Skip to main content

Analysis of left ventricular motion

  • New Directions
  • Conference paper
  • First Online:
Recent Developments in Computer Vision (ACCV 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1035))

Included in the following conference series:

  • 227 Accesses

Abstract

This paper presents recent developments in medical imaging concerning the analysis of non-rigid heart motion. We first describe various imaging modalities that have been used to study the deformation of the left ventricle, including ultrasonic, magnetic resonance images(MRI), and computed tomography(CT). Three general approaches in analyzing the cardiac motion, namely, 1) artificial intelligence (AI)-based methods, 2) parametric models, and 3) physically-based analysis, are then identified and discussed. Finally, we present our research regarding the reconstruction of dynamic structure of the frog's ventricle imaged through a stereo light microscope(SLM).

This work was supported by National Science Foundation, Contract BIR-9106624.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Bardinet, L. D. Cohen, and N. Ayache. Fitting of iso-surfaces using superquadrics and free-form deformations. Proceedings of the IEEE Workshop on Biomedical Image Analysis, pages 184–193, 1994.

    Google Scholar 

  2. A. E. Q. Boudraa, J. Malletand J. Bessenand S. Bouyoucef, and J. Champier. Left venrticle automated detection method in gated isotopic ventriculograhy using fuzzy clustering. IEEE Trans. on Medical Imaging, 12(3):451–465, 1993.

    Google Scholar 

  3. A. Chakraborty, L. H. Staib, and J. S. Duncan. An integrated approach to boundary finding in medical images. Proceedings of the IEEE Workshop on Biomedical Image Analysis, pages 13–22, 1994.

    Google Scholar 

  4. C. W. Chen, T. S. Huang, and M. Arrott. Modeling, analysis and visualization of left ventricle shape and motion by hierarchical decomposition. IEEE Trans. on PAMI, 16(4):342–356, 1994.

    Google Scholar 

  5. C.W. Chen and T.S. Huang. Surface modeling in heart motion analysis. Proc. SPIE Vol. 1610: Curves and Surfaces in Computer Vision and Graphics, pages 360–371, 1991.

    Google Scholar 

  6. I. Cohen, L. Cohen, and N. Ayache. Introducing new deformable to segment 3d images. Proc. CVPR, pages 738–739, 1991.

    Google Scholar 

  7. L. D. Cohen and I. Cohen. Deformable models for 3D medical images using finite elements and balloons. Proceedings of International Conference on Pattern Recognition, pages 592–598, 1992.

    Google Scholar 

  8. G. Coppini, R. Poli, and G. Valli. Recovery of 3-D shape of the left ventricle from echocardiographic images. IEEE Trans. on Medical Imaging, 14(2):301–317, 1995.

    Google Scholar 

  9. R. Furukawa, M. Imai, and T. Uno. Robust algorithm for motion analysis based on active tubes. Proceedings of the Workshop on Motion of Non-rigid and Articulated Objects, pages 200–205, 1994.

    Google Scholar 

  10. A. Goshtasby and D. A. Turner. Segmentation of cardiac cine MR images for extraction of right and left ventricular chambers. IEEE Trans. on Medical Imaging, 14(1):56–64, 1995.

    Google Scholar 

  11. M. A. Guttman, J. Prince, and E. R. McVeigh. Tag and contour detection in tagged MR images of the left ventricle. IEEE Trans. on Medical Imaging, 13(1):74–88, 1994.

    Google Scholar 

  12. S. Jaggi, W. C. Karl, and A. S. Willsky. Estimation of dynamically evolving ellipsoids with applications to medical images. IEEE Trans. on Medical Imaging, 14(2):249–258, 1995.

    Google Scholar 

  13. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision, 1(4):312–331, 1987.

    Google Scholar 

  14. D. L. Kraitchman, A. A. Young, C. N. Chang, and L. Axel. Semi-automatic tracking of myocardial motion in MR tagged images. IEEE Transactions on Medical Imaging, 14(3):422–433, 1995.

    Google Scholar 

  15. S. Kumar and D. Goldgof. Automatic tracking of SPAMM grid and the estimation of deformation parameters from cardiac mr images. IEEE Trans. on Medical Imaging, 13(1):122–133, 1994.

    Google Scholar 

  16. W. Liao, S. J. Aggarwal, and J. K. Aggarwal. Reconstruction of dynamic 3-D structures of biological objects using stereo microscopy. Proceedings of 1st Int'l Conf. on Image Processing, III:731–735, 1994.

    Google Scholar 

  17. S. Lobregt and M. A. Viergever. A discrete dybnamic contour model. IEEE Trans. on Medical Imaging, 14(1):12–24, 1995.

    Google Scholar 

  18. T. McInerney and D. Terzopoulos. A finite element method for 3D shape reconstruction and non-rigid motion tracking. Proc.of 12th ICPR, pages 518–523, 1993.

    Google Scholar 

  19. D. Metaxas and D. Terzopoulos. Constrained deformable superquadrics and non-rigid motion tracking. Proc. CVPR, pages 337–343, 1991.

    Google Scholar 

  20. C. Nastar and N. Ayache. A physically based analysis for deformations in 3D images. Geometric Methods in Computer Vision II, SPIE 2031:182–192, 1993.

    Google Scholar 

  21. C. Nastar and N. Ayache. Classification of non-rigid motion in 3D images using physics-based vibration analysis. Proceedings of the IEEE Workshop on Biomedical Image Analysis, pages 61–69, 1994.

    Google Scholar 

  22. C. Nastar and N. Ayache. Spatio-temporal analysis of nonrigid motion from 4D data. Proceedings of the Workshop on Motion of Non-rigid and Articulated Objects, pages 146–151, 1994.

    Google Scholar 

  23. A. Pentland. Automatic extraction of deformable part models. IJCV, 4:107–126, 1990.

    Google Scholar 

  24. A. Pentland and B. Horwitz. Recovery of non-rigid motion and structures. IEEE Trans. on PAMI, 13(7):730–742, 1991.

    Google Scholar 

  25. A. Pentland, B. Horwitz, and S. Sclaroff. Non-rigid motion and structure from contour. Proc. CVPR, pages 288–293, 1991.

    Google Scholar 

  26. S. Ranganath. Contour extraction from cardiac MRI studies using snakes. IEEE Trans. on Medical Imaging, 14(2):328–338, 1995.

    Google Scholar 

  27. S. Sclaroff and A. Pentland. A modal framework for correspondence and description. Proc.of 12th ICPR, pages 308–313, 1993.

    Google Scholar 

  28. S. Sclaroff and A. Pentland. Physically-based combinations of views: representing rigid and non-rigid motion. Proceedings of the Workshop on Motion of Non-rigid and Articulated Objects, pages 158–164, 1994.

    Google Scholar 

  29. S. Sclaroff and A. Pentland. Modal matching for correspondence and recognition. IEEE Transcations on PAMI, 17(6):545–561, 1995.

    Google Scholar 

  30. S. Sclaroff and A. P. Pentland. On modal matching for medical images: unconstrained shape description and data compression. Proceedings of the IEEE Workshop on Biomedical Image Analysis, pages 70–79, 1994.

    Google Scholar 

  31. L. H. Staib and J. S. Duncan. Boundary finding with parametrically deformable models. IEEE Trans. on PAMI, 14(11):1061–1075, 1992.

    Google Scholar 

  32. L. H. Staib and J. S. Duncan. Deformable fourier models for surface finding in 3D images. Proc. SPIE Vol 1808: Visualization in Biomedical Computing, pages 90–104, 1992.

    Google Scholar 

  33. D. Y. Suh, R. L. Eisner, R. M. Mersereau, and R. I. Pettigrew. Knowledge-based system for boundary detection of four-dimensional cardiac magnetic resonance image sequences. IEEE Trans. on Medical Imaging, 12(1):65–72, 1993.

    Google Scholar 

  34. R. Szeliski and D. Terzopoulos. Physically-based and probabilistic models for computer vision. Proc. SPIE Vol 1570: Geometric Methods in Computer Vision, pages 140–152, 1991.

    Google Scholar 

  35. D. Terzopoulos. On matching deformable models to images: Direct and iterative solutions. Topical Meeting on Machine Vision, Technical Digest Series, 12:160–167, 1987.

    Google Scholar 

  36. D. R. Thedens, D. Skorton, and S. Fleagle. Methods of graph searching for border detection in image sequences with applications to cardiac magnetic resonance imaging. IEEE Trans. on Medical Imaging, 14(1):42–55, 1995.

    Google Scholar 

  37. J. Weng, A. Singh, and M. Y. Chiu. Learning-based ventricle detection from cardiac MR and CT images. Proceedings of the IEEE Workshop on Biomedical Image Analysis, pages 23–32, 1994.

    Google Scholar 

  38. A. A. Young, D. L. Kraitchman, L. Dougherty, and L. Axel. Tracking and finite element analysis of stripe deformation in magnetic resonance tagging. IEEE Transcations on Medical Imaging, 14(3):413–421, 1995.

    Google Scholar 

  39. A. A. Young, D. L. Kraitchman, and L. Axel. Deformable models for tagged MR images: reconstruction of two and three-dimensional heart wall motion. Proceedings of the IEEE Workshop on Biomedical Image Analysis, pages 317–323, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stan Z. Li Dinesh P. Mital Eam Khwang Teoh Han Wang

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liao, WH., Aggarwal, S.J., Aggarwal, J.K. (1996). Analysis of left ventricular motion. In: Li, S.Z., Mital, D.P., Teoh, E.K., Wang, H. (eds) Recent Developments in Computer Vision. ACCV 1995. Lecture Notes in Computer Science, vol 1035. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60793-5_61

Download citation

  • DOI: https://doi.org/10.1007/3-540-60793-5_61

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60793-9

  • Online ISBN: 978-3-540-49448-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics