~ and dj in D, and for each of the other 
half exactly A + 1 solutions, we call D an (N, k, A) almost difference set (briefly, 
a.d. set). 

It is easy to see that  N must be of the form 4t + 1 if ZN has an (N, k, A) dif- 
ference set. Almost difference sets are not easy to find. The cyclotomic numbers 
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of order 2 show that the quadratic residues modulo a prime N = 1 rood 4 form 
an (g, (N - 1)/2, (N - 5)/4) a.d. set. For the biquadratic residues we have the 
following conclusion. 

T h e o r e m  16. Let a prime N = 4t § 1 = x 2 § 4y 2 with z = 1 mod 4 and t being 
odd. Then the biquadratic residues modulo N form an (N, t, ( t - 3 ) / 4 )  a.d. set i f  
and only i f  x = 5 or - 3 .  

Proof." By the formulae for cyclotomic numbers of order 4 presented in this section 
and the definition of a.d. sets we see that the biquadratic residues modulo N 
form an (g,  t, (t - 3)/4) a.d. set if and only if 

2x - 7 3 § 2x 1 
(0 ,  0)  - (1 ,  1) - 1 ~  + 1-----6--- - -  4 - -t-1, 

which is equivalent to x = 5 or 3. This proves the theorem. QED 
For other power residues it is not difficult to see whether they form a.d. sets 

by employing the cyclotomic numbers of various orders. In general, it is not easy 
to find a.d. residue sets. It is noted that difference sets and almost difference 
sets are employed in the cyclotomic generator of order 2 and in the twin-prime 
generator. So they are closely related to cyclotomic generators. 

Another solution to Basic Problem 3 is to make use of power residues and 
cyclotomic numbers generally, as done in the foregoing sections. One advantage 
of the sets of power residues is that they form multiplicative groups, and this 
makes the implementation problem of characteristic functions of the correspond- 
ing partitions simple. There may exist other solutions to Basic Problem 3, which 
remains to be investigated. 

The condition (12) can only give a very rough guarantee for other conditions 
in (13). The cyclotomic numbers and the Weil Theorem seem to indicate that 
partitions based on power residues give ideal solutions to Basic Problem 4. In 
fact we can set up bounds of order N -t- O(v/N) for these higher order difference 
parameters Dio...i,_l(ro,.. ' , rs-1) for 8 > 3 based on the Weil Theorem when 
N is a prime, but the bounds becomes more and more looser with the increase 
of s though the bounds remain in order N -4- O(v/-N). 

We pointed out a number of number-theoretic problems here, since they are 
essential to the design and analysis of cyclotomic generators. For other type of 
generators there may be other related number-theoretic problems, such as the 
class numbers for imaginary quadratic fields which are related to properties of 
some number-theoretic generator [4]. 

10 C o n c l u d i n g  r e m a r k s  

Since we have controlled the difference property of the cryptographic functions 
and the linear and sphere complexities of the output sequences of the binary 
cyclotomic generators, the formulae in Section 1 and theorems and corollaries 
regarding the linear and sphere complexities show that these generators have 
the following properties: 



Binary Cyclotomic Generators 59 

1. the cryptographic function f(x) has an ideal difference property; 

2. the cryptographic function f(x) has an ideal nonlinearity with respect to the 
additions of ZN and Z2; 

3. the cryptographic function f(x) has an ideM autocorrelation property; 

4. the affine approximation of f(x) with respect to (ZN, +) and (Z2, +) makes 
no sense, since there are only two trivial affine functions from ZN to Z2 for 
odd N; 

5. the output sequence has an ideal autocorrelation property; 

6. the output sequence has an ideal two-bit pattern distribution property; 

7. the output sequence has ideal linear complexity and linear complexity sta- 
bility; 

8. the mutual information I(i; zizi+t-1) has an ideal stability, here z ~ denotes 
the output sequence of the NSG; and 

9. the additive stream cipher system with this NSG as the keystream gener- 
ator has an ideal density of encryption (resp. decryption) transformations, 
i.e., the probability of agreement between two encryption (resp. decryption) 
transformations specified by two keys is approximately 1/2. 

In fact we can calculate exact values of measures (such as autocorrelation values, 
the mutual information) for the above aspects based on the formulae in Section 1 
if we have formulae for the difference parameters. For example measures for the 
above aspects for the cyclotomic generator of order 2 can be expressed exactly 
in terms of N, the modulus for the modulo N ring counter. If we have bounds 
for the difference parameters, then using the formulae in Section 1 gives bounds 
for measures on the above aspects. 

In addition, the Weil Theorem and the formulae of cyclotomic numbers seem 
to indicate that the output sequences of these cyclotomic generators have an 
ideal distribution property for any pattern with length 1 < 1 < [log 2 NJ. 

In this paper we consider only some binary cyclotomic generators. It is pos- 
sible to extend the results for binary cyclotomic generators to cyclotomic gen- 
erators over other fields. For the linear complexity and sphere complexity of 
periodic sequences over other fields we have similar results. 

The performances of these cyclotomic generators are basically of the same 
order, since they are M1 based on the exponentiation-modulo-N operation. It 
seems that these generators are not fast, but with a fast exponentiation algorithm 
it is possible to get a reasonable performance if the moduli are not too large. For 
the time being moduli having about 64 bits seems enough for the generators. 
Though the generators are not fast, they might have an ideal security. Thus, 
trading performance for security might be possible. 

Finally we mention that some related work about some randomness aspects 
of the Legendre and Jacobi sequences was done by Damgs [6]. 
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