
Decidabil i ty Results in
Automata and Process Theory

Yoram Hirshfeld Faron Moller

School of Mathematical Sciences
Tel Aviv University
Ramat-Aviv 69978

ISRAEL

email: yoram@math.tau.ac.il

Department of Teleinformatics
Kungl Tekniska HSgskolan

S-164 40 Kista
SWEDEN

email: fm@it.kth.se

Preface

The study of Process Algebra has received a great deal of attention since the
pioneering work in the 1970s of the likes of R. Milner and C.A.R. Hoare. This
attention has been merited as the formalism provides a natural framework for
describing and analysing systems: concurrent systems are described naturally
using constructs which have intuitive interpretations, such as notions of abstrac-
tions and sequential and parallel composition.

The goal of such a formalism is to provide techniques for verifying the cor-
rectness of a system. Typically this verification takes the form of demonstrat-
ing the equivalence of two systems expressed within the formalism, respectively
representing an abstract specification of the system in question and its imple-
mentation. However, any reasonable process algebra allows the description of
any computable function, and the equivalence problem--regardless of what rea-
sonable notion of equivalence you consider--is readily seen to be undecidable in
general. Much can be accomplished by restricting attention to (communicating)
finite-state systems where the equivalence problem is just as quickly seen to be
decidable. However, realistic applications, which typically involve infinite enti-
ties such as counters or timing aspects, can only be approximated by finite-state
systems. Much interest therefore lies in the problem of identifying classes of
infinite-state systems in which the equivalence problem is decidable.

Such questions are not new in the field of theoretical computer science. Since
the proof by Moore [50] in 1956 of the decidability of language equivalence for
finite-state automata, language theorists have been studying the decidability
problem over classes of automata which express languages which are more ex-
pressive than the class of regular languages generated by finite-state automata.
Bar-Hillel, Perles and Shamir [3] were the first to demonstrate in 1961 that the
class of languages defined by context-free grammars was too wide to permit a

103

decidable theory for language equivalence. The search for a more precise divid-
ing line is still active, with the most outstanding open problem concerning the
decidability of language equivalence between deterministic push-down automata.

When exploring the decidability of the equivalence checking problem, the
first point to settle is the notion of equivalence which you wish to consider.
In these notes we shall be particularly interested not in language equivalence
but in bisimulation equivalence as defined by Park and used to great effect by
Milner. Apart from being the fundamental notion of equivalence for several
process algebraic formalisms, this behavioural equivalence has several pleasing
mathematical properties, not least of which being that--as we shall discover--it
is decidable over process classes for which all other common equivalences remain
undecidable, in particular over the class of processes defined by context-free
grammars. Furthermore in a particularly interesting class of processes--namely
the normed deterministic processes--all of the standard equivalences coincide,
so it is sensible to concentrate on the most mathematically tractable equivalence
when analysing properties of another equivalence. In particular, by studying
bisimulation equivalence we shall rediscover old theorems about the decidability
of language equivalence, as well as provide more efficient algorithms for these
decidability results than have previously been presented. We expect that the
techniques which can be exploited in the study of bisimulation equivalence will
prove to be useful in tackling other language theoretic problems, notably the
problem of deterministic push-down automata.

Acknowledgements These notes were first produced for a series of lectures at
the VIII Banff Higher Order Workshop "Theories of Concurrency: Structure vs
Automata". We would like to thank the organiser of the worksho p series Graham
Birtwistle for allowing us the opportunity and the motivation for producing the
notes, as well as a forum in which to present the material. We would also like
to thank all of our colleagues with whom we have worked on or discussed the
results presented in these notes, which themselves contain little of novelty except
in their presentation. Notably we would like to acknowledge Didier Caucal, S0ren
Christensen, Hans Hiittel, Petr Jan6ar, Mark Jerrum, Robin Milner and Colin
Stirling.

1 G r a m m a r s a n d P r o c e s s e s

In these notes we consider infinite-state processes defined by context-free gram-
mars. The purpose of such a study is to provide results in both process theory,
where one is interested in the behaviour of systems, as well as classical automata
theory, where one is interested in the languages defined by automata. In each
case we are interested in deciding properties, notably equivalences between pro-

104

cesses or automata. It is a classical result that the equivalence problem for
context-free grammars is undecidable. However we shall demonstrate that the
analogous problem--as we define i t - - in the process theoretic framework is in

fact decidable. This does not just feed positively into process theory; by tak-
ing such a non-standard process-theoretic approach to the classical theory we
open up new techniques for tackling classical problems. For example, we shall
demonstrate that our techniques for process theory naturally apply to problems

in automata theory regarding deterministic automata.

1 . 1 C o n t e x t - F r e e G r a m m a r s

A context-free grammar (CFG) is a 4,tuple G = (V, T, P, S), where

�9 V is a finite set of variables;

�9 T is a finite set of terminals which is disjoint from V;

�9 P C_ V • (V U T)* is a finite set of production rules, written X --~ c~ for
(X, c~) E P . We shall assume that some rule X --~ a exists in P for each

variable X E V; and

�9 S E V is the start symbol.

The production rules are extended to be defined over the domain (V OT)* by

allowing 7Xfl --* 7c~)3 for each 7, fl E (V U T)* whenever X --* a is a production
rule of the grammar. A word w E T* (that is, a string of terminals) is generated
by a string a E (V U T)* iff a --** w. The (context-free) language defined by the
grammar, denoted L(G), is the set of words which can be generated from the
start symbol S. More generally, the language L(a) generated by a string a is
the set of words which it can generate, and hence L(G) = L(S).

The norm of a string of symbols (~ E (V U T)*, written norm(a) , is the
length of a shortest word which can be generated from a via productions in P.
In particular, the norm of the empty string e is 0; the norm of a terminal symbol
a E T is 1; and the norm is additive, that is, norm(a/~) = norm(a) + norm(fl).
A grammar is normed iff all of its variable have finite norm. Notice that the
language defined by a grammar is nonempty exactly when its start symbol has
finite norm.

A grammar is guarded iff each of its production rules is of the form X --+ ac~
where a E T. If moreover each c~ E V* then the grammar is in Greibach normal
form (GNF). If furthermore each such c~ is of length at most k, then it is in k-
Greibach normal form (k-GNF). A 1-GNF grammar is called a regular grammar

as such grammars generate precisely the regular languages which do not contain
the empty string e. Finally, if within a guarded grammar we have that a = fl

whenever X --~ ac~ and X --+ aj3 are both production rules of the grammar for

105

some X E V and some a E T, then the g r a m m a r is deterministic, and simple if

the g r a m m a r is in Greibach normal form.

/ \

E x a m p l e 1 Consider the grammar G = ({ X , Y } , { a , b } , P , X) where P c o n -
% /

sists of the rules

X ~ a Y Y --* aYb Y --~ b

This guarded grammar generates the (context-free) language { akb k : k > 0 }.

The norm of Y is 1 and the norm of X is 2, as Y generates the word b and X

generates the word ab. Hence the grammar is normed. A grammar in Greibach

normal form which generates the same language is given by the rules

X --* a Y Y --+ a Y Z Y --* b Z --* b

Notice tha t an unnormed variable cannot generate any finite words. Thus any

unnormed variables m a y be removed f rom a g r a m m a r , along with any rules

involving them, wi thout affecting the language generated by the g r a m m a r .

1 . 2 P r o c e s s e s

We shall define a process as an extension of the usual not ion of a nondeterminis t ic

finite-state a u t o m a t a where we m a y now allow an infinite set of states and where
we generally do not consider final states. We m a y consider a s tate to be final if

there are no t ransi t ions evolving f rom it. However, the intent ion of a process is

to allow an analysis of its runt ime behaviour ra ther t han s imply the sequences

of t ransi t ions which lead to a final state.

A process is thus a labelled transition system (LTS), a 4-tuple P = (S, A,

, c~0) where

�9 S is a set of states;

�9 A is some set of actions which is disjoint f rom S;

�9 ~ C_ S • A x S is a transition relation, wri t ten c~ a ~ j3 for (c~, a, fl) E

~. We shall extend this definition by reflexivity and t ransi t iv i ty to allow
s A * c~ ~ fl for s E ; and

�9 c~0 E S is the initial state.

The norm of a process state a E S, wri t ten n o r m (a) , is the length of the

shortest t ransi t ion sequence f rom tha t s tate to a te rminal state, t ha t is, a s ta te

f rom which no t ransi t ions evolve. A process is normed iff all of its s tates have
finite norm.

106

A process is image-finite if for each c~ E S and each a E A the set {;3 " c~ a

f~ } is finite. We also refer to states of a process as being image-finite if the
r

process itself is image-finite. Finally, if we have t ha t / 3 = 3' whenever ~) ;3
a

and c~) "y are both transitions of the process for some ~ E S and some a E A,
then the process is deterministic. We also refer to states of a process as being

deterministic if the process itself is deterministic.

We may abstract away from the behaviour of a process P and define the

language L(c~) which is defined by a state ~ of the process as the set of strings

s E A* such that c~ -s) I~ where/3 is a terminated state, that is, where there

are no transitions evolving from ;3. The language generated by the process P is

then given as L(P) = L(c~o).

1 . 3 C o n t e x t - F r e e P r o c e s s e s

In the theory of formal languages one generally associates a context-free g r ammar

with a push-down au tomata , a finite-state au toma ta with a single push-down
stack. Such devices are known to characterise the expressive power of context-

free grammars; that is, they generate exactly the class of context-free languages.
In these notes, we take a different automata- theoret ic view of g rammars by

embedding the stack into the states, so as to make the infinite-states explicit.

The loss of the stack and burden of an infinite-state control is more than balanced
by the gain in having a uniform t rea tment of state. T h e reader may equally

interpret our au toma ta as stateless (that is, single-state) push-down au toma ta

where the contents of the missing push-down stack are now represented within

the state. This interpretation can be gleaned from Example 2. However, we do
not pursue this aspect in these notes.

To a given CFG G = (V, T, P, S) we associate the process 8 (G) = ((Y U
%

) ~ T)*, T,), S where , is defined to be the least relation satisfying ac~ ~ ~
a

and X~' a) ~ , whenever X ~ ~ is a rule of the g r ammar and o~ , ;3. Such a
process will be termed a conte~t-free process.

The intuition behind context-free processes is tha t terminals and variables

represent basic processes capable of exhibiting behaviour (performing transi-

tions), while the composition of variables and terminals represents a sequen-
tial composition of the component processes. As such the leftmost symbol in
the composition provides the transitions of the process. In terms of g r ammar

derivations, this in effect corresponds to a leftmost derivation.

E x a m p l e 2 The grammar of Example 1 which generates the language { akb k "
k > 0 } defines the following process.

107

(~ a D a �9 a a �9 �9 �9 , f
, , , , . . .

Behaviourally, this process represents a simple form of counter: it performs pre-
cisely as many b transitions as a transitions.

From this example it is clear to see that the definition of norm in the process

sense is consistent with the definition of norm in the g r a m m a r sense. In par-

ticular, a normed g r a m m a r will give rise to a normed process. Furthermore the

language defined by the process associated with a g r a m m a r is the same as the
language defined by the g rammar itself.

Notice that in the case of a CFG in Greibach normal form the state set of the

associated context-free process need only be V* as any sequence of transitions

f rom any element of V* (in particular from the s tar t s ta te S) must lead to a

state given by another element of V*. For the same reason the state set of

the process associated with a regular g r am m ar need only be the finite set V,
which coincides with an expectation that the regular processes (those given by

g rammars generating regular languages) are finite-state processes.

1 . 4 C o n c u r r e n t C o n t e x t - F r e e P r o c e s s e s

To a given CFG G = (V , T , P , S) we associate the process C(G) = / (Y U

S) where ~ is defined to be the least relation satisfying c~ag a T)*, T,) ,)

~/3 and c~X/3 a ~ ~Tfl whenever either X ~ a 7 is a rule of the g r a m m a r or

X --* b is a rule of the g r am m ar with b E V (V U T) * and b a ~ 7. Such a process
will be termed a concurrent context-free process.

The intuition behind concurrent context-free processes is that the composi-

tion of variables and terminals represents a parallel composit ion of the compo-

nent processes, and as such any symbol in the composit ion can contribute the

next transition rather than simply the leftmost symbol. In terms of g r a m m a r

derivations, this in effect corresponds to an arbi trary derivation rather than the
leftmost derivation scheme adopted in context-free processes. The exception to

this rule is the basic transition steps defined by the guarded production rules.

Notice that a corollary of the concurrent nature of such processes is that the

composition of symbols representing the states is commutat ive , so tha t for ex-

108

ample the concurrent context-free process generated by X Y is the same as that
generated by Y X , where X and Y are variables of a CFG.

Example 3 Consider the guarded grammar consisting of the production rules

X --* aXb X --~ c X d

This grammar defines the following concurrent context-free process (modulo com-

mutativity of symbols).

d

a___r

- - U - -

a

- - - U -

a

-'--b----
a i

This process represents a form of two.counter, or more properly a multiset or

bag: two types of tokens can be inserted into and removed from the bag, the

first being inserted with an a transition and removed with a b transition, and the

second being inserted with a c transition and removed with a d transition. Hence

at any moment during the execution of this process there will have been at least

as many a transitions as b transitions and at least as many c transitions as d

transitions.

Again it is clear that the n6rm of a concurrent context-free process is consistent
with the norm of the corresponding grammar. In particular, the grammar and
process in the above example are unnormed as the start symbol X is unnormed.
As noted above a corollary of this is that the language generated by the grammar
(equivalently the process) is empty. Note though that this process still exhibits
an interesting behaviour; abstracting away from a process all but the language
which it generates is generally too coarse an interpretation for the study of
processes.

One final point to note is that the class of languages generated by concur-
rent context-free processes is incomparable to the class of context-free languages

109

generated by context-free processes. One direction of this claim is almost imme-
diate from Example 3: although this process generates the empty language, it
can be easily modified by adding the production rules X --* ab and X -* cd to
the defining grammar to generate the language of all strings over the alphabet
{a, b, c, d} in which the number of as is the same as the number ofbs, the number
of cs is the same as the number of ds, and any prefix contains no more bs than as
and no more ds than cs. This language is quickly seen not to be a context-free
.language. For the reverse implication, Christensen [12] demonstrates that the
context-free language { anb n : n > 0 } generated by the context-free process of
Example 2 cannot be given by any concurrent context-free process. However, the
class of languages generated by concurrent context-free processes is contained
within the class of context-sensitive languages, as they are easily seen to be given
by grammars which include context-sensitive rules of the form X Y --~ Y X for
commuting variables.

1 .5 T h e P r o c e s s A l g e b r a s B P A a n d B P P

We have defined context-free and concurrent context-free processes as particular
semantic interpretations of context-free grammars. However their history is more
truthfully given in the process algebra framework. In particular there are two
well-studied process algebras which give rise to these two classes. We briefly
outline here the process algebraic framework by describing these two process
algebras.

BPA: Basic P roce s s A l g e b r a

A process algebra is defined by some term algebra along with a particular tran-
sitional semantic interpretation assigned to the constructs of the algebra. A
process is then given by a finite set of process equations

Xi = Ei " l < i < n

where each E~ is an expression over the particular term algebra with free variables
taken from the collection of Xis. In the case of the Basic Process Algebra (BPA)
of Bergstra and Klop [4] the form of the expressions Ei is given by the following
syntax equation.

E ::= a I X i I E + F I E F

where a is taken from some finite set of atomic actions A. Informally, each a E A
represents an atomic process, Xi represents the process expression Ei, E 4- F
represents a choice of behaving as process E or process F , and E F represents the
sequential composition of processes E and F. Formally the semantic interpreta-

tion of these constructs is given by the least relation) C_ P • A • (P U {e})

satisfying the following rules.

110

a Ei a ' G E a~G F a>G E " ' G a) g
Xi a ' G E + F a , G E + F a+G E F a~GF

(Note that we absorb the symbol e into terms, so as to read ~E as E.)
It is not difficult to recognise the correspondence between context-free pro-

cesses and BPA processes. Roughly speaking, the variables and terminals of a
CFG correspond to the variables and actions of a BPA process, with sequencing
of symbols being naturally carried across both formalisms and a choice of pro-
duction rules in a grammar corresponding to the choice operator in the algebra.'
Thus for example, the context-free process of Example 2 can be given as the
BPA process

def
{ Z -~. aY ,

def Y = aYb + b }.

More formally, given a CFG G = (V, T, P, S) we can define the equivalent
BPA process

BPA(G) = X = ~ { E " X - - * E 6 P } " X 6 V

For the reverse direction a bit of care is needed to handle summation. Given a

BPA process

{ =, } P = Xi = ~_,{E~j " l<_j<_n~} " l < i < n

we first assume that the terms Eli do not involve the summation operator; this is
acceptable as such subterms can be replaced by newly-introduced variables with
their obvious defining equations. Then we can define the equivalent CFG G(P)
with variables Xi and production rules Xi ---' Eij . We leave it to the reader to
verify that these transformations are valid, in the sense that for every CFG G,
S (a) and BPA(G) describe the same (that is, isomorphic) process, and that for
every BPA process P, P and S(G(P)) describe the same processes.

We could restrict the syntax by allowing not general sequencing E F but
rather simply action prefixing aE as is done by Milner [48]. We would be left
with the following syntax equation for terms.

E ::= a I X~ I E + F I aE

The effect of this modification would be to restrict ourselves to an algebra cor-
responding to regular grammars and hence generating the class of finite-state
processes.

B P P : Bas ic P a r a l l e l P r o c e s s e s

Basic Parallel Processes (BPP) are defined by a process algebra given by includ-
ing a parallel combinator [[within the algebra of regular processes. Hence the
term algebra is given by the following syntax equation.

111

E : : = a I l aE I EfIF

The semantic interpretation of the new construct is given by the following rules.

E ~ G F a , G
E [I F ~ , G [] F E [I F ~ , E [I G

(Note that we also absorb the symbol e into parallel terms, so as to read E [I e

and e II S as E.)
Again it is straightforward to recognise the correspondence between concur-

rent context-free processes and BPP processes. For example, the context-free
process of Example 3 can be given as the BPP process

{ X de=f a(X I[b) + c(X II d)}.

As above we can define a BPP process BPP(G) for any grammar G and a
CFG G(P) for any BPP process P such that for every CFG G, C(G) and BPP(G)
decribe the same processes, and for every BPP process P , P and C(G(P)) dscribe
the same processes. We leave the definitions, as well as the proofs of these
correspondences, to the reader.

There is yet another natural interpretation of concurrent context-free pro-
cesses which comes from the study of Petri nets. A (labelled place/transition)
Petri net is simply a (finite) directed bipartite graph with the two partitions of
nodes referred to as places and transitions respectively. A marking of a net is an
assignment of some natural number to each of the places. A transition is enabled
in a particular marking of a net if the value of the marking of each place is at
least as large as the number of arcs leading from that place to the transition in
question. A firing of an enabled transition entails first deducting from the value
of the marking of each place an amount equal to the number of arcs leading from
that place to the enabled transition in question, and then adding to the value of
the marking of each place an amount equal to the number of arcs leading to that
marking from the transition. We can then define Petri net processes by taking
the set of markings of a particular net as the set of states of a process, and the
firings of the enabled transitions as the transitions of the process. If we restrict
attention to nets whose transitions all have a single incoming transition, then we

define precisely the class of guarded concurrent context-free processes. We leave
the proof of this correspondence for the reader to consider, but demonstrate it

with the following example.

E x a m p l e 4 Consider the context-free grammar consisting of the production
rules

X --~ aY Y --* b X X

112

Clearly neither of the variables X or Y is normed; hence interpreted as a context-
free process, this degenerates to the finite-state process consisting of a never-
ending cycle of "ab" transitions. However, viewed as a concurrent context-free
process, we have a much more interesting behaviour. It corresponds to the fol-
lowing BPP process and Petri net.

a

{Xy de__fdef a Y ,

b(x If X)

b

This grammar defines the following concurrent context-free process.

o o o

Typically the expressions Ei allowed in process definitions within a given
process algebra are restricted to being guarded, in the sense that every occur-
rence of a variable Xi appears within a subexpression of the form aEi This
corresponds in the grammar framework to a restriction to guarded grammars.
We shall demonstrate the importance of this restriction later when we discuss
transformations from arbitrary grammars into equivalent Greibach normal form
grammars.

2 B i s i m u l a t i o n E q u i v a l e n c e

We can straightforwardly define language equivalence between CFGs by saying
that two grammars G1 and G2 are language equivalent, denoted G1 "~L G2,
if L(G1) = L(G2). This definition applies equally well to processes. However
in these notes we shall be concentrating on a much stricter notion of process

113

equivalence, namely bisimulation equivalence. In this section we shall define this
notion and present the properties which it possesses which motivate our choice of
emphasis. We shall furthermore demonstrate analogies to the Greibach normal
form theorem for grammars demonstrating that CFGs and context-free processes
and concurrent context-free processes may be represented (upto isomorphism,
and hence bisimulation equivalence) by grammars in Greibach normal form.

Defini t ion 5 Let (S, A, ---~, so) be a process. A relation T~ C S • S is a bisim-
ulation iff whenever ((~, fl) E Tt we have that

* ifc~ a o~' thenf l a fl, f o r some f l , with(o~',fl ')ETr and

* i f f l a , f l ' thenc~ a a ' forsomeo~ ' w i th (a ' , f l ')ETr

c~ and fl are bisimulation equivalent or bisimilar, written a ~ fl, iff (~, fl) E Tr
for some bisimulation Tr

This definition can easily be extended to compare states of different processes
by simply considering the disjoint union of the two processes.

L e m m a 6 ~ = U{T~ " 7~ is a bisimulation relation} is the maximum bisim.
ulation relation.

P r o o f An arbitrary union of bisimulation relations is itself a bisimulation rela-
tion. []

We can extend the notion of bisimilarity to a relation over grammars and
strings of symbols in a grammar by considering the processes associated with
the grammars. Note however that we can in fact do this in two ways, by consid-
ering either context-free processes or concurrent context-free processes. Unless
explicitly stated otherwise, we shall mean the (sequential) context-free process
interpretation when considering the process generated by a grammar.

We shall see that bisimulation equivalence is strictly finer than language
equivalence. However this distinction vanishes if we restrict our attention to
normed deterministic processes. This fact, along with various other elegant
properties enjoyed by bisimulation equivalence, motivates us to concentrate on
this stronger equivalence in these notes. In this way not only will we explore
solutions to problems in process theory, but we shall also tackle long-standing
problems in formal language theory regarding deterministic language classes.

Example 7 Consider the following two context-free processes.

114

a a

Y ---~ a Z Z - * b Z --+ c X ~ ab X ~ ac

Q

b c

.The g r a m m a r s def ining these two processes are cer ta in ly language equivalent .

However , they are not b i s imula t ion equivalent , as the processes which they define

are not b is imi lar .

L e m m a 8 ,-~ is an equivalence relat ion.

P r o o f Reflexivity is established by demons t ra t ing { (c~, c~) : (~ E S } to be
a bisimulation; s y m m e t r y is established by demons t ra t ing 7~ -1 to be a bisimu-
lat ion whenever 7~ is; t rans i t iv i ty is established by demons t ra t ing 7~S to be a
bisimulat ion whenever ~ and S are. These are all s t raightforward. []

L e m m a 9 I f c~ ~ fl and a - - ~ a ' f o r s E A* then ~ --2-* fl ' such that o/ ..~ fl ' .

P r o o f Given a bis imulat ion ~ relating a and fl, it is a simple induct ion on the
length of s E A* to demons t ra te tha t if a ' , a ' then fl 8 , / y with (a ' , fl ') E 7~.

[]

C o r o l l a r y 10 I f c~ ,~ fl then o~ "~L ft.

P r o o f If a ~ fl then s E L (a) iff a ' ~ a ' where a ' is a t e rmina ted state, which

by the previous l emma holds iff fl " ~ fl' where fl' is a t e rmina ted state, which
finally holds iff s E L(f l) . []

C o r o l l a r y 11 I f a ~ fl then n o r m (a) = norm(fi)

115

P r o o f Immediate from the previous corollary. []

L e m m a 12 For normed determinis t ic c~ and fl, i f o~ '~L fl then ot .~ ~.

P r o o f It suffices to demonstrate that the relation ~ (a, fl) " a "~L ~ and ce~
%

normed deterministic } is a bisimulation relation. []

We shall occasionally exploit the following alternative stratified definition of
bisimulation due to Milner.

De f in i t i on 13 Let (S,A,),So) be a process. We inductively define the fol-

lowing sequence of binary relations over S: o~ N o ~ fo r every o~, fl E S, and for

k > 0, c~ "~k+l fl i f f we have that

�9 i f o ~ o d t h e n ~ a , f l l f o r s o m e f l l wi tha ' . .~k /31; and

a a ' f o r some cd with a ' "~k fl'. �9 i f f l a , f l ' t h e n ~ ,

L e m m a 14 I f c~ ~. fl then a "~k fl for all k > O. Conversely, f o r image-finite

o~, i f ~ ~ k fl for all k > 0 then c~ ,~ #.

P r o o f The first implication requires a simple induction on k, whereas the second
implication requires that we demonstrate that the relation { (a, fl) : a " k fl
for all k > 0 and a image-finite } is a bisimulation. Each of these obligations is
straightforward. []

E x a m p l e 15 Consider the following image-infinite context-free process.

X---~ X a Y ---~ Y a Y---m Z

X---*a Y---~a Z---~aZ

a-...L\- I / a . . .

116

The states X and Y are clearly not bisimilar, as the state Z cannot be bisimilar

to a k for any k >_ O. However X "~k Y f o r each k >_ 0 as Z ~ k a k.

We shall generally be restricting our attention to guarded grammars, which

we can easily verify generate image-finit e processes. This will allow us a useful
technique for demonstrating bisimilarity, namely inductively showing that each
"~k relation holds. Furthermore, as shall be seen in Subsection 2.2, any guarded
grammar can be transformed into a bisimilar one which is in Greibach normal
form (with respect to either interpretation of composition), and hence we shall
eventually consider only Greibach normal form context-free processes, ie, those
processes given by a grammar in Greibach normal form.

2 . 1 C o m p o s i t i o n a n d D e c o m p o s i t i o n

An important property of bisimulation equivalence which we shall exploit is
the following congruency result, which is valid under either interpretation of

composition.

L e m m a 16 Given a C F G G = (V, T, P, S) and ~, ~', fl, fl' e (V U T)*, i f ~ ..~ fi

and (~ ,,~ /~' then ~ 1 ,~ flfll, regardless of whether we interpret this grammar as

a context-firee process or a concurrent context-free process.

P r o o f In either case, we can demonstrate that the relation ~ (~ , flfl~) "
%

fl and ~ ,-* fl~ } is a bisimulation, from which the result follows. O

Complementing our congruency property we have an obvious potential tech-
nique for the analysis of a process built up as a composition, namely decomposing
the process into simpler components. In general this notion is not suitably pro-
vided for, but for the class of normed processes we get a unique factorisation
result regardless of whether we interpret composition as sequential or parallel
composition. We say that an elementary process X E V is pr ime (with respect
to bisimilarity ,,~ as well as the particular interpretation of composition which we

are considering) i f fX ~ (~/? entails c~ = e or fl = e. We shall demonstrate our two
results here separately, namely that normed Greibach normal form context-free
processes and normed concurrent Greibach normal form context-free processes
can be decomposed in a unique fashion into such prime components. For the
sequential case, we start with the following cancellation lemma.

L e m m a 17 I f a, ~ and 7 are Greibach normal f o rm context-free processes and

i f 7 is normed then ~'/ ..~ f17 implies c~ .~ ft.

P r o o f We can demonstrate that the relation

117

t" "1

(a, fl) " there exists 7 such that norm(7) < c~ and a7 "~ f17

is a bisimulation, from which the result follows. []

The assumption in this lemma that 7 is normed cannot be dropped, as can be
readily seen by considering the following counterexample. Consider the processes
X and Y whose only transitions are X a ~ r and Y a ~ Y; then X Y ,,~ Y, but

clearly X 7 ~

T h e o r e m 18 Normed Greibach normal form context-free processes admit unique
(up to bisimilarity) prime decompositions.

P r o o f Existence may be established by induction on the norm.
For uniqueness, suppose that a = X 1 . . . X p ,~ Y1...Yq = fl are prime de-

compositions of bisimilar processes a and fl, and that we have established the
uniqueness of prime decompositions for all a ' E V* with norm(a ') < norm(a) .
If p = 1 or q = 1 then uniqueness is immediate. Otherwise suppose that
X1 a ~ 7 is a norm-reducing transition that is matched by]I1 a , 8, so that
7X2 .. . Xp ,~ ~Y2... Yq. By the inductive hypothesis, the prime decompositions
of these two processes are equal (up to ,,,), entailing Xp ,,, Yq. Hence, by Lem-
mas 16 and 17, X1 . . .Xp-1 ~ Y1.. .Yq-1, and uniqueness then follows from a
second application of the inductive hypothesis. []

Notice that this theorem fails for unnormed processes. The reason for failure

is immediately apparent from the observation that a ,-~ aft for any unnormed a

and, any ft.

T h e o r e m 19 Normed concurrent Greibach normal form context-free processes
admit unique (up to bisimilarity) prime decompositions.

P r o o f Again, existence may be established by induction on the norm.

For uniqueness, suppose that a = P1 klP~2---Pmk'~ ,~ p ~ l p ~ 2 . . . p ~ = .6
represents a counterexample of smallest norm; that is, all 7 with norm(7) <

norm(a) (= norm(fl)) have unique prime decompositions, the Pis are primes,
but i exists such that ki # li. We may assume that the Pis are ordered by
nondecreasing norms, and then we may choose this i so tha t kj = lj whenever
j > i. We shall furthermore assume without loss of generality that ks > Ii. We
distinguish three cases, and in each case show that process a may perform a
norm-reducing transition a a , al that cannot be matched by any transition

fl a ~ fl, with a ' ~ fl' (or vice versa with the roles of a and /? reversed),
which will supply our desired contradiction'. Observe that by minimality of the
counterexample if a ' and fl' are to be bisimilar then their prime decompositions
must be identical.

118

C a s e I . If kj > 0 for some j < i, then we may let c~ perform some norm-
reducing transition via process Pj. Process fl cannot match this transition,
as it cannot increase the exponent Ii without decreasing the exponent of
some prime with norm greater than that of Pi.

Case II . If kj > 0 for some j > i,' then we may let a perform a norm-reducing
transition via process Pj that maximises (after reduction into primes) the
increase in the exponent ki. Again the process fl is unable to match this
transition.

Case I I I . If the process a = p/k~ is a prime power, then note that lj 0 for
all j > i by choice of i, and that ki > 2 by the definition of "prime." If
li > 0, then we may let j3 perform a norm-reducing transition via Pi; this
transition cannot be matched by c~, since it would require the exponent
ki to decrease by at least two. If li = 0 on the other hand, then we may

let c~ perform a norm-reducing transition via Pi; this transition cannot be
matched by fl, since fl is unable to increase the exponent li.

These cases are inclusive, so the theorem is proved. D

C o r o l l a r y 20 I f c~, fl and 7 are normed concurrent Greibach normal form
context-free processes then ~7 ~ f17 implies o~ .~ ft.

P r o o f Immediate. O

Notice that for concurrent Greibach normal form context-free processes,
unique decomposition and cancellation again each fail, for similar reasons to
the sequential case.

2 . 2 E q u i v a l e n c e - P r e s e r v i n g T r a n s f o r m a t i o n s

In this section we demonstrate how to transform an arbitrary guarded CFG

into a bisimilar (and hence also language equivalent) CFG in Greibach normal
form. This transformation will be valid for interpreting grammars either as
context-free processes or concurrent context-free processes. Furthermore these
transformations only involve a linear increase in the size of the grammar (that is,
the number of symbols appearing in the production rules of the grammar), more
precisely, an increase of only twice the size of the terminal alphabet. Combining
this with the usual technique (from [33]) for transforming an arbitrary CFG not
generating the empty word ~ into guarded form gives an alternative proof of the
usual Greibach normal form theorem.

Let G = (V, T, P, S) then be an arbitrary guarded CFG. We can define a new

grammar G = (V,T, JB, S) as follows. Firstly we let V = {Ya " ~r E V U T }

119

and S = Ys. The production rules of P are defined by Ya "* a for each a E T,

and Yx --* aEa for each X E V and each rule X --~ a a in P , where Ee = r and
Eaa = YaEa for ~r E V U T.

L e m m a 21 G ... G. That is, S(G) ,.~ S(G).

P r o o f Let T~ = ~ (a, Ea) " a E (V U T)* ~. We shall demonstra te tha t
%

is a bisimulation relation, from which we shall conclude tha t S .-. Es = S. To

do this it suffices to demonstrate tha t a " > /3 if and only if E~ ~, EZ for all

a E (V U T)* . .Certainly this is true for a = ~. I t is equally true for a = a/3 with
a E T as each of a/3 and E,# = YaE# has only one transition, namely aft ~,/3
and E~a a ~ EZ respectively. Finally it is true for a = X/3 with X E V as

Xfl ~ ' 7 if and only if X ~ a6 is a rule of P and 7 = 6/3, which is true if and
only if Yx ~ aE~ is a rule of /~ (and still 7 = 6/3), which in turn is true if and

only if Ex~ = YxE# ~, E6E~ = E~. []

L e m m a 22 C(G) ,~ C(G).

f
P r o o f As for the previous case we can demonstrate tha t T~ = ~ (a, Ea) " E

(V U T)* } is a bisimulation relation by demonstrat ing tha t a a ~/3 if and only

i f E a a, E~ for a l l a E (V U T) * . Suppose then tha t a a~ /3. This can

occur in one of two ways: either c~ = 7a6 and /3 = 76, in which case we have

~a = ~'rYa~t a , E.rE t = E#; or else a = 7X6 and 13 = 7y6 where X ~ ay is
a rule of P , in which case we have E~ = ETYxE~ a ~ ETEnE6 = E#. Similarly
we can show tha t i f E ~ a , E ~ t h e n a a~/3. []

Extending these transformations to the process algebras BPA and BPP using

the t ransformations given in Subsection 1.5 provides us with an efficient trans-

format ion into s tandard form processes analogous to Greibach normal form.
However this works only for guarded processes. For example, the unguarded

g rammar given in Example 15 clearly cannot be t ransformed into a bisimilar
g rammar in Greibach normal form. This stands in contrast to the classical re-

sult stating tha t any g r am m ar can be t ransformed into a language equivalent

Greibach normal form grammar; this t ransformat ion can in fact be carried out
so that the size of the resulting g rammar is at most the square of the size of the
original g rammar .

We can weaken the definition of guarded, saying tha t a g r a m m a r is weakly
guarded if we cannot rewrite any variable X using a positive number of rewrites

into a string Xc~ for some a. Equivalently if we define an ordering between
variables by X > Y whenever X --* Y a for some a, then the g r a m m a r is

weakly guarded if this ordering is well-founded. The above t ransformations are

120

then valid, though the resulting grammars may be exponentially larger than the

original grammars. We leave it to the reader to verify these facts, in particular
by considering the transformation of the weakly guarded grammar given by
X1 ~ a, X1 ~ b, and for each 0 < k < n, Xk+l ~ Xka and Xk+l "* Xkb.
A (bisimulation) equivalent grammar in Greibach normal form is necessarily
exponentially larger than this original grammar.

3 Decidabil i ty Results

If we consider the class of regular (finite-state) processes, theh bisimulation
equivalence is readily seen to be decidable: To check if ~ ,~/~ we simply need
to enumerate all binary relations over the finite-state space of ~ and/~ which
include the pair ((~,/~) and check if any of these is by definition a bisimulation
relation. Language equivalence is similarly known to be decidable for finite-state
automata. This can be seen by noting that regular grammars can be transformed
easily into normed deterministic grammars; the decidability of language equiv-
alence then follows from the decidability of bisimilarity along with Corollary 10
and Lemma 12.

As soon as we move to a class of infinite-state processes, the decision problem

for bisimulation equivalence becomes nontrivial. For image-finite processes, the
nonequivalence problem is quickly seen to be semi-decidable--given the com-
putability of the transition relation--using Lemma 14, noting that the relations
~k are all trivially computable. However there would appear to be potentially
infinitely many pairs of states to check individually in order to verify the bisim-

ilarity of a pair of states. We may also be led to believe that the equivalence
problem for bisimulation checking is undecidable given the classic result con-
cerning the undecidability of language equivalence.

However it turns out that bisimulation equivalence is in fact decidable for
both context-free processes and concurrent context-free processes. In this section
we shall concentrate on presenting these two results. The result concerning
context-free processes is due to Christensen, Hiittel and Stirling [18], while that
concerning concurrent context-free processes is due to Christen'sen, Hirshfeld
and Moller [15]. One immediate corollary of the former result is the result of
Korenjak and Hoperoft [44] that language equivalence is decidable for simple
grammars.

We shall henceforth simplify our study, using the results of the previous
section, by assuming that our grammars are in Greibach normal form. Let us
then fix some Greibach normal form grammar G = (V, T, P, S). Our problem is

to decide a -,~ fl for ~, fl E V*, first in the case where we interpret the grammar
as a context-free process, and then in the case where we interpret the grammar
as a concurrent context-free process. Notice that such processes are image-finite,

121

so we may use the fact that bisimilarity is characterised by the intersection of
our stratified bisimulation relations. Also, as nonequivMence is semi-decidable,
we only need demonstrate semi-decidability of the equivalence problem.

3 . 1 C o n t e x t - F r e e P r o c e s s e s

Based on the congruency result of Lemma 16 for context-free processes, we define

the following notion. Let T~ be some binary relation over V*. We define ~ to

be the least congruence with respect to composition which contains 7~. Tha t

is, - is the least equivalence relation which contains 7~ and contains the pair
(as',/3/31) whenever it contains each of (c~, 13) and (a ' , 13'). Our technique will
rely on the following definition due to Caucal [10].

D e f i n i t i o n 23 A relation Tl C_ V* x V* is a Caucal base i f f whenever (a, 13) E T~
we have that

* ifce a)e~ I then13 a)131forsome131 w i t h a 1~131; and

* i f 1 3 ~ t 3 ' t h e n a a a ' f o r s o m e a I w i t h a ' ~ 1 3 ' .

Hence the definition of a Caucal base differs from that of a bisimulation only in
how the derivative states a ~ and 13~ are related; in defining T~ to be a bisimulation,
we would need these derivative states to be related by 7~ itself and not just by

T~
the (typically much larger) congruence -- . A Caucal base then is in some sense

a basis for a bisimulation. The importance of this idea is encompassed in the
following theorem.

7~
T h e o r e m 24 (C a u c a l) I f T~ is a Caucal base, then -- is a bisimulation. In

T~
particular, -- C ,,~.

P r o o f We demonstrate that if a ~ fl then the two clauses given by the definition
7r

of - being a bisimulation hold true, thus demonstrating Te -- to be a bisimula-
tion. The proof of this we carry out by induction on the depth of inference of

7r
or _---- 13.

7~
If a -- 13 follows from (a, 13) E T~ then the result follows from T~ being a

Caucal base.
R

If a _---/3 follows from one of the congruence closure conditions, then the result
easily follows by induction, using the above congruency lemma. []

C o r o l l a r y 25 a -~/3 iff (a,/3) E T~ for some Caucal base T~.

122

P r o o f Immediate. []

It now becomes apparent that in order to demonstrate bisimilarity between
terms, we needn't produce a complete (infinite) bisimulation relation which con-
tains the pair; rather it suffices simply to produce a Caucal base which contains
the pair. What we shM1 demonstrate is that this corollary can be strengthened
to a finite characterisation of bisimulation, in that we shall describe a f in i ie

Tr
relation 7~ satisfying -- = ..~. This relation Tr will clearly be a CaucM base,
and our semi-decidability result (and hence the decidability result itself) will be
established, taking into account the following.

L e m m a 26 I t is semi-decidable whe the r a given f in i te binary relation Tr over

V* is a Caucal base.

P r o o f We need simply check that each pair (a, ;3) of the finite relation Tr
satisfies the two clauses of the definition of a Caucal base, which requires testing
(in parallel) if each transition for one of a and fl has a matching transition
from the other. This matching t e s t - - tha t is, checking if the derivative states

Tr Tr
are related by - - - i s itself semi-decidable, as the relation -- is semi-decidable.

[]

Our semi-decision procedure for checking a ,~ ;3 then consists of enumerating
all finite binary relations over V* containing the pair (c~, fl) and checking (in
parallel) if any one of them is a Caucal base. We thus concentrate on defining

Tr
the finite relation T~ satisfying = = ~*.

We first present some technical results, starting with the following unique
solutions lemma.

L e m m a 27 I f (~ ~ 7o~ and ;3 ~, "7;3 f o r s o m e "7 r E then o~ ,,, ;3.

{ (~a, 6;3) " o~ ,,~ "Ta and fl ,-, "7;3 for some "7 ~ r }. We may P r o o f Let 7~

demonstrate straightforwardly that -~7r is a bisimulation, from which we may
deduce our desired result. []

An important finiteness result on which our argument hangs is given by the
following.

L e m m a 28 I f c~'7 ,~ /37 f o r infinitely m a n y non-b i s imi lar 7, then ~ ..,/3.

= { (a, ;3) " a7 "~ ;37 for infinitely many non- P r o o f We shall s h o w that 7~

bisimilar 7 } is a bisimulation, from which our result will follow.

Let (c~, ;3) E 7~, and suppose that c~ a ~ a,. Since c~ r e, by Lemma 27 there
can only be one 7 (up to bisimilarity) such that a 7 ,-~ 7, so we must have that

123

r ~. Thus for infinitely many non-bisimilar 7 we must have fl a) fir such
that a~'y N fl-~7- Since ~ is image-finite, we must have that fl a , ~ such that
at-/,,~ fit 7 for infinitely many non-bisimilar 7- Hence we must have (a t, fit) E TO.

Similarly if (a, fl) E Tr and fl a) fit then a ~) a t such that (a t, fit) E TO.
[]

We may split the set of variables into two disjoint sets V = N O U with the
variables in N being normed and those in U being unnormed. Our motive in
this is based on the following lemma.

L e m m a 29 I f X is unnormed then X a ,,~ X for all a,

P r o o f We can immediately verify that { (X, X a) "

bisimulation.

X is unnormed [is a

[]

Hence we need only ever consider states a E N* U N ' U , the others being im-
mediately rewritable into such a bisimilar state by erasing all symbols following
the first unnormed variable.

The argument relies on recognising when a term may be broken down into a
composition of somehow simpler terms. To formalise this concept we start with
the following definition.

De f in i t i on 30 A pair (Xa, Yfl) satisfying X a ,,, Y fl is decomposable if X and
Y are normed, and for some 7,

�9 X ,,~ Y 7 and 7or ,,~ fl; or

. y N X 7 a n d T f l , ~ a .

The situation would be clear if all bisimilar pairs were decomposable; indeed
we shall exploit this very property of normed processes--which follows there from
our unique decomposability result--in in Section 4. However we can demonstrate
that there is in some sense only a finite number of ways that decomposability Can
fail. This crucial point in our argument is formalised in the following lemma. We
consider two pairs (Xa , Yfl) and (Xa ' , Yfl ') to be distinct if a r ~t or fl 7 L fit.

L e m m a 31 For any X , Y E V, any set of the form

= { (Xa , Y~) " X a , Y ~ E N* UN*U, X a , ~ Yfl , and (Xa , Yf l) 7~ not

decomposable }

which contains only distinct paws must be finite.

P r o o f If X, Y E U then clearly ~ can contain at most the single pair (X, Y).

124

I f X E U a n d Y W) r " i E I } t h e n f o r e a c h i E I w e

must have that X _w) ai such that ai "~/3/. But then by image-finiteness there

can be only a finite number of non-bisimilar such/3/.

Suppose then that X , Y E N and tha t 7~ { (Xai ,Y/3i) " i E I ~ is

infinite. Without loss of generality, assume tha t norm(Y) < norm(X) , and tha t

y w) r with length(w) = norm(Y). Then for each i E I we must have tha t

X ~) "/i such tha t ~fiai "~/3i. By image-finiteness, we can have only finitely
many such ~'i, so we must have that X w, 7 for some 3~ such tha t ~/cq ,-~/3i holds

for infinitely many i E I ; by distinctness these ~is must all be non-bisimilar. For

these i E I we must then have that X a i ,~ YT~i , But then by Lemma 28 we

must have that X --~ YT, contradicting non-decomposability. []

We are now ready to demonstrate our main result, tha t there is a finite
7r

relation 7~ satisfying =__ -- N. This will be done by induction using the following
well-founded ordering _ft.

Definit ion 32 Define the measure s on N* UN*U as follows. For a E N* and
X E U, let s(a) = s (aX) = norm(a) .

Then let(OL1,Ot2)__E (/31,/32) ij~ ma~x(s(a,), s(a2)) _~ max(8(/31), 8(/32)) .

L e m m a 3 3 Let T~o be the largest set { (X , a) " X E N and X - a }, and

letT~l be the largest set { (Xc~,Y/3) " X a , Y/3 E N * U U N*, X a .~ Y/3, and

(Xc~, Y/3) not decomposable } which contains only distinct pairs, and containing

minimal elements with respect lo C_. Then R = 7~o U T~I is a finite relation
7r

satisfying =_ = ..~.

T~
P r o o f Firstly, 7~0 and T~ 1 must both be finite. Also we must have _-- _ ~ .

7r
We will demonstrate by induction on E_ that X a ~ Yf l implies X a - Y f l

If (Xa , Yfl) is decomposable, then X, Y E N and (without loss of generality)

assume that X ,~ Y~/ and 7 a ,,~ ft. Then s(Ta) < s(Y^/a) = s (Xa) and
7~

s(fl) < s(Yfl), so (7c~,/3) if_ (Xa , Yfl). Hence by induction 7c~ _~/3. Then f rom
T~

(x , n o we get x a = Y/3.
Suppose then that (Xa , Yfl) is not decomposable. Then (X a ~, Y/3~) E T~I

for some a ~ ,~ a and/3~ ,-~/3 with (a',/3~) E_ (a,/3).

�9 If X, Y E N, then (a, fl), (a', fl') r- (Xa , Yfl), so (a, a ') , (/3,/3') E (Xa , Y/3).

Thus by induction a -_- and/3 -/3~, so X a -- Xa~TIY/3 ~ =_ Y/3.

�9 I f X E N and Y E U, then fl = fl' = r and X a ,~ Y . Also s (a ') <
7r

s(a) < s(Xa) , so (a ,a ~) r- (Xa, Y) . Thus by induction a _ = a ~, so

125

"R,
X a = X a I ~- Y. A symmetric argument applies for the case when X E U

and Y E N.

Tr
* I f X , Y E U , t h e n c ~ = a ~ = f l = f l ' = r ET~l, S O X ~ - - Y f l .

[]

T h e o r e m 34 Bisimulation equivalence is decidable for guarded context-free pro-
cesses.

P r o o f Immedia te from the preceding argument. []

Unfortunately, as the decidability follows from two semi-decision procedures,
we have no method of determining a complexity bound on the problem, and it
is immediately apparent that the procedure is impractical for use. In Section 4
we shall go some way towards rectifying this situation, by exploiting the special
nature of normed processes to provide a polynomial-time decision procedure for
that subclass of context-free processes.

3 . 2 C o n c u r r e n t C o n t e x t - F r e e P r o c e s s e s

Our demonstration of the decidability of bisimulation equivalence for concur-
rent context-free processes uses a vastly different technique than in the case of
context-free processes. In particular, rather than construct a semantic represen-
tat ion for bisimulation equivalence, we devise a syntactic characterisation which
exploits the commutative nature of the composition, representing states a E V*

yk l yk2 compactly in the form ..1 "'2 "'" X~" where V = { X1, X 2 , . . . , X,~ }. We shall
hence assume that the production rules are in the form X1 --* aX~ 1 " .X~",
and otherwise read sequences of variables modulo commutativity, so that for

example if a = X ~ ' - " X n k" a n d fl = X~ ~ . . - X S , we shall recognise aft as

x ~ + ~ , . . . x ~ . + z . .
Our technique will rely on the following well-founded ordering r- on such

elements of V*.

D e f i n i t i o n 35 X ~ ' . . . X ~ " v- X~ 1 . . . x ~ " iff there exists j such that kj < lj
and for all i < j we have that ki = li.

It is straightforward to verify that E is indeed well-founded.
We present here a tableau decision procedure for checking bisimilarity. Our

tableau system is a goal directed equationM proof system with rules built around

equations either of the form a = fl where a, f l E V*, or of the f o r m ~ i E I aic~i =
~ j E j b j f l j where I and J are finite index sets, each al,bj E A, and each

~i,flj E V*. NotationMly, we read ~ ieo aioq as r and)-'~ie{0} aioq as a0a0.

126

The unders tanding we make of sumforms is as a listing of the t ransi t ions which

are immedia te ly available to a process; as such, we shall interpret these terms

as processes themselves.

Each rule has the form

E = F

�9 .. E , = F ,

The premise of the rule represents a goal to

E l = F 1

possibly with a side condition.

be achieved whereas the consequents represent (sufficient) subgoals to be estab-

lished in order to achieve the goal.

A tableau for E = F is a max imal proof tree whose root is labelled E = F and

where the labelling of immedia te successors of a node are determined according

to the rules of the tableau sys tem presented in Table 1. For the presentat ion of

rule REc we int roduce the no ta t ion unf(c~) for c~ E V* to mean the unfolding of

c~ defined as follows:

u n f (X ~ ' . . . X ~ ") = E E a X ~ ' + I ~ ' " X ~ ' + I ' - I ' " X ~ " + I "
l < i < n zl In

- - - - X i - - - * a X x . . . X ~

k~>0

We shall denote nodes in a tableau by n (with roots also denoted by r) possibly

with subscripts; I f a node n has label E = F we write n : E = F .

In building tab leaux the rules are only applied to nodes tha t ate not terminal.

A terminal node can either be successful or unsuccessful. A successful terminal

node is one labelled a = a, while an unsuccessful te rminal node is one labelled

either a a = b~ such tha t a r b or a a = e or e = bfl. A tableau is successful if

and only if all terminal nodes are successful; otherwise it is unsuccessful.

Nodes of the fo rm n : a = fl are called basic nodes. W h e n building tab leaux

basic nodes migh t dominate other basic nodes; we say tha t a basic node n : a 7 =

or n : ~f = a 7 dominates any node n ~ : a = fl or n ~ : fl = a which appears above

n in the tableau in which a "1 ~ and to which rule R, EC is applied. Whenever a
basic node dominates a previous one, we apply one of the SUB rules to reduce

the terms before apply ing the REC rule.

E x a m p l e 36 Consider the concurrent context-free process given by the following

grammar.

X1 ---* aX1X4 X2 ---+ aX3 X3 ~ aX3X4 X4 ---* b
X3 ~ bX2

We can verify semantically that X1 "~ X2. A successful tableau for X1 = X2 is
given as follows.

127

REC
unf (~) ---- un f (~)

SUM
p q

E i = I a i a i ---- ~jf f i l bjjSj

{ { }" aiozi = b](i)~](i) i=1 bjl~j = ag(j)otg(j) j= l

where f : { 1 , . . . , p } --+ { 1 , . . . , q }
g : { 1 , . . . , q } --+ {1 ,p}

PREFIX
ac~ = a/~

,~=~

StmL
at7 = ~5

~-~=a
if the domina ted node is labelled
o~ = fl or 1~ = a with c~ ~

S t m R
~5=o~ 7

a = B 7

if the dominated node is labelled
a = fl or B = a with a ~

T a b l e 1: Ru les of the t a b l e a u sy s t em .

REc

SUM

PREFIX

X l ~ X 2
REC

aX1X4 = aX3
PREFIX

X a X 4 = X3
StmL

X 2 X 4 = Xa

aX3X4 + bX2 = aXaX4 + bZ2

aX3X4 = aX3X4 bX2 = bX2

XaX4 = XaX4)(2 = Xa
PREFIX

L e m m a 3 7 Every tableau for o~ = 13 is finite. Furthermore, there is only a

finite number of tableaux for o~ = ft.

P r o o f Suppose t h a t we have a t a b l e a u w i t h r o o t l abe l l ed c~ = ft. I t c an o n l y

be in f in i t e i f t he re exis ts a n in f in i t e p a t h t h r o u g h it , as every n o d e has f in i t e

128

branching degree. Hence suppose 7r is such an infinite pa th start ing at the

root r : c~ = ~. The pa th zr can only be infinite if it contains infinitely many

basic nodes to which the tableau rule REc is applied. This is due to the well-

foundedness of the ordering ~ on V* which is decreased through applications
of the SUB rules. Thus f rom the pa th 7r we can form an infinite sequence S of

�9 (DO nodes {ni : c~i = ~i }i=1 by collecting (in order of appearance) the basic nodes

along 7r to which the rule REc is applied. Hence n l : c~t = ~1 represents the

root, n2 : c~2 = f12 represents the second node along 7r at which REC is applied,

and so on.
An expression c~ can be viewed as a vector ~ of JTVn: the value of the /th

coordinate of ~, denoted ~(i), indicates the number of occurrences of variable Xi

in a. Thus we can represent the sequence S by an infinite sequence of vectors

{~i}i~176 where ~i 6 / W 2n for all i. The first n coordinates represent ai and the

last coordinates represent ill.
Consider the infinite sequence { fii (1) } ~ 1 consisting of all the first coordinates

of vectors of the sequence S. If this sequence has an upper bound we extract

f rom S an infinite sequence $1 of vectors {v, }i=1 with the proper ty that the first

coordinate of ~i remains constant throughout $1. I f the sequence {fi i(1)}~l does
not have an upper bound we extract from S an infinite sequence $1 of vectors

{vi}i~l with the property tha t the first coordinate of vi is nondecreasing, i.e.
~(1) < ~j(1) whenever i < j . Continuing in this fashion we arrive at an infinite

~ � 9 OO sequence S2n of vectors {w,}i=l with the property that all coordinate sequences

are nondecreasing. But then every node in this sequence is dominated by every
node after it, so the rule REc cannot be applied to any of these nodes, as a SUB

rule is applicable.

For the proof of the second part , we note tha t if there were an infinite number

of tableaux, then since there are only a finite number of part ial tableaux of a

given finite size, there must be an infinite sequence of partial tableaux, each of
which being derived from the previous by the application of some rule to the

node most recently introduced. But then this sequence provides a tableau with

an infinite pa th through it, which by the first par t cannot be. []

We now proceed to show the soundness and completeness of the tableau system.

T h e o r e m 38 (C o m p l e t e n e s s) I f a ,,, fl then there exists a successful tableau
for~=Z.

P r o o f Suppose a ,-, j3. I f we can construct a tableau for a = / ? with the property

tha t any node n : E = F satisfies E ,,* F, then by Lemma 37 tha t construction
must terminate and each terminal will be successful. Thus the tableau itself will
be successful.

We can construct such a tableau if we verify tha t each rule of the tableau

system is forward sound in the sense that if the antecedent as well as all nodes

129

above relate bisimilar processes then it is possible to find a set of consequents
relating bisimilar processes. I t is easily verified tha t the rules are indeed forward

sound in this sense. Notice in particular tha t the rule REC reflects the expansion
law for parallel composition [48] and that forward soundness of the SUB rules

follows from the fact that bisimilarity is a congruence. []

The proof of soundness of the tableau system relies on the al ternative stratified

characterisation of bisimulation equivalence.

T h e o r e m 39 (S o u n d n e s s) I f there is a successful tableau for a = fl then c~ ,.~

/3.

P r o o f Suppose tha t we have a tableau for c~ = /3 , and that ~ 7~/3. We shall
construct a maximal pa th ~r = {nl : El = Fi} through this tableau star t ing at
the root a = / 3 in which Ei 7 ~ Fi for each i. Hence the terminal node of this

pa th cannot be successful, so there can be no successful tableau for c~ =/3.
While constructing ~r, we shall at the same t ime construct the sequence of

integers {mi : Ei 7~rn, Fi and Ei "~j Fi for all j < mi}. We shall also
prove along the way tha t this sequence is nonincreasing, and strictly decreasing

through applications of the rule PREFIX.

Given ni : Ei = Fi and mi, we get ni+t : Ei+l = Fi+l and mi+l according

to the following cases:

* If REC is applied to ni, then the consequent is n i+l and mi+l = mi.

�9 If SUM is applied to ni, then there must be some consequent n i+l : Ei+l =

Fi+l with Ei+l 7~m~ Fi+l and Ei+l ~i Fi+l for all j < mi, so mi+l = mi.

* If PREFIX is applied to ni, then the consequent is ni+l and mi+l = rni - 1 .

�9 If SuBL is applied to ni : Ei = Fi then Ei = Fi must be of the form a 7 = ~

with dominated node nj : a = 13 (a -7/3). Since between nj and ni there
must have been an intervening application of the rule PREFIX, we must

have tha t mi < mj . We take the node ni+l :/37 = ~, and show tha t we

have some valid rni+l < mi, that is, that/33' 7Lrn~ ~. But this follows f rom
a "~-n/3 and a 7 7~,~ ~. The arguments for the other possible applications

of the SUB rules are identical.

Tha t the above conditions hold of the resulting pa th is now clear. []

We are now in a position to infer the decidability of bisimulation equivalence on

concurrent context-free processes. In order to decide the validity of a = fl we

simply start listing tableaux for a = fl and stop and answer "yes" if a successful
tableau has been found. If we list all of the finite number of finite tableaux

(systematically, so that we recognise when they have all been listed) and fail to

130

discover a successful one, then we answer "no". By soundness and completeness
of the tableau system, we know that this procedure will always give the right
answer. Thus the decidability result is established.

T h e o r e m 40 Bisimulation equivalence is decidable for guarded concurrent con-
text-free processes.

P r o o f Immediate from the preceding argument. []

Unlike the previous argument for context-free processes, we have a single
decision :procedure for determining equivalence rather than two opposing semi-
decision procedures, so we could feasibly extract some complexity measure on
deciding equivalence. However, the complexity measure which we could immedi-
ately extract, being based on our the particular well-founded ordering C on V*,
would fail even to be primitive recursive, so once again our decision procedure
is impractical. However, again in the normed case we can exploit particular
properties to extract a polynomial-time decision procedure. This we also carry
out in Section 4.

4 Algor i thms for N o r m e d Processes

In the previous section we demonstrated the decidability of bisimulation equiv-
alence over both the class of context-free processes and the class of concurrent
context-free processes. However, the computational complexity of the algorithms
which we presented shows them to be of little practical value. To overcome this
deficiency we concentrate in this section on developing efficient algorithms for
deciding bisimilarity within these classes of processes. What we demonstrate
in fact are polynomial algorithms for the problem of deciding equivalences over
the subclasses of normed processes. These algorithms will both be based on
an exploitation of the decomposition properties enjoyed by normed processes;
however, despite the apparent similarity of the two problems, different methods
appear to be required.

For our algorithms, we fix a normed context-free grammar G = (V, T, P, S)
in Greibach normal form. Our problem then is to determine efficiently--that
is, in time which is polynomial in the size n (the number of symbols in the
production rules) of the grammar--whether or not c~ --, fl for c~, j3 E V*, where
we interpret these first as context-free processes and then as concurrent context-
free processes.

4 . 1 C o n t e x t - F r e e P r o c e s s e s

Our basic idea is to exploit the unique prime decomposition theorem by de-
composing process terms sufficiently far to be able to establish or refute the

131

equivalence we are considering. Further, we t ry to construct these decomposi-
tions by a refinement process which starts with an overly generous collection of
candidate decompositions. As the algorithm progresses, invalid decompositions
will gradually be weeded out.

Assume that the variables V are ordered by non-decreasing norm, so that
X < Y implies norm(X) < norm(Y). A base is a set B of pairs (Y, X~) , where
X, Y �9 V, a �9 Y*, X < Y and norm(Y) = norm(Xa) . We insist that B contains
at most one pair of the form (Y, X a) for each choice of variables X, Y, so that
the cardinality of B is at most O(n2). A base B is full iff whenever Y ,,~ X f l
with Y > X there exists a pair (Y, Xc~) �9 B such that c~ ,-~ /~. In particular,
(X, X) �9 B for all X �9 V. The key idea is that infinite relations on V*, in
particular that of bisimilarity, may be expressed as the congruence closure of a
finite base.

L e m m a 41 I f the base B is full then ,,, C ~ .

P r o o f This result may be proved by induction on norm; however, the effort
would be unnecessary, as in Subsection 4.1.1 we shall encounter a procedure
which given a full base B constructs a binary relation on V* that contains ,~

B
and is contained by = . D

t~
Let ~B be some relation satisfying ~ C_ - 5 C = whenever B is full. At

a high level, the exact choice of the relation --~ is immaterial, as the proof
B

of correctness relies only on the inclusions ,-~ C ------B C -- ; later we shall fix
a particular --B which is computable in polynomial time. It is here that the
algorithmic subtlety lies, as efficiency demands a careful choice of =t~ �9

Our task is to discover a full base that contains only semantically sound
decomposition pairs. To do this, we start with a full (though necessarily small)
base, and then proceed to refine the base iteratively whilst maintaining fullness.
Informally, we are proposing that at any instant the current base should ~ns i s t
of pairs (X, a) representing candidate decompositions, that is, pairs such that the
relationship X ,,~ a is consistent with information gained so far. The refinement
step is as follows.

Given a base B, define the sub-base B C B to be the set of pairs (X, c~) �9 B
such that

�9 if X .A_,/3 then a ~ ~ 7 with j3 -=t~ 7, and

�9 i f a ~ T t h e n X a~j3wi th /~- -=z7 .

L e m m a 42 I f B is full then B is full.

P r o o f Suppose Y ~ Xj3 with Y _> X. By fullness of B, there exists a pair

(Y, Xc~) �9 B such that ~ -,~ /~. We show that the pair (Y, X a) survives the

132

refinement step, to be included in B. Note that , since ,,~ is a congruence, Y ,,~
Xc~. Thus, if Y _2_, 7 then X a a ~ 6 for some 6 satisfying 6 -~ 7. By fullness

of B and Lemma41, 6 -t3 7. Similarly, i f X ~ ~ > 6 then Y a ~ 7 with 7 "" 6, and
hence 7 --t~ 6. The pair (Y~ X a) therefore satisfies the conditions for inclusion
in B. []

In general, the refinement step makes progress, i.e., the new base B is strictly
contained in the base B from which it was derived. If, however, no progress
occurs, an important deduction may be made.

L e m m a 43 I f B = 13 then =t3 C ,,~.
B

P r o o f The relation --n is contained in = , the congruence closure of B, so B
must be a Caucal base. Now apply Theorem 24. []

Note that by iteratively applying the refinement step B := B to a full initial
base, we are guaranteed by the preceding three lemmas to stabilise at some full
base B for which _-__~ = N.

We are now left with the task of constructing our initial base B0. This is
achieved as follows. For each X E V and each 0 _< u _< norm(X), let [X]v be
some process that can be reached from X via a sequence of u norm-reducing
transitions. (Note that some norm-reducing transition is available to every pro-
cess.)

L e m m a 44 The base 13o = ~ (Y, X[Y]norm(X)) " X ~ Y E V and X < Y ~ is
]

full.

P r o o f Suppose Y ,~ X/~ with X _< Y, and let v = norm(X); then (Y, X[Y]v) E

B0 for some [Y]~ such that Y ' > [Y]v in v norm-reducing steps, where s E A V.
But the norm-reducing sequence Y ' ~ [Y]~ can only be matched by X/~ ' ~/3.
Hence [Y]~ -~/?, and B0 must be full. []

The basic structure of our procedure for deciding bisimilarity between normed
processes a and/3 is now clear: simply iterate the refinement procedure B :=
from the initial base B = B0 until it stabilises at the desired base B, and then
test a -=t3/3. By the preceding four lemmas, this test is equivalent to a ,,~/3.

So far, we have not been specific about which process [X]v is to be selected
among those reachable from X via a sequence of u norm-reducing transitions.
A suitable choice is provided by the following recursive definition. For each
variable X E V, let a x E V* be some process reachable from X by a single
norm-reducing transition X " ~ a x . Then,

-

{ [/~]p-norm(X), if p_> norm(X);
[Xfl]p = [c~x]p_l/3, if p < norm(X).

133

L e m m a 45 With this definition for [.]~, the base Bo introduced in Lemma ,t4
may be explicitly constructed in polynomial time; in particular, every pair in Bo
has a compact representation as an element of V • V*.

P r o o f It is easily checked that the natural recursive algorithm based on the
definition is polynomial-time bounded. O

We have already observed that B0 contains O(n 2) pairs, so the refinement
procedure is i terated at most O(n 2) times. It remains to define the relation =n

and show that it may be computed in polynomial time. Once this has been
done, it is clear that the entire decision procedure runs in polynomial time.

T h e o r e m 46 There is a polynomial-time (in the lengths of the words a and fl,
and the size of the defining grammar) procedure for deciding bisimilarity of two
normed context-free processes a and ft.

Recall that the only condition we impose on the relation -t3 is that it
B

satisfies the inclusions -~ C ---B _ -= whenever B is full. This flexibility in the

specification of ---s is crucial to us, and it is only by carefully exploiting this
flexibility that a polynomial-time decision procedure for =-B can be achieved.
The definition and computation of --~ is the subject of the following section.

4 . 1 . 1 A l g o r i t h m i c c o n c e r n s

Central to the definition of the relation ---B is the idea of a decomposing func-
tion. A function g : V ---+ V* is a decomposing function of order q if either
g(X) = X or g(X) = X1X2 . . .Xp with 1 < p < q and Xi < X for each
1 < i < p. Such a function g can be extended to the domain V* in the obvious

fashion by defining g(e) = e and g(Xa) = g(X)g(c~). We then define g*(~) for
E V* to be the limit of gt(~) as t --* ~ ; owing to the restricted form of g we

know that it must be eventually idempotent, that is, that this limit must exist.
The notation g[X ~-+ a] will be used to denote the function that agrees with g
at all points in V except X, where its value is a.

The definition of the relation --B may now be given. For base B and de-
composing function g, the relation a =~/? . i s defined b y the following decision
procedure:

�9 if g*(c~) = g*(fl) then the result is true;

�9 otherwise let X and Y (with X < Y) be the leftmost mismatching pair of
symbols in the words g*(c~) and g*(fl);

- if (Y, XT) �9 B then the result is given by a - ~ fl, where 9 = g[Y ~-+
xT];

134

- otherwise the result is false.

Finally, let --=t~ be _--~d where Id is the identity function.

L e m m a 47 - 6 C --- and ,,~ C -t~ whenever B is full.

P r o o f The first inclusion is easily confirmed , since for any g constructed by the
B

algorithm for computing --B , it is the case that X =_ g (X) for each X E V.
For the second inclusion, suppose that a ,~ /3 and at some point in our

procedure for deciding a --t~ fl we have that g* (a) # g* (fl), and that we have
only ever updated g with mappings X ~ 7 satisfying X -,~ 7. Let X and Y
(with X < Y) be the leftmost mismatching pair. Then Y ,~ X7 must hold

for some 7, and so, by fullness, (Y, XT) E B for some 7 with Y ,,* XT. So the
procedure does not terminate with a false result, but instead updates g with this
new semantically sound mapping and continues. []

Finally, we are left with the problem of deciding g*(a) = g*(/3), all other
elements in the definition of ---t~ being algorithmically undemanding. Note
that the words g*(a) and g*(/3) will in general be of exponential (in n) length,
so we cannot afford to compute them explicitly.

We shall begin by assuming that the function g is of order 2, that is, maps
a single variable to at most two variables; this simplification may be achieved
using a standard polynomial-time reduction to Chomsky normal form. In the
sequel, let n denote the total number of variables after this reduction to what
is essentially Chomsky normal form, and let V refer to this extended set of
variables. We say that the positive integer r is a period of the word a E V* if
1 < r < length(a), and the symbol at position p in a is equal to the symbol at

position p + r in a , for all p in the range 1 < p < length(a) - r. Our argument
will be easier to follow if the following lemma is borne in mind; we state it in
the form given by Knuth, Morris and Prat t .

L e m m a 48 I f r and s are periods of a E Y* , and r + s < length(a) + gcd(r, s),
then gcd(r, s) is a period of a.

P r o o f See [43, Lemma 1]; alternatively the lemma is easily proved from first
principles. []

For a, fl E V*, we shall use the phrase alignment of a against/3 to refer to a
particular occurrence of a as a subword of/3. Note that if two alignments of a
against/3 overlap, and one alignment is obtained from the other by translating
a through r positions, then r is a period of a. Suppose X,]I, Z E V, and let
a = g*(X) , /3 = g*(Y) , and 7 = g*(Z) . Our strategy is to determine, for all
triples X, Y, and Z, the set of alignments of a against/37 that include the first

135

I ~ = g * (X) I
I I

fl = g*(Y) t 7 - - g*(Z)

First symbol of 7, and ith of

Figure 1: A alignment of ~ that spans ~ and 7

symbol of 7 (see Figure 1). Such alignments, which we call spanning, may be
specified by giving the index i of the symbol in a that is matched against the
first symbol in 7. It happens that the sequence of all indices i that correspond
to valid alignments forms an arithmetic progression. This fact opens the way
to computing all alignments by dynamic programming: first with the smallest
variable X and Y, Z ranging over V, then with the next smallest X and]I, Z
ranging over V, and so on.

L e m m a 49 Let a, 6 E V* be words, and I be the set of all indices i such that
there exists an alignment of (~ against 6 in which the ith symbol in a is matched
to a distinguished symbol in 6. Then the elements of I form an arithmetic
progression.

P r o o f Assume that there are at least three alignments, otherwise there is
nothing to prove. Consider the leftmost, next-to-leftmost, and rightmost possible
alignments of c~ against 6. Suppose the next-to-leftmost alignment is obtained
from the leftmost by translating c~ though r positions, and the rightmost from

the next-to-leftmost by translating a through s positions. Since r and s satisfy
the condition of Lemma 48, we know that gcd(r, s) is a period of (~; indeed, since
there are by definition no alignments between the leftmost and next-to-leftmost,
it must be the case that r -- gcd(r, s), i.e., that s is a multiple of r. Again by
Lemma 48, any alignment other than the three so far considered must also have
the property that its offset from the next-to-leftmost is a multiple of r. Thus
the set of all alignments of c~ against 6 can be obtained by stepping from the
leftmost to the rightmost in steps of r.

This completes the proof, but it is worth observing for future reference, that
in the case that there are at least three alignments of c~ against 6 containing
the distinguished symbol, then c~ must be periodic, i.e., expressible in the form

= eka, where k >_ 2 and cr is a (possibly empty) strict initial segment of e.
D

In the course of applying the dynamic programming technique to the problem
at hand, it is necessary to consider not only spanning alignments of the form

illustrated in Figure 1, but also inclusive alignments: those in which a = g* (X)
appears as a subword of a single word fl = g* (Y). Fortunately, alignments of
this kind are easy to deduce, once we have computed the spanning alignments.

136

O/
I I

I ~

Figure 2: Trapping an alignment

L e m m a 50 Suppose spanning alignments of o~ = g*(X) against 7 -- g*(Z) and
7 ~ = g*(Z ~) have been pre-computed for a particular X and all Z, Z ~ E V. Then
it is possible, in polynomial time, to compute, for any Y and any distinguished
position p in 13 = g* (Y) , all alignments of (~ against ~ that include p.

P r o o f Consider the sequence

{ g. (.:0)) },

{ g. },
{ g. (y:2)), g. }, :

of partitions of fl = g*(Y), obtMned by the following procedure. InitiMly, s e t
y(0) = y . Then, for i > 1, suppose that g.(yj(i-1)) is the block of the (i - 1)th

partition that contains the distinguished position p, and let Z = y (i -D be
the symbol generating that block. Let the ith partition be obtained from the
(i - 1)th by splitting that block into two- -g*(Z ') and g*(Z")--where where
g(Z) = Z 'Z" . The procedure terminates when g(Z) = Z, a condition which is
bound to hold within at most n steps. Observe that, aside from in the trivial
case when length(a) -- 1, any alignment of c~ containing position p will be at
some stage "trapped," so that the particular occurrence of the subword a in fl
is contained in g*(Yj(i))g*(Yj(+)), but not in g. (yj(0) or g* (Yj(+))separately (see
Figure 2).

For each such situation, we may compute the alignments that contain posi-
tion p. (By Lemma 49, these form an arithmetic progression.) Each Mignment of

that includes p is trapped at least once by the partition refinement procedure.
�9 The required result is the union of at most n arithmetic progressions, one for
each step of the refinement procedure. Lemma 49 guarantees that the union of
these arithmetic progressions will itself be an arithmetic progression. Thus the
result may easily be computed in time O(n) by keeping track of the leftmost,
next-to-leftmost, and rightmost points. []

The necessary machinery is now in place, and it only remains to show how
spanning alignments of the form depicted in Figure 1 may be computed by

137

" = g ' i x) "
I I I [It- [3'=r

= r p • r

Figure 3: Dynamic programming: inductive step

o~ ! og I!
I I I

I
z t

I
"T

f f P

Figure 4: Dynamic programming: the leftmost alignment

dynamic programming, with X ranging in sequence from the smallest variable
up to -the largest.

If g(X) = X, the task is trivial, so suppose g(X) = X ' X ' . The function g
induces a natural partition of d = g*(X) into a ' = g*(X') and a " = g*(X");
suppose it is a " that includes p, the first symbol in 3' (see Figure 3.) We need to
discover the valid alignments of cd against fl, and conjoin these with the span-
ning al ignments-- that we assume have already been computed--of a " against

fl and 3'.
Consider the leftmost valid alignment of a " and let p' be the position imme-

diately to the left of cr Figure 4). We distinguish two kinds of alignments
f o r o~ = o~1or t l .

CASE I. The alignment of a ' against ~3' includes position p'. These alignments
can be viewed as conjunctions of spanning alignments of a " (which are precom-
puted) with inclusive alignments of a ' (which can be computed on demand using
Lemma 50). The valid alignments in this case are thus an intersection of two
arithmetic progressions, which is again an arithmetic progression.

CASE II. The alignment of c~' against f13' does not includes position p', i.e., ties
entirely to the right ofp ' . If there are just one or two spanning alignments of a "
against ~ and % then we simply check exhaustively, using Lemma 50, which, if
any, extend to alignments of c~ against/~3'. Otherwise, we know that a " has the
form p%r with k > 2, and ~ a strict initial segment of p; choose p to minimise
length(e). A match of a " will extend to a match of a only if c / = cr'p m, where
or' is a strict final segment of e. (Informally, a ' is a smooth continuation of the
periodic word a " to the left. Thus either every alignment of c~" extends to one
of a = a%" , or none does, and it is easy to determine which is the case. As in
Case I, the result is an arithmetic progression.

The above arguments were all for the situation in which it is the word a "

138

that contains p; the other situation is covered by two symmetric cases--Case I ~
and Case II~--which are as above, but with the roles of a I and a" reversed. To
complete the inductive step of the dynamic programming algorithm, it is only
necessary to take the union of the arithmetic progressions furnished by Cases I,
II, I ~, and II~: this is straightforward, as the result is known to be an arithmetic
progression by Lemma 49.

At the completion of the dynamic programming procedure, we have gained
enough information to check arbitrary alignments, both spanning and inclusive,
in polynomial time. From there it is a short step to the promised result.

Lemma 51 There is a polynomial-time (in the lengths of o~ and/3, and the size
of the description of g) algorithm for the problem of deciding g*(~) = g*(fl) for
arbitrary o~,~ E V*. In the case that g*(o~) r g*(fl), the algorithm returns the
leftmost position at which there is a mismatch.

P r o o f Let ~ =]I1112...]I,. Apply the partition refinement procedure used in
the proof of Lemma 50 to the word c~ to obtain a word c~ I = X1X2 . . .Xr with
the property that each putative alignment of g*(Xi) against the corresponding
g*(Yj) or g*(Yj)g*(Yj+l) is either inclusive or spanning. This step extends
the length of a by at most an additive term length(~)n. Now test each Xi
either directly, using the precomputed spanning alignments, or indirectly, using
Lemma 50. In the case that g*(a) • g*(~), determine the leftmost symbol Xi
such that g*(X~) contains a mismatch. If g(Xi) = X~ we are done. Otherwise,
let g*(X~) = ZZ', and test whether g*(Z) contains a mismatch: if it does,
reeursively determine the leftmost mismatch in g*(Z); otherwise determine the
leftmost mismatch in g* (ZI).

During the dynamic programming phase, there are O(n 3) subresults to be
computed (one for each triple X, Y, Z E V), each requiring time O(n); thus
the time-complexity of this phase is O(n4). Refining the input a to obtain
cd, and checking alignments of individual symbols of cd takes further time
O(n 2 length(~fl)). The overall time complexity of a naive implementation is
therefore O(n 4 + n 2 length(c~fl)). []

4.1.2 S imple context - free grammars

Recall that a simple grammar is a context-free grammar in Greibach normal form
such that for any pair (X, a) consisting of a variable X and terminal a, there is
at most one production of the form X :-* ac~. The decision procedure given by
Korenjak and Hopcroft [44] for deciding language equivalence between simple
grammars is doubly exponential; this time complexity was recently improved
improved by Caucal [11] to be singly exponential. Hence this result represents

139

the first polynomial algorithm for the (language) equivalence problem for simple

grammars.

T h e o r e m 52 There is a polynomial-time algorithm for deciding equivalence of
simple grammars

P r o o f To obtain a polynomial-time decision procedure for deciding language
equivalence of simple context-free grammars, we merely recall from Corollary 10
and Lemma 12 that in the case of normed simple grammars, language equiva-
lence and bisimulation equivalence coincide. We can restrict attention to normed
grammars, as any unnormed grammar can be transformed into a language-
equivalent normed grammar by removing productions containing unnormed non-
terminals. (Note that this transformation does not preserve bisimulation equiva-
lence, which makes it inapplicable for reducing the unnormed case to the n o r m e d
case in checking bisimilarity.) Thus language equivalence of simple grammars

may be checked in polynomial time b y the procedure presented in the previous
two sections. []

4 . 2 C o n c u r r e n t C o n t e x t - F r e e P r o c e s s e s

To demonstrate that we can decide bisimilarity between concurrent context-free
processes in polynomial time, we require a vastly different technique than that
used for the sequential case; nonetheless the technique still relies completely on
the unique factorisation property.

To start off, we assume without loss of generality that the variables are
given in order of non-decreasing norm, so that norm(X1) < norm(X~) < . . . <
norm(Xn). Define the size of monomial a E V* to be the sum of the lengths of
the binary encodings of the various exponents appearing in the monomial; the

size of a production X a, fl to be the length of the triple (X, a, fl), encoded in
binary; and the size of a context-free grammar G to be the sum of the sizes of
all the productions contained within it. Our aim is to prove the following.

T h e o r e m 53 Suppose the set V* of processes is defined by a normed, context-
free grammar G in Greibach normal form. There is a polynomial-time (in the
size of ~, /3, and G) algorithm tO decide (~ ~ /3 for arbitrary (~,/3 E V*.

To prepare for the description of the algorithm and the proof of the theorem,
we require some definitions and a few preparatory lemmas. To ensure a smooth

development, the proofs of the lemmas are deferred to the end of the section.
Suppose T~ is any relation on V*. We say that a pair (c~,/3) E V* x V*

satisfies (norm-reducing) expansion in TI if

* if c~ a) a~ is a norm-reducing transition then/3 a ~ /3~ for some/3~ with
c~ 17r

140

and

�9 if ~ ~ ~/3' is a norm-reducing transition then a a ~ a ' for some a ' with
a ' T~ ~'.

Observe that a relation T~ is a bisimulation if every pair (a,/3) E T~ satisfies
expansion in ~. Observe also that if ~ is an equivalence relation (respectively,
congruence) then the relation "satisfies (norm-reducing) expansion in 7~" is an
equivalence relation (respectively, congruence).

Define a unique decomposition base, ~P, to be a pair (II, F), where II =

II(7:)) = { P 1 , . . . , P r } _C V is a set of primes, and F = F(:D) is a set of pairs
(X, p~l . . . pr~r), one for each non-prime elementary process X E V - II. The
set F may be viewed as specifying, for each non-prime process X, a decompo-
sition of X into primes.* A unique decomposition base defines an equivalence
relation --79 on V*: the relation (~ = v / 3 holds between c~,/3 E V* if the prime
decompositions of c~ and/3 are equal (as monomials).

L e m m a 54 Let :D be a unique decomposition base. Then:

(i) the equivalence relation =-79 is a congruence with cancellation, t which
79

coincides with =-, the smallest congruence containing F(T));

(ii) there is a polynomial-time (in the size of o~ and/3) algorithm to decide

o~ =_79 ~ for arbitrary c~,/3 E V* ;

(iii) the relation =_79 is a bisimulation provided every pair in F(:D) satisfies
expansion within =-79 ; this condition may be checked by a polynomial-time

algorithm;

(iv) the maximal bisimulation ,~ coincides with the congruence =-79 , where :D

represents the unique decomposition in ,,,.

The next lemma allows us to shrink a congruence, defined by a unique de-
composition base, whenever it is strictly larger than the maximal bisimulation.

L e m m a 55 Let 7) be a unique decomposition base such that the congruence =-79
is norm-preserving and strictly contains the maximal bisimulation ,.~. Then it

is possible, in polynomial time, to find (a representation of) a relation - on V*
such that:

(i) the relation c~ - / 3 is decidable in polynomial time (in the sum of the sizes

of ~ and/3);

*These "pr imes" axe no t in general the pr imes wi th respec t to the m a x i m a l bis imulat ion,
which were tile sub jec t of Theorem 19.

tThus , in add i t ion to sat isfying the condi t ions of a congruence , - - ~ has t he p rope r ty tha t
c~ _--v t3 whenever c~"/-l~ ~lY.

141

(ii) the relation - is a congruence;

(iii) there is a variable X E V that is decomposable in - v but not in - ;

(iv) the inclusions ,,~ C_ - C - - v hold.

The final lemma allows us to "smooth out" an unmanageable congruence
into a congruence defined by a unique decomposition base.

L e m m a 56 Let ~ be a norm-preserving, po lynomial - t ime computable congru-

ence sat is fying ~ C_ =_-, where N deno te s 'max ima l bisimulation. Then there is a

decomposit ion base 2), computable in polynomial t ime, such that ,,~ c_ - 9 c_ - .

With the three preceding lemmas in place, the procedure for deciding bisim-
ulation equivalence writes itself; in outline it goes as follows.

(1) Let the congruence =- be defined by c~ -- ~ iff norm(a) = norm(fl).

(2) Compute a decomposition base 7) with ,~ C -=9 _C - , using Lemma 56.

(3) If -----9 is a bisimulat ion--a condition that can be checked in polynomial
t ime using Lemma 54-- then halt and return the relation - 9 �9

(4) Compute a congruence - satisfying ,-~ C_ - C --9 , using Lemma 55. Go
to step 2.

The proof of the main result is virtually immediate.
P r o o f o f T h e o r e m 53 On each iteration of the loop formed by lines (2)-(4),
the number of primes increases by at least one. Thus the number of iterations
is bounded by n, and each iteration requires only polynomial t ime by the three
preceding lemmas. []

We complete the section by providing the missing proofs of the various lem-
m a s .

P r o o f o f L e m m a 54

(i) It is easy to check that -z) is a congruence with cancellation contain-

ing F(/)); thus - v certainly includes - , the smallest congruence con-

taining F(O). On the other hand, if a - v fl, then fl can be obtained from
a via a finite sequence of substitutions chosen from F(O), and the reverse
inclusion holds.

(ii) The algorithm may be modelled directly on the definition of - v .

(iii) Suppose a ~ v fl and let c~ =~ p ~ l . . . p a r =V fl be the common prime
decomposition of c~ and ft. By assumption, the pairs (c~, p~l , . . p ~) and
(fl, p~l . . . prar) both satisfy expansion in - z~ , and so then does the pair
(a, fl), by transitivity of the relation "satisfies expansion in --~ ."

142

(iv) This part follows from Theorem 19.

This concludes the proof of the lemma. [:3

P r o o f o f L e m m a 55 Define the relation = as follows: for all c,,/3 E V*, the re-
lationship a = /3 holds iff a - -~/3 and the pair (a,/3) satisfies expansion in --~9 �9
We must demonstrate that - satisfies conditions (i)-(iv) in the statement of the
lemma.

i The relationship a = fl is clearly decidable in polynomial time: an algo-
r i thm follows directly from the definition of - .

ii The relation = is the intersection of two congruences, and hence itself a
congruence.

iii If the 'congruence - v is not a bisimulation then, by Lemma 54, there is
a first (non-prime) variable X such that the pair (Z, P ~ . . . P T ") E F(:D)

does not satisfy expansion in -=v �9 We show that X is indecomposable
with respect to the relation =.

Suppose to the contrary that X is decomposable, that is to say, X = a E
V*, where a contains only variables smaller than X. By definition of =,
the pair (X, a) satisfies expansion in = v , and X =z~ a =~ P ~ . . . P~ ' .
By minimality of X, for every non-prime variable Y occurring in a, the

pair (Y,P~'...P~') e F(:D) satisfies expansion in ----v. Thus the pair
(a, P ~ . . . PrX~), and by transitivity the pair (X, p~x . . . p [,) , satisfies ex-
pansion in = v , contradicting the choice of X.

iv It is clear that the relation = is contained in = v �9 On the other hand, if
a ,-, fl then the pair (a,/3) satisfies expansion in --, and hence in -=v ; it
follows that a =/3.

This concludes the proof of the lemma. []

P r o o f o f L e m m a 56 As before, assume that variables are in order of non-
decreasing norm. Given a congruence = __D -~ on V* we define, by induc-
tion, a unique decomposition base :P~ for {X1 , . . . , X~}*, with primes 1I(2)) =
{P1 , . . . , P~}, such that:

* the inclusion =v i C_ = holds on the set { X 1 , . . . , Xi}*;

* i fX j =z,i p~l . . . p : ~ is the decomposition of Xj , for some j < i, then the
pair (Xj, P ~ ' . . . P [,) satisfies norm-reducing expansion in =z,, ;

143

�9 if Xj ,,, Q ~ ' . . . Q~' is the prime decomposition of Xj with respect to ,~,
for some j < i, then Xj --~i Q~I . . . Q~,~ ;~

�9 if P ~ : . . . p i t = p ~ l . . , pflr and the pair (p [1 . . . p f r , p~x . . , pfl,) satisfies
norm-reducing expansion in =z~,, then (x : , . . . , xr) = (Yl , . - . , Yr).

Assume that there exists a unique decomposition base :Di for { X : , . . . , Xi}* that
satisfies these properties. We wish to demonstrate that :Di may be extended to a
unique decomposition base Di+l for {X1 , . . . , Xi+:}* Mso satisfying conditions
(a)-(d) above; this involves finding, in polynomial time, a consistent decompo-
sition for the variable Xi+l.

The extension of the unique decomposition base is achieved as follows. By
condition (d) we know that there is at most one product P ~ ' . . . P~" of primes
of /9i such that Xi+: ==- P[~... P[" and such that the pair (Xi+:, P~ ' . . . P[~)
satisfies norm-reducing expansions in - - ~ . If there is such a product, it is
declared as the decomposition of Xi+:; otherwise Xi+: is declared to be prime.
It is clear that conditions (a) and (b) continue to hold.

To show (c), assume that Xi+: "~ Q ~ . . , Q ~ is the prime decomposition
of Xi+: with respect to the maximal bisimulation ,,,. Note that if Xi+: is prime
with respect to ,,, then there is nothing to prove, so we may assume the decom-
position is non-trivial. Let Q1 =9~ c~1, . . . , Qt =9~ c~t be the prime decompo-
sitions of Q:, �9 �9 ., Q,t with respect to --9,. Then Xi+: -- c~ : . .. at~t, where, it.
will be observed, the right-hand side is a product of primes with respect to -9~ .
The pairs (Qj, a j) satisfy norm-reducing expansion in --9,, by condition (b),
and the pair Xi+: " Q~'... Q~' satisfies norm-reducing expansions in -z~,, b y
virtue of Xi+: and Q ~ . . . Q ~ being bisimilar; it follows by transitivity that the
pair (Xi+l, c~ ' .. �9 a~") also satisfies norm:reducing expansion in --9,- Thus, by
the uniqueness condition (d), Xi+: ----9,+1 c~' . . . a~ ' must be the chosen prime
decomposition of Xi+l with respect to --z~,+a.

To show (d), assume to the contrary that II(:Di+:) = { P : , . . . , Pr} is the set
of primes with respect to =9 ,+ , , and that the pair (c~, fl), where a = p~l . . . par
and fl = P (~ . . . P ~ ' , is a counterexample to condition (d): that is, c~ - /?,
(a : , . . . , a~) 5~ (b : , . . . , br), and the pair (a, fl) satisfies norm-reducing expansions
in --9~+1. We demonstrate that this assumption leads to a contradiction.

Let j be the largest index such that aj ~ bj, and assume, without loss of
generality, that aj > bj. We distinguish three cases:

CASE I. If ak > 0 for some k < j , then let a perform some norm-reducing
transition via process Pk. Process/3 cannot match this transition, since it
cannot increase the exponent bj without decreasing some exponent t o t h e
right of bj.

~Again, note tha t Q 1 , . . . , Qt, al though primes with respect to ,,~, are not in general primes
with respect to ---~i"

144

CASE II. Ifak > O for some k > j , then let c~ perform a norm-reducing transition
via process Pk that maximises the increase in the exponent aj. Again the
process fl is unable to match this transition.

CASE]II. The monomial ~ = pjaj is a power of a prime with respect to - ~ + 1 .
Note that bk = 0 for all k > j by choice of j , and aj > 2, otherwise, Pj
would not be prime with respect t o /) i+1 . If bj > 0, let/3 perform a norm-
reducing transition via Pj; this transition cannot be matched by c~, since
it would require the exponent aj to decrease by at least two. Finally, if
bj = 0, then let (r perform a norm-reducing transition via Pj; this transition

cannot be matched by/3, since/3 is unable to increase the exponent bj.

This completes the inductive step.
It only remains to show that the extension of ~Di to :D~+I may be computed

in polynomial time. We need to investigate the possibility that Xi+l may be

expressed as Xi+l =- P ~ . . .Pr ~ where the pair (Xi+I,P~ ~ . . . P f ') satisfies
norm-reducing expansion in =-v~. Recall that effecting the transition X a)/3
may be viewed as multiplication by /3 /X; thus the transition a a)/3 may occur
precisely if of ~ = c~/3/X is a monomial (i.e., the exponent of X is non-negative),
in which case a~ is the resulting process.

Now choose any norm-reducing transition Xi+l a) ~ E { X 1 , . . . , Xi}*, and
let c~ - V , P~a �9 �9 �9 par be the prime decomposition of c~. If this transition is to be
matched by/3 = p~l . . . prz~ then (r//3 must be one of a finite set of possibilities,
one for each production in G. Thus there are only as many possibilities for the

process/3 as there are productions in G; for each possibility it is easy to check

whether (i) Xi+l - P;" . . . P f ' , and (ii) the pair (X i + I , P ~ I . . . P f ') satisfies
norm-preserving expansion in -v~ . Thus the extension of :Di to :Di+l may
indeed be computed in polynomial time. [2

R e f e r e n c e s

[1]

[2]

[3]

P. Aczel. Non-well-founded Sets. CSLI Lecture Notes 14, Stanford Univer-
sity, 1988.

J.C.M. Baeten, J.A. Bergstra and J.W. Klop. Decidability of bisimulation
equivalence for processes generating context-free languages. Journal of the
ACM 40, pp653-682, 1993.

Y. Bar-Hillel, M. Perles and E. Shamir. On formal properties of simple
phrase structure grammars. Zeitschrifl fiir Phonetik, Sprachwissenschafl,
und Kommunikationsforschung 14, pp143-177, 1961.

[4]

[5]

[6]

[7]

145

J.A. Bergstra and J.W. Klop. Algebra of Communicating Processes with
Abstraction. Theoretical Computer Science 37, pp77-121, 1985.

G. Boudol. Notes on algebraic calculi of processes. In K. Apt (ed), Logics
and Models of Concurrent Systems, NATO ASI Series f13, 1985.

J.C. Bradfield. Verifying Temporal Properties of Systems. Birkh/iuser, 1991.

E. Brinksma. Information Processing Systems - Open Systems Interconnec-
tion - LOTOS - A formal description technique based upon the temporal
ordering of observable behaviouL Draft International Standard ISO8807,
1988.

[8] S.D. Brookes, C.A.R. Hoare and A.W. Roscoe. A theory of Communicating
Sequential Processes. Journal of the ACM 31, pp560-599, 1984.

[9] O. Burkart and B. Steffen. Model checking for context-free processes. In
Proceedings of CONCUR 92, W.R. Cleaveland (ed), Lecture Notes in Com-
puter Science 630, pp123-137. Springer-Verlag, 1992.

[10] D. Caucal. Graphes canoniques des graphes alg~briques. Informatique
Thdorique el Applications (RAIRO) 24(4), pp339-352, 1990.

[11] D. Caucal. A fast algorithm to decide on the equivalence of stateless DPDA.
Informatique Thdorique et Applications (RAIRO) 27(1), pp23-48, 1993.

[12] S. Christensen. Decidability and Decomposition in Process Algebras.
Ph.D. Thesis ECS-LFCS-93-278, Department of Computer Science, Uni-
versity of Edinburgh, 1993.

[13] S. Christensen. Distributed bisimilarity is decidable for a class of infinite-
state processes. In Proceedings of CONCUR 92, W.R. Cleaveland (ed),
Lecture Notes in Computer Science 630, pp148-161. Springer-Verlag, 1992.

[14] S. Christensen, Y. Itirshfeld and F. Moller. Decomposability, decidability
and axiomatisability for bisimulation equivalence on basic parallel processes.
In Proceedings of LICS93. IEEE Computer Society Press, 1993.

[15] S. Christensen, Y. Hirshfeld and F. Moller. Bisimulation equivalence is de-
cidable for basic parallel processes. In proceedings of CONCUR93, E. Best
(ed), Lecture Notes in Computer Science 715, pp143-157, Springer-Verlag,
1993.

[16] S. Christensen, Y. Hirshfeld and F. Moller. Decidable subsets of CCS. The
Computer Journal 37(4), pp233-242, 1994.

146

[17] S. Christensen and H. Hiittel. Decidability issues for infinite-state processes
- a survey. Bulletin of the EATCS 51, pp156-166, October 1993.

[18] S. Christensen, H. Hiittel and C. Stifling. Bisimulation equivalence is
decidable for all context-free processes. In Proceedings of CONCUR 92,
W.R. Cleaveland (ed), Lecture Notes in Computer Science 630, pp138-147.
Springer-Verlag, 1992.

[19] J. Esparza and M. Nielsen. Decidability issues for Petri nets - a survey.
Bulletin of the EATCS 52, pp245-262, February 1994.

[20] E.P. Friedman. The inclusion problem for simple languages. Theoretical
Computer Science 1, pp297-316, 1976.

[21] R.J. van Glabbeek. The linear time-branching time spectrum. In Proceed-
ings of CONCUR 90, J. Baeten, J.W. Klop (eds), Lecture Notes in Computer
Science 458, pp278-297. Springer-Verlag, 1990.

[22] J.F. Groote. A short proof of the decidability of bisimulation for normed
BPA processes. Information Processing Letters 42, pp167-171, 1991.

[23] J.F. Groote and H. Hiittel. Undecidable equivalences for basic process al-
gebra. Information and Computation, 1994.

[24] J.F. Groote and F. Moller. Verification of parallel systems via decomposi-
tion. In Proceedings of CONCUR 92, W.R. Cleaveland (ed), Lecture Notes
in Computer Science 630, pp62-76. Springer-Verlag, 1992.

[25] Y. Hirshfeld. Petri Nets and the Equivalence Problem. In Proceedings of
CSL'93, K. Meinke (ed), Lecture Notes in Computer Science Springer-
Verlag, 1994.

[26] Y. Hirshfeld. Deciding equivalences in simple process algebras. In Proceed-
ings of a 3-day Workshop on Bisimulation, Amsterdam, April, 1994.

[27] Y. I'Iirshfeld, M. Jerrum and F. Moller, A polynomial algorithm for decid-
ing bisimilarity of normed context-free processes. Submitted to Theoretical
Computer Science, 1994.

[28] Y. Hirshfeld, M. Jerrum and F. Moiler, A polynomial algorithm for deciding
bisimulation equivalence of normed basic parallel processes. Submitted to
Mathematical Structures in Computer Science, 1994.

[29] Y. Hirshfeld and F. Moller. A fast algorithm for deciding bisimilarity of
normed context-free processes. In Proceedings of CONCUR'94, J. Parrow
(ed), Lecture Notes in Computer Science. Springer-Verlag, 1994.

147

[30] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1989.

[31] C.A.R. Hoare. Communicating Sequential Processes. Communications of
the ACM 21, pp666-677, 1978.

[32] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1988.

[33] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison Wesley, 1979.

[34] It. Hfittel. Decidability, Behavioural Equivalences and Infinite Transition
Graphs. Ph.D. Thesis ECS-LFCS-91-191, Department of Computer Science,
University of Edinburgh, 1991.

[35] H. Hfittel. Undecidable equivalences for basic parallel processes. In Proceed-
ings of FSTTCS'93, 1993.

[36] H. Hfittel and C. Stirling. Actions speak louder than words: proving bisimi-
larity for context-free processes. In Proceedings of LICS'91, IEEE Computer
Society Press, pp376-386, 1991.

[37] D.T. Huynh and L. Tian. On deciding readiness and failure equivalences
for processes. Technical report UTDCS-31-90, Department of Computer
Science, University of Texas at Dallas, September 1990.

[38] D.T. Huynh and L. Tian. Deciding bisimilarity of normed context-free pro-
cesses is in ~P. Theoretical Computer Science 123, pp183-197, 1994.

[39] D.T. Huynh and L. Tian. On deciding some equivalences for concurrent
processes. Informatique Th orique et Applications (RAIRO) 28(1), pp51-
71, 1994.

[40] P. JanSar. Decidability questions for bisimilarity of Petri nets and some
related problems. In Proceedings of STACS'94, P. Enjalbert, E.W. Mayr
and K.W. Wagner (eds), Lecture Notes in Computer Science 775, pp581-
592, Springer-Verlag, 1994.

[41] P.C. Kanellakis and S.A. Smolka. CCS expressions, finite-state processes
and three problems of equivalence. Information and Computation (86),
pp43-68, 1990.

[42] S.C. Kleene. Representation of events in nerve nets and finite automata. In
Automata Studies, pp3-42, Princeton University Press, Princeton, 1956

[43] D.E. Knuth, J.H. Morris, and V.R. Pratt, Fast pattern matching in strings,
SIAM Journal on Computing 6, pp323-350, 1977.

148

[44] A. Korenjak and J. Hopcroft. Simple deterministic languages. In Proceed-
ings of 7th IEEE Switching and Automata Theory conference, pp36-46,
1966.

[45] W.S. McCullock and W. Pitts A logical calculus of the ideas immanent in
nervous activity. Bull Math Biophysics 5, pp115-133, 1943.

[46] R. Milner. Processes: a mathematical model of computing agents. In Pro-
ceedings of Logic Colloquium'73, Rose and Shepherdson (eds), pp157-174,
North Holland, 1973.

[47] R. Milner. A Calculus of Communicating Systems. Lecture Notes in Com-
puter Science 92, Springer-Verlag, 1980.

[48] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[49] R. Milner and F. Moller.. Unique decomposition of processes. Theoretical
Computer Science 107, pp357-363, 1993.

[50] E.F. Moore. Gedanken experiments on sequential machines. In Automata
Studies, pp129-153, Princeton University Press, Princeton, 1956

[51] D. Muller and P. Schupp. The theory of ends, pushdown automata and
second order logic. Theoretical Computer Science 37, pp51-75, 1985.

[52] R. Paige and R.E. Tarjan. Three partition refinement algorithms. SIAM
Journal on Computing 16, pp937-989, 1987.

[53] D.M.R. Park. Concurrency and Automata on Infinite Sequences. Lecture
Notes in Computer Science 104, pp168-183, Springer Verlag, 1981.

[54] W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical
Computer Science, Springer-Verlag, 1985.

[55] L.J. Stockmeyer. The polynomial time hierarchy. Theoretical Computer Sci-
ence 3, ppl-22, 1977.

