Abstract
Modular decomposition plays an important role in the recognition of comparability graphs and permutation graphs [12]. We prove that modular decomposition can be done in in polylogarithmic time with a linear processor bound.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R. Cole, Parallel Merge Sort, 27. IEEE-FOGS (1986), pp. 511–516.
R. Cole, U. Vishkin, Deterministic Coin Tossing with Applications to Optimal Parallel List Ranking, Information and Control 70 (1986), pp. 32–53.
D. Cornell, H. Lerchs, L. Burlingham, Complement Reducible Graphs, Discrete Applied Mathematics 3 (1981), pp. 163–174.
A. Cournier, M. Habib, A New Linear Time Algorithm for Modular Decomposition, Trees in Algebra and Programming, LNCS 787 (1994), pp. 68–84.
E. Dahlhaus, Efficient Parallel Recognition Algorithms of Cographs and Distance Hereditary Graphs, Discrete Applied Mathematics 57 (1995), pp. 29–44.
A. Ehrenfeucht, H. Gabow, R. McConnell, S. Sullyvan, An O(n2) Divide-and-Conquer Algorithms for the Prime Tree Decomposition of Two-Structures and Modular Decomposition of Graphs, Journal of Algorithms, 16 (1994), pp. 283–294.
X. He, Parallel Algorithms for Cograph Recognition with Applications, Journal of Algorithms 15 (1993), pp. 284–313.
P. Klein, Efficient Parallel Algorithms for Chordal Graphs, 29th IEEE-FOCS (1988), pp. 150–161.
R. McConnell, J. Spinrad, Linear-Time Modular Decomposition and Efficient Transitive Orientation of Comparability Graphs, Fifth Annual ACM-SIAM Symposium of Discrete Algorithms (1994), pp. 536–545.
J.H. Muller, J. Spinrad, Incremental Modular Decomposition, Journal of the ACM, 36 (1989), pp. 1–19.
B. Schieber, U. Vishkin, On Finding Lowest Common Ancestors: Simplification and Parallelization, SIAM Journal on Computing 17 (1988), pp. 1253–1262.
J. Spinrad, On Comparability and Permutation Graphs, SIAM-Journal on Computing, 14 (1985), pp. 658–670.
Y. Shiloach, U. Vishkin, An O(log n) Parallel Connectivity Algorithm, Journal of Algorithms, 3 (1982), pp. 57–67.
J. Spinrad, P4-Trees and Substitution Decomposition, Discrete Applied Mathematics, 39 (1992), pp. 263–291.
R. Tarjan, U. Vishkin, Finding biconnected components and computing tree functions in logarithmic parallel time, SIAM Journal on Computing 14 (1985), pp. 862–874.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dahlhaus, E. (1995). Efficient parallel modular decomposition (extended abstract). In: Nagl, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 1995. Lecture Notes in Computer Science, vol 1017. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60618-1_83
Download citation
DOI: https://doi.org/10.1007/3-540-60618-1_83
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-60618-5
Online ISBN: 978-3-540-48487-5
eBook Packages: Springer Book Archive