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Abstract. We give a new definition of resource bounded measure based 
on compressibility of infinite binary strings. We prove that the new defi­
nition is equivalent to the one commonly used. This new characterization 
offers us a different way to look at resource bounded measure, shedding 
more light on the meaning of measure zero results and providing one 
more tool to prove such results. 
The main contribution of the paper is the new definition and the proofs 
leading to the equivalence result. We then show how this new character­
ization can be used to prove that the class of linear auto-reducible sets 
has p-measure 0. We also prove that the class of sets that are truth-table 
reducible to a p-selective set has p-measure 0 and that the class of sets 
that Turing reduce to a. sub-polynomial dense set hasp-measure 0. This 
strengthens various results. 

1 Introduction 

While Lebesgue measure has been used in mathematics since the previous cen­
tury, and while it has been used earlier this century to study randomness in 
infinite strings [ML66], its notable appearance in complexity theory is in the 
formalization of "random oracles". Bennett and Gill [BG81] showed for example 
that relative to a random oracle A, pA -:/; NPA. The statement about the ran­
dom oracle is formalized as follows: the class of sets A such that pA = NPA has 
Lebesgue measure zero. 

When dealing with uncountable classes, measure zero is an intuitively ap­
pealing concept to formalize the idea that sets with a certain property are rare. 
But the concept seems to fall apart when dealing with countable classes, since 
all of these have Lebesgue measure zero. For example, how would one formalize 
the statement "most recursive oracles separate P from NP"? 

Formalizing this kind of statement, Lutz introduced resource bounded mea­
sure [Lut90]. A more useful definition based on resource bounded martingales 
appeared in [Lut92]. With resource bounded measure, one is able to state for­
mally results of the type "most languages in class C have property P". These 
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notions turned out to be quite useful in complexity theory, as witnessed by 
a stream of results in the last 3 years [JL95a, JL95b, Lut94, LM94b, LM94a, 
ASNT94, ASTZ94, AS94a]. In her thesis, Mayordomo gave a rather complete 
coverage of the topic [May94b]. 

In this paper, we offer a different definition of resource bounded measure 
equivalent to that of Lutz in [Lut92]. We say that a set is t(n)-compressible if its 
characteristic sequence can be compressed and uncompressed in time t( n). The 
precise definition is given in section 4. A class of sets hasp-measure zero if all the 
sets in the class are nk-compressible for some fixed k. This new characterization 
has several advantages. 

- This new characterization may allow more intuitive proofs of results about 
resource bounded measure. 

- A result claiming that a class of sets does not have p-measure zero is usually 
seen as an abundance result. How should this abundance be interpreted? 
The new characterization explains in a precise way what is meant: the sets 
in the class cannot all be compressed with a fixed polynomial time bound. 

- While the martingale characterization was not directly applicable to classes 
below E, Mayordomo [May94b] gave a definition applicable to PSPACE and 
Allender and Strauss [AS94a] gave a definition applicable to P and other 
subexponential classes. Although similar technical problems arise with our 
definition, it may offer other alternatives to define measure applicable to 
subexponential classes. 

A corollary of the proof of equivalence is as follows: a class C hasp-measure 
zero in E if and only if all the sets in C are nk-compressible, for some fixed k. 
The nk-compressible sets form a proper hierarchy, and Eis not included in any 
fixed level of that hierarchy. Moreover, if we define Comp(nk) as the class of 
sets in E that are nlc-compressible, then E =Uk Comp(nk). So the meaning of 
abundance can be interpreted as follows: a class of sets X has p-measure 0 in 
E if and only if X n E is included in a fixed level of that hierarchy, while the 
hierarchy is itself infinite. 

It should be noted that equivalence between a classical constructive measure 
and a definition based on Kolmogorov complexity has been studied in the con­
text of random sequences. Martin-Lof's definition of random sequences [ML66] 
based on constructive measure is equivalent to a subsequent definition using in­
compressibility in the sense of some version of prefix Kolmogorov complexity 
due to Levin (Lev73]. See also Schnorr [Sch73] for a similar theorem. We refer 
the reader to the book by Li and Vitanyi [LV93] for a more detailed account. 

There is also a way to define compressibility in the non-uniform context and 
one can prove that plain Lebesgue measure zero is equivalent to that kind of 
compressibility (Kreinovich, personal communication). 

Next we will use the new characterization to prove the following results: 

- The class of c · n auto-reducible sets has p-measure O. 
- The class of sets that are truth-table reducible to a p-selective set has p-

measure 0. It follows immediately that E does not have a truth-table hard 
p-selective set. 
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- The class of sets that are Turing reducible to a set with subpolynomial 
density has irmeasure 0. This strengthens the results in [BH95]. 

2 Preliminaries 

Let E = {O, l}. Strings are elements of E*, and are denoted by lower case 
letters x, y, u, v, .. .. Infinite strings are elements of E 00 , and are denoted by 
lower case Greek letters. The empty string is ,\. For any string x, the length of 
a string is denoted by lxl, x[i .. j] is the substring of x from index i to index j 
inclusively, x[i] stands for x[i .. i] and if j < i, then x[i .. j] is >.. For two strings 
x and y, x ~ y if y is an extension of x. Subsets of E* are denoted by capital 
letters A, B, C, S, · · ·. The set E* - A is denoted by A. The complement of a 
class of sets X is xc = {A ~ E*IA f/. X}. For a set A we use A=n(A:=;n) to 
denote the subset of A consisting of all strings of length n(::S: n). For any set 
A the cardinality of A is denoted by ~All· We define Cw, the cylinder generated 
by w, as the class of languages { x E E 00 I w ~ x}. We fix a pairing function 
>.xy.(x,y) computable in polynomial time from E* x E* to E*. Without loss of 
generality we assume the pairing function respects the length of its arguments 
(i.e. lxl + IYI $ l(x, y)I :S 2(lxl + lyl).) We assume that the reader is familiar with 
the standard Turing machine model. 

3 Resource bounded measure 

We use here the definition of resource bounded measure based on martingales. 
Let D = { mrnlm, n EN} be the set of nonnegative dyadic rationals. 

Definition 3.1 A martingale is a function d: E* --+ D with the property that, 
for all w EE*, 

d(w) = d(wO) + d(wl). 
2 

Definition 3.2 A martingale succeeds on language A~ E* if 

lim sup d(XA[O .. n -1]) = oo. 

A martingale d is ircomputable, and we call it a irmartingale, if d( w) can 
be computed in time polynomial in lwl. 

The intuition behind this definition is a game where a player is trying to 
predict the next bit by looking at all the bits that have been revealed so far. 
The player starts with an initial capital d(.A) and can decide to bet an amount 
of money which is at most the current capital. If the predicted bit is correct, the 
capital increases by the amount bet, and if it's incorrect, the capital decreases 
by that same amount. The function d models the current capital of the betting 
strategy after having seen a finite binary string. 

Lutz [Lut92] defined a martingale to give a real value and required compu­
tations of the martingale to approximate the real value by using dyadic ratio­
nals. But as shown indepedently by Mayordomo [May94b] and by Juedes and 
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Lutz [JL95b], defining the martingale directly with the dyadic rationals provides 
an equivalent definition of resource bounded measure. Moreover, without loss 
of generality, we may assume that d( w) is a dyadic number m2-n such that 

n<lwJ. 
Definition 3.3 A class X of languages hasp-measure O, and we write µ,p(X) = 
0, if there is a p-martingale d that succeeds on every element of X. 

Definition 3.4 A class X of languages hasp-measure 1, and we write µ,p(X) = 
1, if µp(Xc) = 0. 

4 Compressibility 

Compressibility of finite strings is usually defined using Kolmogorov complexity. 
There are various problems in defining compressibility of infinite strings in terms 
of the Kolmogorov compressibility of its prefixes, mainly because no string has 
all of its prefixes completely incompressible. We define compressibility of an 
infinite string by using another infinite string that can generate it, with the 
compressibility calculated as how much of the prefix of the compressed string is 
needed to reproduce a prefix of the uncompressed string. For the time bounded 
version, we also need that the compressed string can be computed, at least in 
some weak sense. 

Everything in this paper is in terms of p-measure, which is appropriate for 
studying abundance with respect to E. The obvious extension to p2 , the class of 
functions of the form 210Sc n and EXP also holds, and we are still investigating 
the equivalence for other classes of functions. 

Definition 4.1 An infinite string w E {O, 1}00 is !-compressible if 3K E {O, 1}00 

such that the following conditions hold. 

1. {Decompression) There is a Turing machine M that, given K[O .. j], outputs 
a prefix w[O .. i] of w in time at most f(i + j), and such that the value i - j is 
not bounded by any constant. 

2. (Compression) There is a Turing machine M' that, given w[O .. i], uses at 
most f(i) time to output a finite number of strings, one of which is a prefix 
K[O .. j'] such that M, on input K[O .. j'], outputs a prefix of w that is a proper 
extension of w[O .. i]. 

5 Measure zero implies compressibility 

We have defined measure zero using basic martingales. We will need a few more 
properties of the martingales to prove that measure zero implies compressibility. 
The following shows that such special properties can be assumed without loss of 
generality. 

Lemma 5.1 If µp(C) = 0, then there exists a p-martingale d that succeeds on 
every element of C and satisfies: 
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1. d(,\) = 1, 
2. d(x) is a dyadic number m2-n such that n :5 lxl + 4, 
3. (Vx, y) d( x) / 4 :5 d( xy), where y is a finite binary string, 
4. (Vx,b) d(xb) :5 (7/4)d(x), where bis a bit. 

Proof. Let d be a martingale witnessing that µp(C) = 0. Define a martingale d' 
in the following way. Given a finite string x, let io = -1 and fork~ 1, let ik be 
the smallest integer, if it exists, such that 

Define 

d'(,\) = 1 

d(x[O . .'ik]) > 2_ 
d(x[O .. ik-1]) -

d'(x) = d'(x[O .. ik]) -1/4 + (1/4)d(x)/d(x[O .. ik]), 

where k is the largest integer such that 

x[O .. ik] is a proper prefix of x 

Informally, d' starts with $1.00 on ,\, and its betting strategy on successively 
longer prefixes of the characteristic function of a set A is to keep part of its 
capital frozen and use the rest to bet in proportion with the d strategy. The 
amount of frozen capital is revised each time d has doubled its capital. At that 
time, all the capital is frozen, except for $0.25 which is kept for betting. Each 
time d is doubled, d' earns $0.25. If d is successful on A, the doubling occurs 
infinitely often, so d' is unbounded as well, thus successful. 

Although d' does not meet Property 2 of the lemma, it meets stronger versions 
of Properties 3 and 4: 

- (Vx,y) (3/5)d(x) :5 d(xy), where y is a finite binary string, 
- (Vx, b) d(xb) :5 (7 /5)d(x ), where b is a bit. 

To see this, first notice that the function f(k) = d(x[O .. ik]) is monotonically 
increasing, so d(x[O .. ik1 ]) ~ 1. Let k1 be the largest integer such that xy[O .. ik1 ] 

is a (not necessarily proper) prefix of xy, where indices ik are defined as above. 
Similarly, let k2 be the largest integer such that x[O .. ik2 ] is a prefix of x. Notice 
that d'(xy[O .. ik 2 ]) :5 d'(xy[O .. ik1 ]) because ik2 :5 ik1 and by monotonicity. Also 
notice that d(x)/d(x[O .. ik2 ]) < 2, because if it were ~ 2, then k2 would not be 
largest by our definition of indices ik. 

d'(xy) = d'(xy[O .. ik1 ]) - 1/4 + (1/4)d(xy)/d(xy[O .. ik1 ]) 

d'(x) = d'(xy[O .. ik 2 ]) -1/4 + (1/4)d(x)/d(xy[O .. ik2 ]) 

d'(xy) = d'(xy[O .. ik1 ]) -1/4 + (1/4)d(xy)/d(xy[O .. ik1 ]) + 
(3/5)d'(x) - (3/5)d'(xy[O .. ik2 ]) + 3/20- (3/20)d(x)/d(x[O .. ik2 ]) 

~ d'(xy[O .. ik 2 ]) -1/4 + (1/4)d(xy)/d(xy[O .. ik1 ]) + 
(3/5)d'(x) - (3/5)d'(xy[O .. ik2 ]) + 3/20- (3/20)d(x)/d(x[O .. ik2 ]) 

= (2/5)d'(xy[O .. ik2 ]) -1/4 + (1/4)d(xy)/d(xy[O .. ik1 ]) + 
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(3/5)d'(x) + 3/20 - (3/20)d(x)/d(x[O .. ik2 ]) 

;:::: 2/5 -1/4 + 0 + (3/5)d'(x) + 3/20 - (3/20) * 2 

= (3/5)d'(x). 

The other property can be proved in a similar fashion: 

d'(xb) = d1(xb[O .. ik1 ]) -1/4 + d(xb)/4d(x[O .. ik1 ]) 

Case 1: xb[O .. ik,] = x 

d' (xb) = d'(x) - 1/4 + d(xb)/ 4d(x) 

S d'(x)-1/4+ 1/2 

= (5/4)d'(x) + (1- d'(x))/4 
S (5/4)d'(x) S l1/5)d'(x) 

Case 2: otherwise 

d'(x) = d1(xb[O .. ik1])-1/4 + d(x)/4d(x[O .. ik1 ]) 

d'(xb) = (7 /5)d'(x) + d'(xb[O .. ik1 ]) - (7 /5)d'(xb[O .. ik1 ]) - 1/4 + 7 /20 + 
d(xb)/4d(x[O .. ik1 ])- (7/20)d(x)/d(x[O .. ik,]) 

:S (7 /5)d'(x) - (2/5)d'(xb[O .. ik1 ]) + 1/10 + 2d(x)/4d(x[O .. ik,]) -

(7 /20)d(x)/d(x[O .. ik 1 ]) 

:S (7/5)d'(x) - (2/5) + 1/10 + (3/20)d(x)/d(x[O .. ik,]) 

:S (7 /5)d'(x) - (2/5) + 1/10 + 3/10 

= (7/5)d'(x) 

Now, define martingale d" as follows. Define d"(A.) = 1, d"(xb) = d"(x) + 
round((d'(xb) - d'(xb))/2), where bis the bit b flipped, and round((d'(xb) -
d'(xb))/2) is (d'(xb)-d'(xb)) approximated towards 0 as the (possibly negative) 
dyadic number of the form m2-n where n :S lxl + 4. The loss of capital for d" 
compared to d' is at most 2-l:z:l-4 when betting on x, which totals to at most 
L'~1 1/2i+4=1/16 cumulatively. Also, because d'(A.) = 1, for ally, d'(y) ;;=:: 3/5. 
So, for ally, d"(y) ?: d'(y) - 1/16 2: d'(y) - (l/16)(5/3)d'(y) = (43/48)d'(y). 
Similarly, d"(y) :S {53/48)d'{y). We now have 

d"(x)/4 S ( 53 
8 )d'(x) S 53 * 5 d'(xy) < 53 * 5 * 48 d"(xy) < d"(xy). 

4*4 4*48*3 - 4*48*3*43 

Similarly, 

d"(xb) S ~: !! : !!d"(x) < (7 /4)d"(x), 

so we get all the properties of the lemma. 

Theorem 5.2 /Lp(C) = 0 => (3! E p)(VA EC) XA is !-compressible. 
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Proof. Assume that µp(C) = 0, and let d be a p-martingale as in Lemma 5.1. 
Let A E C and let w = XA· We need an infinite string"' to encode w. We can 
interpret was the encoding of a real in the interval (0, 1). In a standard encoding, 
all infinite strings starting with 0 encode reals in the first half of the interval and 
strings starting with 1 encode reals in the right half of the interval. We will create 
an encoding scheme that possibly moves this half-way border. If d(O) > d(l), 
then the binary expansion of reals in an interval larger than 1/2 will be used 
to encode reals between 0 and 0.5. Similarly, if d(xO) > d(xl), then the size of 
the interval reserved to encode reals that extend xO will be larger than that of 
extensions of xl. The idea is to keep an interval of reals to encode extensions 
such that the size of the interval is proportionally related to the current capital 
with the current betting strategy of the martingale. Intuitively, large intervals 
can be described with few bits, so a winning strategy will result in compression. 

More formally, let g be a function from finite binary strings to intervals in 
(0, 1) defined as follows: 

g(>.) = (0, 1) 

g(xO) =the left part of g(x) of size d(x0)/2l:i:OI 

g(xl) = g(x) - g(xO) 

The following lemma has a straightforward proof by induction on the length 
of the strings. The proof is omitted. 

Lemma 5.3 Jg(x)I = d(x)/21"'1. 

Since g(xb) is a subinterval of g(x) and since part 4 of Lemma 5.1 ensures 
that limn-+oo Jg(w[O .. n])I = 0, an infinite sequence can be associated with the 
real r defined by r = limn->oo g(w[O .. n]). Let "'be the binary expansion of r. We 
now have to show that '"" is a valid compression of w. 

To generate w[O .. i] from K[O .. j], simulate the martingale starting at >. on 
successively longer strings. Suppose we have generated the string x so far. If 
g(xO) contains C1t[O .. j], then append 0 to x. If g(xl) contains C1t[O .. j]> then append 
1 to x. Continue until C1t[O .. j] is not contained in either of the intervals. Since 
g(w[O .. i]) is an interval containing C1t[O .. j], "'has to encode an extension of w(O .. i]. 

To generate K[O .. j] from w[O .. i], we compute the list of all possible strings 
that encode extensions of w[O .. i]O and of w[O .. i]l. Let lo = g(w[O .. i]O) and 11 = 
g(w[O .. i]l). Since llol is d(w[O .. i]0)/2i+2 and d(w[O .. i]O) is a dyadic number mrn 
where n $ i + 6, the borders of J0 can be expressed by dyadic numbers m2-n 
where n $ 2i + 8. The interval J0 can be covered exactly by a set of at most 
2(2i + 8) intervals. This is done by starting from a point inside the interval 
which is expressible by a dyadic number m2-n where n is the smallest, covering 
the part of J0 on the left of that point with a set of at most 2i + 8 intervals 
and covering the right part of 10 with another set of at most 2i + 8 intervals. 
Interval Ii can be covered similarly. Output all of the intervals. Strings associated 
with intervals covering J0 will extend w[O .. i] with a 0, and those associated with 
intervals covering Ii will extend w[O .. i] with a 1. 

It remains to show that i-j is not bounded by any constant, where i is the in­
dex of the last bit produced by the uncompression algorithm Mon K:(O .. j]. Select 
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j such that Mon K[O .. j] produces w[O .. i], and such that M on K[O .. j-1] produces 
a proper prefix of w[O .. i]. Since M produces w[O .. i] on 11:[0 .. j_J, g(w[O .. i]) i~cludes 
C"[o .. i]- Since M produces a proper prefix of w[O .. i] o~ ~[O .. J -:-1], g(~[O .. i]) does 
not contain C"[O .. j-l]· Interval g(w[O .. i]) can be part1t10ne~ mto 3 i~tervals: L, 
K[O .. j] and R where L (resp. R) corresponds to the reals m g(w[O .. i]) that are 
smaller (resp. greater) than those in tt[O .. j]. Assume that K[j] = 0. The case 
where K[j] = 1 is similar. Then, R is an interval included in K[O .. j - 1]1 be­
cause g(w[O .. i]) does not include K[O .. j-1]. So, IRI::; 111:[0 .. j]I. We also have the 
following upperbound for the size of L: 

ILi ::; lg(w[O .. i]O) I 

= d(w[O .. i]0)/2i+2 

:=:; (7 / 4)d(w[O .. i])/2i+2 

::; 7d(w[O .. i]l)/2i+2 

= 7lg(w[O .. i]l)I 

::; 7(ICt<[O .. jJI + IRI). 

lg(w[O .. i))I = ILi + IC"[o .. jJI + IRI 

::; 8(ICt<[O .. jJI + IRI) 

::; 16jC"'ro .. iJI· 

But lg(w[O .. i])I = d(w[O .. i])/2i+l and IC"[O .. jJI = l/2i+1 , so we get 

d(w[O .. i])/2i+l ::; 16/2i+1 

d(w[O .. i]) ::; 2i-i+4 

log(d(w[O .. i])) - 4 ~ i - j 

Since the martingale is successful, d(w[O .. i]) is unbounded and then so is i - j. 

6 Compressibility implies measure zero 

Theorem 6.1 (3/ E p)(YA EC) XA is !-compressible=> µp(C) = 0. 

Proof. Let f be computable in time nk. For each A E C, we build below a 
martingale that succeeds on A and is nk time computable. Since nk time bounded 
martingales are easily enumerable for a fixed k, C is a p-union of p-measure 0 
sets, so µp(C) = 0. (To build a p-union of p-measure 0 sets, we need to build a 
sequence of martingales d1 , ~' ... witnessing that the sets have p-measure 0, and 
a uniform algorithm that receives k and x as input and computes dk(x) in time 
polynomial in both k and x. See [Lut92] for more details and a proof of this.) 

Let A E C be a set such that XA is /-compressible. Assume we have algorithms 
to compress w = XA· Let's say algorithm B1 computes K from wand algorithm 
B2 computes w from K. We build a p-martingale. Suppose we are given w[O .. i]. 
For each j < i, simulate B1 on w[O .. j]. For increasing j, look at the strings output 
by B 1 and make sure they extend the previous ones. Look at the strings from the 
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simulation of B1 on w[O .. j] that remain. Eliminate the strings that do not extend 
w[O .. j]. Make the remaining strings minimal by simulating B2 on their prefixes 
and taking the smallest prefix that does extend w[O .. j]. Separate the remaining 
strings into two groups, those that predict a 0 and those that predict a 1. Call 
these groups Go and G1 . Let each string vote for the next bid. The relative 
weight of each vote depends on the length of the string: the shorter the string, 
the more weight. Let Si= L'z1oEGauG1 2-lz1ol. Let b0 = L'.,1oEGo2-lo:1ol. Let bi = 
L'.,1oEG1 2-lz1ol. Then, d(w[O .. i]O) = d(w[O .. i])(l + (b0 - bi)/si) and d(w[O •. i]l) = 
d(w[O .. i])(l + (b1 - bo)/si). 

We claim that for any i, d(w[O .. i]) ~ L:k 2i-lz1ol. This can be proved by 
induction on i. The statement is true for i = 0, assuming initial capital of 1. 
Assume it's true up to i. At step i+l, wlog, suppose w[i+l] = O. Suppose for the 
sake of analysis that each string is extended with all possible suffixes up to length 
i+c for some appropriate constant c. Since the vote was weighted, extending the 
strings and giving each string an equal vote is equivalent. Suppose a ratio r of 
strings voted 0. Then the capital becomes d(w[O .• i + 1]) = 2rd(w[O .. i]) ~ 2r2isi 
by induction hypothesis. At the same time, all the strings that voted for 1 got 
removed from the set, and the strings that voted for 0 get appended by both 0 
and 1, doubling their number and increasing their length by one. Some of these 
strings may get removed by the B 1 algorithm. So, Si+l ~ rsi. So, we still have 
d(w[O .. i + 1]) ~ 2i+1 Si+l · 

Now, let k be an arbitrary value, and let j such that algorithm B2 computes 
w[O .. i] from K.[0 .. j] such that i-j > k. By the assumption on compressibility, such 
aj must exist. Algorithm B1 on w[O .. i-1] will produce "'fO .. j] as one of the x1c. By 
the claim above, d(w[O .. i -1]) ~ L:1c 2i-l-lo:1ol ~ 2i-1- i<(O .• j]J ~ 2i-j-2 ~ 21c-2. 
This shows that the capital is unbounded, so the martingale succeeds. 

7 Applications of the new characterization 

In this section we give some examples of how the new characterization can be 
applied. 

Theorem 7.1 [May94a] The class of non-P-bi-immune sets hasp-measure 0. 

Proof. Let A be a non-P-bi-immune set and suppose there is a infinite set C ~ 
A where C is in P. (The case where C ~ A is analogous.) The compressed 
characteristic sequence of A is the concatenation of the bits XA(x) with x ft C. 
To uncompress, given K.[0 .. j], one simply re-computes the characteristic sequence 
of A, filling in the places where x E C, until j + 1 elements of C have been 
encountered, or until 2j elements of the sequence have been generated. The 
value i - j is either j, which is unbounded, or it is the number of elements of 
C we have generated, so if C is infinite, i - j is also unbounded. To compress 
XA [O .. i], just remove the bits corresponding to elements of C. Then create two 
strings by adding a 0 and a 1. One of the two strings will uncompress into the 
correct extension of XA[O .. i]. 
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Next we will investigate the class of sets that are auto-reducible (AS94b]. A 
set A is auto-reducible if there is a polynomial time oracle Turing machine that 
accepts A with A as oracle provided that on input x, it never queries x to the 

oracle. 

Theorem 7.2 For any fixed constant c, the class of sets that are auto-reducible 

via oracle machines that query no more than c · Ix! queries on input x has p­

measure 0. 

Proof. Let no = 4, and let ni+l = n~ogn;. For i large enough, an auto-reduction 
on on• will never query a string of size ~ ni+l· To compress XA, substitute the 
bit for on• by a sequence of bits corresponding to the answers to all queries 
of strings y for y > on• in the lexicographic ordering. This results in a local 
expansion of XA· Then, remove from XA all the bits corresponding to those 
large queries. Overall, we removed the bit for on•, and moved some other bits 
around in XA· This results in one bit of compression for each section of XA 

corresponding to strings between on• and on•+1 • Since this is done for each i, 

the number of bits of compression is unbounded. To uncompress, simulate the 
auto-reduction machine on strings of the form on; for successive i. This allows 
reordering the bits of XA and generating the missing bits. To compress, it is 
impossible to determine the answer to the queries. Instead, compute all the 
computations corresponding to possible answers to queries. Each computation 
provides a candidate compressed string. Since there are at most cni queries, there 
are at most 2cn; possible computations, so we have enough time to generate them 
all. 

The next theorem deals with p-selective sets, introduced by Selman (Sel79]. 
A set A is p-selective if there is a polynomial time selector function f such that: 
1) J (x, y) E { x, y} and 2) if x E A or y E A then f (x, y) E A. Intuitively f (x, y) 
hands back the most likely of x or y to be in A. We will use the following lemma: 

Lemma 7.3 {BvHT93} Let A be a p-selective set. Any finite set X can be or­

dered, using the p-selector, as follows: { x1, ... , Xk} = X. Such that Xi E A 
implies Xj E A for all j 2'.: i. 

Theorem 7.4 The class of sets that truth-table reduce to a p-selective set has 
p-measure 0. 

Proof. We show here that the p-selective sets do not have p-measure 0. It is not 
hard to generalize this proof to the class of sets that truth-table reduce to a p­

selective set. Details will be in the final paper. Let A be a p-selective set. We will 
see how to compress XA [2n - 1...2n+i - 2] (corresponding to strings of length n) 
into n + 1 bits. The lemma provides us with an ordering of the strings of length 
n. The ordering can be computed in time polynomial in llXll * max{lxl E X}. 
This also implies that there are at most 2n + 1 settings of these strings consistent 
with A. The compression will be an index among those 2n + 1 consistent settings. 
Then it is easy to see that by generating all the 2n + 1 many of these codings, 
we have that XA is £-compressible for some f E p. 

Corollary 7.5 There is no truth-table hard p-selective set for E. 
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Proof. E does not have p-measure 0 [Lut94]. 

The next result shows that the class of sets that reduce by Turing reductions 
to a set that has sub-polynomial density has p-measure 0. A function is sub­
polynomial if Vdnol/n > n0 : f(n) < ne . 

Theorem 7 .6 Let f be a sub-polynomial function. The class of sets that Turing 
reduce to a sets with density f {ie w~nl ::; J(n)} hasp-measure 0. 

Proof. Let A ::;~ to a set S with density f(n) via machine MT in time p(n). 
Again we have to show that the characteristic sequence of A can be compressed 
and uncompressed. Consider w = XA[2n -1...2n+l - 2], corresponding to strings 
of size n. We will compress the first n bits of w. Each string x of length n 
is mapped by MT to at most p(n) many different queries, provided that the 
answers to these queries are known. We replace the first n bits of w by f(p(n)) 
pointers in these n computations of MT, meaning that the string queried is in 
S. Since there are only n computations of size p(n), a pointer can be coded in 
clogn bits, for some c. There are only f(p(n)) pointers, so the number of bits 
is cf(p(n)) logn < n bits, achieving the wanted compression. To uncompress, 
simulate MT on all those n strings of length n, maintaining a table for which 
strings are in S according to the compressed string and the computation so far. 
To compress, generate all possible codes. This results in 2•/(p(n)) log n strings, 
keeping only the ones that are still consistent with XA so far. After the last bit 
of the n strings is known we pick the smallest among these still consistent strings 
and set that to be the prefix of "'· 

Corollary 7.7 [BH95] There is no Turing hard set for E with sub-polynomial 
density. 
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