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F o r e w o r d  

For many years, research on verification dealt almost exclusively with semantic 
and logical issues. A typical thesis on the subject would consider some delicate 
programming feature and show how a proof system c o u l d b e  extended to handle 

this feature. A completeness proof added some theoretical meat, and a laboriously 
worked out toy example showed that  it was, at least in principle, possible to use the 
new proof system. With few exceptions, little thought was given to implementing 
the verification approach and making it painlessly usable by the typical practicing 
software developer. 

Although this thesis deals with verification~ it is far from following the pattern 
outlined above. Indeed, rather than being about a logical system for verification, 
it is about algorithms for verification. Its starting point is the simple technique of 
state-space exploration, which as such, or elaborated into model checking, is attract- 
ing growing attention for the verification of concurrent systems. Patrice Godefroid 
addresses a main limiting factor of this approach: the explosion of the number of 
states due to the modeling of concurrency by interleaving. Noticing that, as indi- 
cated by partial-order semantics for concurrency, this limiting factor is not inherent, 
he proceeds to develop a family of algorithms that  make it possible to avoid it. Fur- 
thermore, these algorithms have been implemented, and experiments show that  they 
can work very well in practice. 

The general pattern of this thesis is thus to turn logical and semantic ideas into 
exploitable algorithms. It is part  of the trend that  views verification as a computer- 
aided (and as algorithmic as possible) activity, not as a paper and pencil one. After 
all, if software engineers are going to check their designs, they need, as all other 

engineers, computer support to do so. 

There is much valuable information in this thesis. The verification systems builder 
will find a guide to implementing partial-order state space exploration techniques. 
The user of verification systems will gain a knowledge of how these methods work, 
and of why they are entirely reliable. The computer scientist will enjoy the beauty 

of clear algorithms crystallizing from the simple semantic concept of independent 
transitions. 

Pierre Wolper 



Preface  

State-space exploration techniques axe increasingly being used for debugging and 
proving correct finite-state concurrent reactive systems. The reason for this success is 
mainly the simplicity of these techniques. Indeed~ they are easy to understand, easy 
to implement, and, last but not least, easy to use: they are fully automatic. Moreover, 
the range of properties that they can verify has been substantially broadened thanks 
to the development of model-checking methods for various temporal logics. 

The main limit of state-space exploration verification techniques is the often exces- 
sive size of the state space, due, among other causes, to the modeling of concurrency 
by interleaving. However, exploring all interleavings of concurrent events is not a 
priori necessary for verification: interleavings corresponding to the same concurrent 
execution contain related information. One can thus hope to be able to verify prop- 
erties of a concurrent system without exploring all interleavings of its concurrent 
executions. This work presents a collection of methods, called partial-order methods, 
that make this possible. 

The intuition behind partial-order methods is that concurrent executions are really 
partial orders and that concurrent events should be left unordered since the order of 
their occurrence is irrelevant. However, rather than choosing to work with direct 
representations of partial orders, the methods we develop keep to an interleaving 
representation of partial orders, but at tempt to limit the expansion of each partial- 
order computation to just one of its interleavings, instead of all of them. More 
precisely, given a property, partial-order methods explore only a reduced part  of the 
global state-space that is sufficient for checking the given property. In this work, 
three types of properties are considered: absence of deadlocks, safety properties, and 
properties expressed by linear-time temporal-logic formulas. 

The techniques and algorithms we describe have been implemented in an add-on 
package for the protocol verification system SPIN. This Partial-Order Package has 
been tested on numerous examples, including several industrial-size communication 
protocols. When the coupling between the processes is very tight, partial-order meth- 
ods yield no reduction, and the partial-order search becomes equivalent to a classical 
exhaustive search. When the coupling between the processes is very loose, the reduc- 
tion is very impressive: in some cases, the number of states that  need to be visited 
for verification can be reduced from exponential to polynomial in the size of the sys- 
tem description (code). For most realistic examples, partial-order methods provide a 



significant reduction of the memory and time requirements needed to verify protocols. 

This monograph is a revised version of my PhD thesis, submitted in 1994 to the 
University of Liege. This work would not have been possible without the technical 
and moral support of my thesis advisor~ Pierre Wolper. He introduced me to the field 
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fortunate that I had access to his valuable guidance. 
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Devillers, Pascal Gribomont, Amir Pnueli~ Daniel Ribbens, Joseph Sifakis, and Antti 
Valmari, for their very careful review of this work. 
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these last three years. I am thankful to Didier for numerous insightful discussions, 
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from his work and from discussions with him. He provided me with many challenging 
examples of communication protocols, which have been (and still are) a very good 

source of inspiration to me. He also made possible an exciting visit to AT&T Bell 
Laboratories during the summer of 1992. 
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conferences and seminars. I thank all of them for being helpful and encouraging. I 
am particularly grateful to Mark Drummond, Pascal Gribomont, Froduald Kabanza, 
Doron Peled, and Antti Valmari for very fruitful discussions. Special thanks also go 
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