Skip to main content

Modal and temporal logics for processes

  • Chapter
  • First Online:
Logics for Concurrency

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1043))

  • 348 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramsky, S., (1995). Interaction categories, This Volume.

    Google Scholar 

  2. Andersen, H., and Winskel, G. (1992). Compositional checking of satisfaction. Formal Methods in System Design, 1.

    Google Scholar 

  3. Andersen, H., Stirling, C., and Winskel, G. (1994). A compositional proof system for the modal mu-calculus. Procs 9th IEEE Symposium on Logic in Computer Science, 144–153.

    Google Scholar 

  4. Austry, D., and Boudol, G. (1984). Algebra de processus et synchronisation. Theoretical Computer Science, 30, 90–131.

    Article  Google Scholar 

  5. Baeten, J., Bergstra, J., and Klop, J. (1987). Decidability of bisimulation equivalence for processes generating context-free languages. Lecture Notes in Computer Science, 259, 94–113.

    Google Scholar 

  6. Baeten, J, and Weijland, W. (1990). Process Algebra. Cambridge University Press.

    Google Scholar 

  7. Baeten, J., Bergstra, J., Hoare, C., Milner, R., Parrow, J., and de Simone, R. (1992). The variety of process algebra. Manuscript.

    Google Scholar 

  8. De Bakker, J. (1980). Mathematical Theory of Program Correctness, Prentice-Hall.

    Google Scholar 

  9. De Bakker, J., and De Roever, W. (1973). A calculus for recursive program schemes. In Automata, Languages and Programming, ed. Nivat, M. 167–196, North-Holland.

    Google Scholar 

  10. Bernholtz, O., Vardi, M. and Wolper, P. (1994). An automata-theoretic approach to branching-time model checking. Lecture Notes in Computer Science, 818, 142–155.

    Google Scholar 

  11. Bergstra, J. and Klop, J. (1989). Process theory based on bisimulation semantics. Lecture Notes in Computer Science, 354, 50–122.

    Google Scholar 

  12. van Benthem, J. (1984). Correspondence theory. In Handbook of Philosophical Logic, Vol. II, ed. Gabbay, D. and Guenthner, F., 167–248, Reidel.

    Google Scholar 

  13. Bloom, B., Istrail, S., and Meyer A. (1988). Bisimulation cant be traced. In 15th Annual Symposium on the Principles of Programming Languages, 229–239.

    Google Scholar 

  14. Boudol, G. (1985). Notes on algebraic calculi of processes, in Logics and Models of Concurrent Systems, Springer.

    Google Scholar 

  15. Bradfield, J. (1992). Verifying Temporal Properties of Systems. Birkhauser.

    Google Scholar 

  16. Bradfield, J. (1993). A proof assistant for symbolic model checking. Lecture Notes in Computer Science, 663, 316–329.

    Google Scholar 

  17. Bradfield, J. and Stirling, C. (1990). Verifying temporal properties of processes. Lecture Notes in Computer Science, 458, 115–125.

    Google Scholar 

  18. Bradfield, J. and Stirling, C. (1992). Local model checking for infinite state spaces. Theoretical Computer Science, 96, 157–174.

    Article  Google Scholar 

  19. Browne, M., Clarke, E., and Grumberg, O. (1988). Characterizing finite Kripke structures in propositional temporal logic. Theoretical Computer Science, 59, 115–131.

    Article  Google Scholar 

  20. Bruns, G. (1993). A practical technique for process abstraction. Lecture Notes in Computer Science, 715, 37–49.

    Google Scholar 

  21. Camilleri, J., and Winskel, G. (1991). CCS with priority. Procs 6th IEEE Symposium on Logic in Computer Science, 246–255.

    Google Scholar 

  22. Christensen, S., Hirshfeld, Y., and Moller, F. (1993). Bisimulation is decidable for all basic parallel processes. Lecture Notes in Computer Science, 715, 143–157.

    Google Scholar 

  23. Christensen, S., Hüttel, H., and Stirling, C. (1992). Bisimulation equivalence is decidable for all context-free processes. Lecture Notes in Computer Science, 630, 138–147.

    Google Scholar 

  24. Cleaveland, R., and Hennessy, M. (1988). Priorities in process algebra. Proc. 3rd IEEE Symposium on Logic in Computer Science, 193–202.

    Google Scholar 

  25. Cleaveland, R, Parrow, J, and Steffen, B. (1989). The concurrency workbench. Lecture Notes in Computer Science, 407, 24–37.

    Google Scholar 

  26. Condon, A. (1992). The complexity of stochastic games. Information and Computation, 96, 203–224.

    Article  Google Scholar 

  27. De Nicola, R. and Vaandrager, V. (1990). Three logics for branching bisimulation. Proc. 5th IEEE Symposium on Logic in Computer Science, 118–129.

    Google Scholar 

  28. Emerson, E, and Clarke, E. (1980). Characterizing correctness properties of parallel programs using fixpoints. Lecture Notes in Computer Science, 85, 169–181.

    Google Scholar 

  29. Emerson, E., and Jutla, C. (1991). Tree automata, mu-calculus and determinacy. In Proc. 32nd IEEE Foundations of Computer Science.

    Google Scholar 

  30. Emerson, E, and Lei, C. (1986). Efficient model checking in fragments of the propositional mu-calculus. In Proc. 1st IEEE Symposium on Logic in Computer Science, 267–278.

    Google Scholar 

  31. Emerson, E, and Srinivasan, J. (1989). Branching time temporal logic. Lecture Notes in Computer Science, 354, 123–284.

    Google Scholar 

  32. van Glabbeek, J. (1990). The linear time-branching time spectrum. Lecture Notes in Computer Science, 458, 278–297.

    Google Scholar 

  33. van Glabbeek, J. F., and Weijland, W.P. (1989). Branching time and abstraction in bisimulation semantics. Information Processing Letters, 89, 613–618.

    Google Scholar 

  34. Groote, J. (1993). Transition system specifications with negative premises. Theoretical Computer Science, 118, 263–299.

    Article  Google Scholar 

  35. Groote, J. and Vaandrager, F. (1989). Structured operational semantics and bisimulation as a congruence. Lecture Notes in Computer Science, 372, 423–438.

    Google Scholar 

  36. Hennessy, M. (1988). An Algebraic Theory of Processes. MIT Press.

    Google Scholar 

  37. Hennessy, M. and Ingolfsdottir. (1990). A theory of communicating processes with value-passing. Lecture Notes in Computer Science, 443, 209–220.

    Google Scholar 

  38. Hennessy, M. and Milner, R. (1980). On observing nondeterminism and concurrency. Lecture Notes in Computer Science, 85, 295–309.

    Google Scholar 

  39. Hennessy, M. and Milner, R. (1985). Algebraic laws for nondeterminism and concurrency. Journal of Association of Computer Machinery, 32, 137–162.

    Google Scholar 

  40. Hoare, C. (1985). Communicating Sequential Processes. Prentice Hall.

    Google Scholar 

  41. Kannellakis, P. and Smolka, S. (1990). CCS expressions, finite state processes, and three problems of equivalence. Information and Computation, 86, 43–68.

    Article  Google Scholar 

  42. Kozen, D. (1983). Results on the propositional mu-calculus. Theoretical Computer Science, 27, 333–354.

    Article  Google Scholar 

  43. Lamport, L. (1983) Specifying concurrent program modules. ACM Transactions of Programming Language Systems, 6, 190–222.

    Article  Google Scholar 

  44. Larsen, K. (1990). Proof systems for satisfiability in Hennessy-Milner logic with recursion. Theoretical Computer Science, 72, 265–288.

    Article  Google Scholar 

  45. Larsen, K. (1990). Ideal specification formalism. Lecture Notes in Computer Science, 458, 33–56.

    Google Scholar 

  46. Larsen, K. and Skou. (1989). Bisimulation through probabilistic testing. In 16th Annual ACM Symposium on Principles of Programming Languages.

    Google Scholar 

  47. Long, D., Browne, A., Clarke, E., Jha, S., and Marrero, W. (1994). An improved algorithm for the evaluation of fixpoint expressions. Lecture Notes in Computer Science, 818.

    Google Scholar 

  48. Ludwig, W. (1995). A subexponential randomized algorithm for the simple stochastic game problem. Information and Computation, 117, 151–155.

    Article  Google Scholar 

  49. Manna, Z, and Pnueli, A. (1991). The Temporal Logic of Reactive and Concurrent Systems. Springer.

    Google Scholar 

  50. Milner, R. (1980). A Calculus of Communicating Systems. Lecture Notes in Computer Science, 92.

    Google Scholar 

  51. Milner, R. (1983). Calculi for synchrony and asynchrony. Theoretical Computer Science, 25, 267–310.

    Article  Google Scholar 

  52. Milner, R. (1989). Communication and Concurrency. Prentice Hall.

    Google Scholar 

  53. Milner, R., Parrow, J., and Walker, D. (1992). A calculus of mobile processes, Parts I and II, Information and Computation, 100, 1–77.

    Google Scholar 

  54. Moller, F. and Tofts, C. (1990). A temporal calculus of communicating processes. Lecture Notes in Computer Science, 458, 401–415.

    Google Scholar 

  55. Nicollin, X. and Sifakis, J. (1992). An overview and synthesis on timed process algebras. Lecture Notes in Computer Science, 575, 376–398.

    Google Scholar 

  56. Park, D. (1969). Fixpoint induction and proofs of program properties. Machine Intelligence, 5, 59–78, Edinburgh University Press

    Google Scholar 

  57. Park, D. (1981). Concurrency and automata on infinite sequences. Lecture Notes in Computer Science, 154, 561–572.

    Google Scholar 

  58. Parrow, J. (1988). Verifying a CSMA/CD-Protocol with CCS. In Protocol Specification, Testing, and Verification VIII, 373–384. North-Holland.

    Google Scholar 

  59. Plotkin, G. (1981). A structural approach to operational semantics. Technical Report, DAIMI FN-19, Aarhus University.

    Google Scholar 

  60. Pratt, V. (1982). A decidable mu-calculus, 22nd IEEE Symposium on Foundations of Computer Science, 421–427.

    Google Scholar 

  61. Simone, R. de (1985). Higher-level synchronizing devices in Meije-SCCS. Theoretical Computer Science, 37, 245–267.

    Google Scholar 

  62. Sistla, P., Clarke, E., Francez, N. and Meyer, A. (1984). Can message buffers be axiomatized in linear temporal logic? Information and Control, 68, 88–112.

    Google Scholar 

  63. Stirling, C. (1987). Modal logics for communicating systems, Theoretical Computer Science, 49, 311–347.

    Google Scholar 

  64. Stirling, C. (1992) Modal and temporal logics. In Handbook of Logic in Computer Science Vol. 2, ed. Abramsky, S, Gabbay, D, and Maibaum, T., 477–563, Oxford University Press.

    Google Scholar 

  65. Stirling, C. (1995). Local model checking games. Lecture Notes in Computer Science, 962, 1–11.

    Google Scholar 

  66. Stirling, C. and Walker, D. (1991). Local model checking in the modal mucalculus. Theoretical Computer Science, 89, 161–177.

    Google Scholar 

  67. Streett, R. and Emerson, E. (1989). An automata theoretic decision procedure for the propositional mu-calculus. Information and Computation, 81, 249–264.

    Google Scholar 

  68. Taubner, D. (1989). Finite Representations of CCS and TCSP Programs by Automata and Petri Nets. Lecture Notes in Computer Science, 369.

    Google Scholar 

  69. Walker, D. (1987). Introduction to a calculus of communicating systems. Technical Report ECS-LFCS-87-22, Dept. of Computer Science, Edinburgh University.

    Google Scholar 

  70. Walker, D. (1989). Automated analysis of mutual exclusion algorithms using CCS. Formal Aspects of Computing, 1, 273–292.

    Google Scholar 

  71. Walker, D. (1990). Bisimulations and divergence. Information and Computation, 85, 202–241.

    Google Scholar 

  72. Winskel, G. (1988). A category of labelled Petri Nets and compositional proof system. Procs 3rd IEEE Symposium on Logic in Computer Science, 142–153.

    Google Scholar 

  73. Wolper, P. (1983). Temporal logic can be more expressive. Information and Control, 56, 72–99.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Faron Moller Graham Birtwistle

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stirling, C. (1996). Modal and temporal logics for processes. In: Moller, F., Birtwistle, G. (eds) Logics for Concurrency. Lecture Notes in Computer Science, vol 1043. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60915-6_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-60915-6_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60915-5

  • Online ISBN: 978-3-540-49675-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics