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F o r e w o r d  

How difficult is it to compute an approximate solution to an NP-optimization 
problem? The central importance of this issue has been recognized since the early 
1970s, when Cook and Karp formulated the theory of NP-hard, and therefore 
computationally intractable unless P = NP, problems. To sidestep this difficulty, 
researchers asked whether there are polynomial time algorithms for producing near- 
optimal solutions to these optimization problems. This approach was successful 
for some problems such as bin packing, but other problems such as the Euclidean 
traveling salesman problem and max-clique resisted all efforts at the design of 
efficient approximation algorithms. Sudan's dissertation describes a general 
technique, akin to NP-completeness, for establishing the computational 
intractability of approximation problems (under the assumption that P ~ NP). The 
dissertation establishes approximation hardness for all complete problems in the 
complexity class max-SNP: this includes basic problems such as the Euclidean 
traveling salesman problem, max-2SAT, and Euclidean Steiner tree. Elsewhere, 
these techniques have other important problems such as chromatic number, set 
cover, and shortest vector in a lattice. There is little doubt that the new techniques 
are very generally applicable, and are fundamental to establishing the intractability 
of approximate solutions to NP-optimization problems. 

The techniques themselves are interesting and deep. They build upon a 
sequence of beautiful previous results on probabilistically checkable proofs. 
Sudan's dissertation provides a new charaterization of the complexity class NP, of 
languages such that membership of a string x in the language can be established by 
a polynomial size proof. The new characterization shows that the proofs of 
membership can be made surprisingly robust: the robust proofs are still 
polynomially long, but can be checked (in a probabilistic sense) by probing only a 
constant number of randomly chosen bits of the proof. The proof of this theorem 
is a technical tour de force; it has several major new ingredients in addition to 
masterfully building upon the previous work of Babai et al., Feige et al., and Arora 
and Safra, to name a few. 

One new ingredient is a beautiful technique for creating long but very robust 
proofs based on self-correction properties of linear functions. Another is a new 
low-degree test that probes the value of a multivariate function at only a constant 
number of points and verifies whether it is close to some low-degree polynomial. 
The dissertation also introduces a new connection between robust probabilistically 
checkable proofs and the approximation hardness of the optimization problem max- 
SAT. This connection is the basis of the new technique for proving approximation 
hardness of NP optimization problems. 



Sudan's dissertation introduces a new framework for the general algebraic 
problem of efficiently reconstructing a low degree multivariate polynomial from 
erroneous data. Using this framework, it presents self-contained proofs of several 
previous results on probabilistically checkable proofs, as well as the new results. 
In this framework, the connection of this work to coding theory becomes more 
explicit as well; the testers and correctors for multivariate polynomials developed 
in the dissertation yield codes with very efficient error-detection and error-correction 
schemes. 

The work reported in this dissertation has already had, and will continue to 
have, a profound influence on theoretical computer science. 

November 1995 Umesh Vazirani 
Professor of Computer Science 

University of California at Berkeley 



Preface  

The definition of the class NP (Cook [41], Levin [86]) highlights the problem 
of verification of proofs as one of central interest to theoretical computer 
science. Recent efforts have shown that the efficiency of the verification can be 
greatly improved by allowing the verifier access to random bits and accepting 
probabilistic guarantees from the verifier [20, 19, 50, 6]. We improve upon 
the efficiency of the proof systems developed above and obtain proofs which 
can be verified probabilistically by examining only a constant number of 
(randomly chosen) bits of the proof. 

The efficiently verifiable proofs constructed here rely on the structural 
properties of low-degree polynomials. We explore the properties of these func- 
tions by examining some simple and basic questions about them. We consider 
questions of the form: 

( t e s t i n g )  Given an oracle for a function f ,  is f close to a low-degree poly- 
nomial? 

(correct ing)  Given an oracle for a function f that is close to a low-degree 
polynomial g, is it possible to efficiently reconstruct the value of g on any 
given input using an oracle for f?  

These questions have been raised before in the context of coding theory as 
the problems of error-detecting and error-correcting of codes. More recently, 
interest in such questions has revived due to their connection with the area of 
program result checking. We use results from coding theory as a starting point 
and combine these with several algorithmic techniques including pairwise 
independent sampling to give efficient randomized algorithms for these tasks. 
As a consequence we obtain fast randomized algorithms for error-detection 
and error-correction for some well-known codes. 

The expressive nature of low-degree polynomials suffices to capture the 
complexity of the class NP, and we translate our results on the efficiency 
of the testing and correcting procedures into two different efficiently verifi- 
able proof systems for deciding membership questions for NP languages. One 
proof system generates small and somewhat efficiently verifiable proofs, and 
the other generates very large but very efficiently verifiable proofs. We then 
employ new techniques from the work of Arora and Safra [6] to compose these 
proof systems to obtain small proofs that can be verified by probing them in 
just a constant number of (randomly chosen) bits. 
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An important  consequence of this result is that  for a large variety of 
NP-complete optimization problems, it can be shown that  finding even ap- 
proximate solutions is an NP-hard problem. The particular class of optimiza- 
tion problems we consider is MAX SNP, introduced by Pap~limitr iou and 
Yannakakis [93]. For every MAX $NP-hard problem we show that  there is a 
constant e, such that  approximating the optimum to within a relative error 
of e is NP-hard. 

This version. This version of the dissertation is essentially the same as the 
one filed at the University of California at Berkeley in 1992. A few proofs 
have been fixed to address the comments of several readers who pointed out 
errors in the earlier version. In addition this version has an addendum at 
the end of every chapter to bring the reader up to date with the various 
developments in the subjects covered in this thesis during the period from 
mido1992 to mid-1995. 
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