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Foreword

It is a privilege for me to write the foreword to this important, powerful,
and elegant piece of Artificial Intelligence research. In both substance and
method, it is the quintessence of what today’s Al research should be like.

The prelude to doing an important work is to seek out an important
problem. Nayak’s problem area is important for two reasons.

— For most tasks whose solution requires intelligence, the AI will have to
be able to reason about the world of physical objects, physical systems,
and engineered artifacts. The path from the earliest Al programs (e.g.
the Logic Theorist and the Geometry Theorem Proving Program) to the
expert systems of the 1980s and 1990s has not included much work on
physics and engineering problem solving. The exception of course is the
thinly populated field of qualitative physics research, of which Nayak’s
work is an example.

— In expert systems (“where the rubber meets the road” for most of applied
AT), the models of domains are very extensive and detailed. Indeed, it is
the hallmark of expert systems that their knowledge bases are relatively
large and their reasoning methods simple (usually just Aristotelian and/or
Bayesian logic). A narrow pinnacle of knowledge (literally a pinnacle of
excellence) allows the expert system to perform at high levels of compe-
tence for a narrow class of problems. But from pinnacles it is possible
to fall precipitously, for example when the problem presented lies outside
of the narrow band of knowledge. What is needed is a soft landing on a
much more gentle slope of generalized knowledge. Such knowledge contains
the generalized models and equation systems that we learn in courses on
physics and engineering. Of course, this “generalized” knowledge is also
somewhat domain-specific, but its breadth is much greater than the spe-
cialists’ knowledge used in expert systems. The increased scope and power
of the “broad” knowledge does not come for free. To use it, the reasoning
processes can no longer be simple — more powerful methods are needed. To
develop the necessary representation and reasoning methods is the goal of
qualitative physics research, and the contribution of Nayak’s research.
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Here are some specific points to keep in mind as you read this monograph.

— Carefully chosen problem representations are crucial to effective problem-
solving. Amarel, as early as the 1960s, discussed this issue extensively in
his landmark paper “On representations of problems of reasoning about
actions” [Amarel, 1968], where he provides various representations for the
Missionaries and Cannibals problem. The choice of problem representa-
tions is equally crucial in engineering problem-solving, where one has to
carefully balance the veracity of a model against its complexity. An overly
detailed model can be too complex, while simple models may miss impor-
tant problem features. Hence, in modeling physical systems, it is important
to identify just the relevant physical phenomena, and to identify just the
appropriate level of detail to model each phenomenon. Nayak’s research
elegantly treats and combines both the theoretical and practical sides of
this problem.

— On the theoretical side, the research develops a precise formalization of
the problem of selecting adequate models of physical systems. It casts the
problem as a search problem, and provides clear definitions for the search
space and the goal criterion. Such a precise formalization is essential for
applying computational tools to the problem. It then uses the formalization
to analyze the difficulty of finding adequate models, and for understanding
the different reasons for its intractability. Finally, it uses the analysis of the
reasons for intractability to identify special cases of the problem that can be
solved very efficiently. These special cases stem from the identification and
use of a special class of approximations called causal approximations. Im-
portantly, the research shows that causal approximations are very common
in modeling the physical world, making the special cases broadly applicable
and useful.

— On the practical side, Nayak’s work analyzes the representation and reason-
ing issues that arise in building practical systems for constructing adequate
device models. It develops a class-level description.for device models that
facilitates knowledge base construction and supports focused generation of
device models. It develops a novel order of magnitude reasoning algorithm
for reasoning about a device’s behavior, and incorporates it into the effi-
cient model selection algorithm developed above. The resulting algorithm
has been implemented in Common Lisp.

— Nayak tests and validates his methods and algorithms by running his im-
plementation on a large knowledge-base of device models. The range of
devices is not only interesting but significant, and the testing is a neces-
sary activity to ground the research in reality and to add credibility to
Nayak’s approach.

In recommending Nayak’s work to the Association for Computing Ma-
chinery for its dissertation award, I remember using a word that I rarely use:
“brilliant.” In reviewing the work again as a prelude to writing this foreword,
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I am once again excited by the work and am reminded of why I used the
strong B word. Proceed with haste to the first page so that you can find out
for yourself. You will be richly rewarded.

October 1995 Edward A. Feigenbaum
Professor of Computer Science, Stanford Universily
and Chief Scientist, United States Air Force



Preface

Effective reasoning about complex physical systems requires the use of mod-
els that are adequate for the task. Constructing such adequate models is
often difficult. In this dissertation, we address this difficulty by developing
efficient techniques for automatically selecting adequate models of physical
systems. We focus on the important task of generating parsimonious causal
explanations for phenomena of interest. Formally, we propose answers to the
following: (a) what is a model and what is the space of possible models; (b)
what is an adequate model; and (c) how do we find adequate models.

We define a model as a set of model fragments, where a model fragment
is a set of independent equations that partially describes some physical phe-
nomenon. The space of possible models is defined implicitly by the set of ap-
plicable model fragments: different subsets of this set correspond to different
models. An adequate model is defined as a simplest model that can explain
the phenomenon of interest, and that satisfies any domain-independent and
domain-dependent constraints on the structure and behavior of the physical
system.

We show that, in general, finding an adequate model is intractable (NP-
hard). We address this intractability, by introducing a set of restrictions, and
use these restrictions to develop an efficient algorithm for finding adequate
models. The most important restriction is that all the approximation rela-
tions between model fragments are required to be causal approrimations. In
practice this is not a serious restriction because most commonly used approx-
imations are causal approximations.

We also develop a novel order of magnitude reasoning technique, which
strikes a balance between purely qualitative and purely quantitative methods.
The order of magnitude of a parameter is defined on a logarithmic scale, and
a set of rules propagate orders of magnitudes through equations. A novel
feature of these rules is that they effectively handle non-linear simultaneous
equations, using linear programming in conjunction with backtracking.

The techniques described in this dissertation have been implemented and
have been tested on a variety of electromechanical devices. These tests provide
empirical evidence for the theoretical claims of the dissertation.
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