Skip to main content

Logic programming in RPL and RQL

  • Contributed Papers
  • Conference paper
  • First Online:
SOFSEM '95: Theory and Practice of Informatics (SOFSEM 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1012))

  • 138 Accesses

Abstract

The aim of this contribution is to show that RPL-Rational Pavelka Logic and RQL-Rational Quantification Logic (Hájek's substantial simplification of Pavelka's propositional and Novák's predicate fuzzy calculi) are suitable logical systems for handling uncertainty in logic programming and expert systems. We define corresponding procedural and declarative semantics, prove the soundness of graded SLD-refutation with fixed → and &t and discuss some further couples of connectives suitable for logic programming and appropriate declarative semantics.

This work was supported by the grant 2/1224/95 of the Slovak Grant Agency for Science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ding L., Shen Z. L., Mukaidono M.: Fuzzy linear resolution as the inference engine of intelligent systems. in Ras Z. W. (Ed.): Methodologies for Intelligent Systems, Volume 4, Elsevier Science Publ., Amsterdam, 1989, Volume 4, 1–8

    Google Scholar 

  2. Dubois D., Lang J., Prade H.: Fuzzy sets in approximate reasoning, Part 2: Logical approaches. Fuzzy Sets and Systems 40 (1991) 203–244

    Google Scholar 

  3. Gottwald, S.: Mehrwertige Logik. Akademie Verlag, Berlin, 1988

    Google Scholar 

  4. Hájek, P.: Fuzzy logic and arithmetical hierarchy I. Fuzzy Sets and Systems (to appear)

    Google Scholar 

  5. Hájek, P.: Fuzzy logic and arithmetical hierarchy II. Preprint, 1995

    Google Scholar 

  6. Hájek, P.: Grundlagen der Fuzzy Logik. Vorträge, Technische Universität, Wien, 24.-28. 4. 1995

    Google Scholar 

  7. Hájek, P.: Lectures on Fuzzy Logic. Handwritten notes of lectures, Prague, Fall 1994

    Google Scholar 

  8. Lloyd, J.W.: Foundation of Logic Programming. Springer Verlag, Berlin, 1987

    Google Scholar 

  9. Meritt, D.: Building Expert Systems in Prolog. Springer Verlag, Berlin, 1989

    Google Scholar 

  10. Novák, V.: On the syntactico-semantical completeness of first-order fuzzy logic I, II. Kybernetika 26 (1990) 47–26, 134–152

    Google Scholar 

  11. Pavelka, J.: On fuzzy logic I, II, III. Zeitschr. f. Math. Logik und Grundl. der Math. 25 (1979) 45–52, 119–134, 447–464

    Google Scholar 

  12. Shortliffe, E. H., Buchanan, B. G.: A model of inexact reasoning in medicine. Math. Biosci. 23 (1975) 351–379

    Google Scholar 

  13. Vojtáš, P., Paulík, L., Lieskovský, M.: Expert systems and different logic systems. Accepted for the proceeding of AIT'95, Brno, Published by Tech. Univ., Brno, 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Miroslav Bartosek Jan Staudek Jirí Wiedermann

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vojtáš, P., Paulík, L. (1995). Logic programming in RPL and RQL. In: Bartosek, M., Staudek, J., Wiedermann, J. (eds) SOFSEM '95: Theory and Practice of Informatics. SOFSEM 1995. Lecture Notes in Computer Science, vol 1012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60609-2_38

Download citation

  • DOI: https://doi.org/10.1007/3-540-60609-2_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60609-3

  • Online ISBN: 978-3-540-48463-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics