
Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis and J.van Leeuwen

1032

Advisory Board: W. Brauer D. Gries J. Stoer

Patrice Godefroid

Partial-Order Methods
for the Verification
of Concurrent Systems

An Approach to the
State-Explosion Problem

Springer

Series Editors

Gerhard Goos
Universit~it Karlsruhe
Vincenz-Priessnitz-Strage 3, D-76128 Karlsruhe, Germany

Juris Hartmanis
Department of Computer Science, Cornell University
4130 Upson Hall, Ithaca, NY 14853, USA

Jan van Leeuwen
Department of Computer Science,Utrecht University
Padualaan 14, 3584 CH Utrecht, The Netherlands

Author

Patrice Godefroid
AT&T Bell Laboratories
1000 E. Warrenville Road, Naperville, IL 60566-7013, USA

Cataloging-in-Publication data applied for

D i e D e u t s c h e B i b l i o t h e k - C I P - E i n h e i t s a u f n a h m e

Godefroid, Patrice:
P a r t i a l o r d e r m e t h o d s f o r t he v e r i f i c a t i o n o f c o n c u r r e n t
s y s t e m s : a n a p p r o a c h to t h e s t a t e e x p l o s i o n p r o b l e m / Pa t r i ce
G o d e f r o i d . - B e r l i n ; H e i d e l b e r g ; N e w Y o r k ; B a r c e l o n a ;
B u d a p e s t ; H o n g K o n g ; L o n d o n ; M i l a n ; Pa r i s ; S a n t a C la ra ;
S i n g a p o r e ; T o k y o : S p r i n g e r , 1996

(Lecture notes in computer science ; 1032)
ISBN 3-540-60761-7

NE: GT

CR Subject Classification (1991): E3.1, D.2.4, C.2.2, E1.2, D.2.4

ISBN 3-540-60761-7 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other wa~ and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springo'Verlag. Violations are
liable for prosecution under the German Copyright Law

�9 Springer-Verlag Berlin Heidelberg 1996
Printed in Germany

Typesetting: Camera-ready by author
SPIN 10512431 0 6 / 3 1 4 2 - 5 4 3 2 1 0 Printed on acid-free paper

F o r e w o r d

For many years, research on verification dealt almost exclusively with semantic
and logical issues. A typical thesis on the subject would consider some delicate
programming feature and show how a proof system c o u l d b e extended to handle

this feature. A completeness proof added some theoretical meat, and a laboriously
worked out toy example showed that it was, at least in principle, possible to use the
new proof system. With few exceptions, little thought was given to implementing
the verification approach and making it painlessly usable by the typical practicing
software developer.

Although this thesis deals with verification~ it is far from following the pattern
outlined above. Indeed, rather than being about a logical system for verification,
it is about algorithms for verification. Its starting point is the simple technique of
state-space exploration, which as such, or elaborated into model checking, is attract-
ing growing attention for the verification of concurrent systems. Patrice Godefroid
addresses a main limiting factor of this approach: the explosion of the number of
states due to the modeling of concurrency by interleaving. Noticing that, as indi-
cated by partial-order semantics for concurrency, this limiting factor is not inherent,
he proceeds to develop a family of algorithms that make it possible to avoid it. Fur-
thermore, these algorithms have been implemented, and experiments show that they
can work very well in practice.

The general pattern of this thesis is thus to turn logical and semantic ideas into
exploitable algorithms. It is part of the trend that views verification as a computer-
aided (and as algorithmic as possible) activity, not as a paper and pencil one. After
all, if software engineers are going to check their designs, they need, as all other

engineers, computer support to do so.

There is much valuable information in this thesis. The verification systems builder
will find a guide to implementing partial-order state space exploration techniques.
The user of verification systems will gain a knowledge of how these methods work,
and of why they are entirely reliable. The computer scientist will enjoy the beauty

of clear algorithms crystallizing from the simple semantic concept of independent
transitions.

Pierre Wolper

Preface

State-space exploration techniques axe increasingly being used for debugging and
proving correct finite-state concurrent reactive systems. The reason for this success is
mainly the simplicity of these techniques. Indeed~ they are easy to understand, easy
to implement, and, last but not least, easy to use: they are fully automatic. Moreover,
the range of properties that they can verify has been substantially broadened thanks
to the development of model-checking methods for various temporal logics.

The main limit of state-space exploration verification techniques is the often exces-
sive size of the state space, due, among other causes, to the modeling of concurrency
by interleaving. However, exploring all interleavings of concurrent events is not a
priori necessary for verification: interleavings corresponding to the same concurrent
execution contain related information. One can thus hope to be able to verify prop-
erties of a concurrent system without exploring all interleavings of its concurrent
executions. This work presents a collection of methods, called partial-order methods,
that make this possible.

The intuition behind partial-order methods is that concurrent executions are really
partial orders and that concurrent events should be left unordered since the order of
their occurrence is irrelevant. However, rather than choosing to work with direct
representations of partial orders, the methods we develop keep to an interleaving
representation of partial orders, but at tempt to limit the expansion of each partial-
order computation to just one of its interleavings, instead of all of them. More
precisely, given a property, partial-order methods explore only a reduced part of the
global state-space that is sufficient for checking the given property. In this work,
three types of properties are considered: absence of deadlocks, safety properties, and
properties expressed by linear-time temporal-logic formulas.

The techniques and algorithms we describe have been implemented in an add-on
package for the protocol verification system SPIN. This Partial-Order Package has
been tested on numerous examples, including several industrial-size communication
protocols. When the coupling between the processes is very tight, partial-order meth-
ods yield no reduction, and the partial-order search becomes equivalent to a classical
exhaustive search. When the coupling between the processes is very loose, the reduc-
tion is very impressive: in some cases, the number of states that need to be visited
for verification can be reduced from exponential to polynomial in the size of the sys-
tem description (code). For most realistic examples, partial-order methods provide a

significant reduction of the memory and time requirements needed to verify protocols.

This monograph is a revised version of my PhD thesis, submitted in 1994 to the
University of Liege. This work would not have been possible without the technical
and moral support of my thesis advisor~ Pierre Wolper. He introduced me to the field
of verification, and opened doors for me in the research community. His enthusiastic
supervision has been a continuous source of encouragement to me. I consider myself
fortunate that I had access to his valuable guidance.

I am grateful to the other members of my reading committee, Professors Raymond
Devillers, Pascal Gribomont, Amir Pnueli~ Daniel Ribbens, Joseph Sifakis, and Antti
Valmari, for their very careful review of this work.

It has been a great pleasure for me to work closely with Didier Pirottin during
these last three years. I am thankful to Didier for numerous insightful discussions,
and for his help in implementing algorithms presented in this work.

I wish to thank Gerard Holzmann for freely sharing his considerable experience in
validating communication protocols. I learned how to build verification tools mainly
from his work and from discussions with him. He provided me with many challenging
examples of communication protocols, which have been (and still are) a very good

source of inspiration to me. He also made possible an exciting visit to AT&T Bell
Laboratories during the summer of 1992.

I have had the opportunity to discuss my research with many scientists at various
conferences and seminars. I thank all of them for being helpful and encouraging. I
am particularly grateful to Mark Drummond, Pascal Gribomont, Froduald Kabanza,
Doron Peled, and Antti Valmari for very fruitful discussions. Special thanks also go
to Bernard Boigelot, Philippe Lejoly, and Luc Moreau for reading and commenting
on an early version of this text, and to Gerald Luettgen and Bernhard Steffen for
detailed comments and suggestions.

This work was financially supported by the European Community ESPRIT projects
SPEC (3096) and REACT (6021), and by the Belgian Incentive Program "Informa-
tion Technology - Computer Science of the Future", initiated by the Belgian State
- Prime Minister's Service - Science Policy Office, which I gratefully acknowledge. I

thank AT&T Bell Laboratories for the additional time which made it possible for me

to complete this revision of my thesis.

Last but not least, I wish to thank my parents for their constant moral support,
and Anne-Christine for her love, for sharing ups and downs, and for reminding me,
when necessary, that computer science is not the most important thing in life.

C o n t e n t s

1 I n t r o d u c t i o n 11

1.1 Background and Mot iva t ion . 11

1.2 P a r t i a l - O r d e r Me thods . 14

1.3 Re la ted Work . 15

1.4 Organ iza t ion of th is Work . 17

2 C o n c u r r e n t S y s t e m s a n d S e m a n t i c s 19

2.1 Represen t ing Concur ren t Sys tems . 19

2.2 Semant ics . 22

2.3 E x a m p l e . 24

2.4 Discussion . 25

3 U s i n g P a r t i a l O r d e r s t o T a c k l e S t a t e E x p l o s i o n 27

3.1 I n d e p e n d e n t Trans i t ions . 27

3.2 Traces . 29

3.3 Selective Search . 31

3.4 De tec t ing I n d e p e n d e n c y in Concu r r en t Sys t ems 33

3.4.1 Towards More I n d e p e n d e n c y 33

3.4.2 Refining Dependenc ies be tween O p e r a t i o n s 35

3.4.3 S u m m a r y . 39

6

7

CONTENTS

Pers i s t ent Sets

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

41

Def in i t ion . 41

C o m p u t i n g P e r s i s t e n t Sets . 43

A l g o r J t h m 1 (Conf l i c t ing T r ans i t i ons) 44

A l g o r J t h m 2 (O v e r m e n ' s A l g o r i t h m) 4 8

A l g o r i t h m 3 (S t u b b o r n Sets) . 51

4.5.1 Bas ic Idea . 51

4.5.2 A l g o r i t h m . 54

C o m p a r i s o n . 58

A l g o r i t h m 4 (C o n d i t i o n a l S t u b b o r n Sets) 62

4.7.1 Bas ic Idea . 62

4.7.2 A l g o r i t h m . 64

Discuss ion . 70

Sleep Sets

5.1

5.2

5.3

75

Bas ic Idea . 75

A l g o r J t h m . 77

P i o p e r t i e s c f Sleep Sets . 80

5.3.1 O n C o m b i n i n g Sleep Sets w i t h Pe r s i s t en t Sets 80

5.3.2 R e d u c i n g S t a t e M a t c h i n g s . 82

V e r i f i c a t i o n o f S a f e t y P r o p e r t i e s

6.1

6.2

6.3

6.4

6.5

85

B e y c n d Dead lock D e t e c t i o n . 85

A l g o r i t h m . 87

Trace A u t o m a t a . 90

P r o p e r t i e s of Trace A u t o m a t a . 98

C o m p a r i s o n w i t h O t h e r W o l k . 99

M o d e l Check ing 103

7.1 B e y c n d Safe ty P r o p e r t i e s . 1C3

CONTENTS 7

7.2 A u t o m a t a and Model Checking . 104

7.3 Using Par t i a l Order s for Model Checking 107

7.4 Mode l Checking wi th Fai rness A s s u m p t i o n s 109

8 E x p e r i m e n t s 113

8.1 How Can P a r t i a l -Orde r M e t h o d s Be Eva lua ted? 113

8.2 A P a r t i a l -Orde r Package for SPIN . 116

8.3 Eva lua t ion . 117

8.4 S ta t e -Space Caching . 121

8.5 Conclus ion . 125

C o n c l u s i o n s 129

9.1 S u m m a r y . 129

9.2 Future Work . 13]

B i b l i o g r a p h y 132

I n d e x 143

List of Figures

2.1 Classical search 23

2.2 Global state space for the two-dining-philosophers system 25

3.1 Partial order of transition occurrences 30

4.1 Persistent-set selective search 42

4.2 Algorithm 1 44

4.3 Algorithm 2 48

4.4 Algorithm 3 55

4.5 Algorithm 4 66

5.1 Global state space for the system of Example 5.1 76

5.2 Selective search using persistent sets and sleep sets 78

5.3 Reduced state space with sleep sets 83

6.1 Reduced state space for the system of Example 6.1 86

6.2 Selective search using persistent sets, sleep sets, and proviso 89

6.3 Reduced state space with proviso for the system of Example 6.1 . . . 90

8.1 Reduction due to partial-order methods for dining philosophers . . . 114

8.2 Reduced state space for the producer-consumer problem 115

8.3 Performances of state-space caching for MULOG3 122

8.4 Typical protocol example 126

