Skip to main content

On the existence of hard sparse sets under weak reductions

  • Conference paper
  • First Online:
STACS 96 (STACS 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1046))

Included in the following conference series:

Abstract

Recently a 1978 conjecture by Hartmanis was resolved by Cai and Sivakumar, following progress made by Ogihara. It was shown that there is no sparse set that is hard for P under logspace many-one reductions, unless P=LOGSPACE. We extend these results to the case of sparse sets that are hard under more general reducibilities. Furthermore, the proof technique can be applied to resolve open questions about hard sparse sets for NP as well. Using algebraic and probabilistic techniques, we show the following results.

  1. (1)

    If there exists a sparse set that is hard for P under bounded truthtable reductions, then P=NC2.

  2. (2)

    If there exists a sparse set that is hard for P under randomized logspace reductions with two-sided error, then P=RLOGSPACE (with two-way access to the random tape).

  3. (3)

    If there exists an NP-hard sparse set under randomized polynomial-time reductions with two-sided error, then NP=RP.

  4. (4)

    If there exists a disjunctive truth-table hard sparse set for NP, then NP=RP.

Research supported in part by NSF grants CCR-9057486 and CCR-9319093, and an Alfred P. Sloan Fellowship.

Research supported in part by NSF grant CCR 92-53582.

Research supported in part by NSF grant CCR-9409104.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple constructions of almost k-wise independent random variables. In Proc. 31st FOCS, pages 544–553, 1990.

    Google Scholar 

  2. V. Arvind, J. Köbler, and M. Mundhenk. On bounded truth-table, conjunctive, and randomized reductions to sparse sets. In Proc. 12th FST & TCS, Lecture Notes in Computer Science, Springer-Verlag, 1992.

    Google Scholar 

  3. L. Berman. Polynomial Reducibilities and Complete Sets. PhD thesis, Cornell University, 1977.

    Google Scholar 

  4. L. Berman and H. Hartmanis. On isomorphisms and density of NP and other complete sets. SIAM Journal on Computing, 6:305–322, 1977.

    Article  Google Scholar 

  5. A. Borodin, J. von zur Gathen, and J. Hopcroft. Fast parallel matrix and GCD computations. Information and Control, 52:241–256, 1982.

    Article  Google Scholar 

  6. S. Buss. The Boolean formula value problem is in ALOGTIME. In Proc. 19th STOC, pages 123–131, 1987.

    Google Scholar 

  7. S. Buss, S. Cook, A. Gupta, and V. Ramachandran. An optimal parallel algorithm for formula evaluation. SIAM Journal on Computing, 21:755–780, 1992.

    Article  Google Scholar 

  8. J. Cai and D. Sivakumar. The resolution of a Hartmanis conjecture. In Proc. 36th FOCS, pages 362–373, 1995.

    Google Scholar 

  9. J. Cai and D. Sivakumar. Resolution of Hartmanis' Conjecture for NL-hard sparse sets. Submitted, 1995.

    Google Scholar 

  10. A.L. Chistov. Fast parallel calculation of the rank of matrices over a field of arbitrary characteristic. In Proc. 5th FCT, Lecture Notes in Computer Science, pages 63–69. Springer-Verlag, 1985.

    Google Scholar 

  11. S. Cook. A taxonomy of problems with fast parallel algorithms. Information and Control, 64:2–22, 1985.

    Article  Google Scholar 

  12. S. Fortune. A note on sparse complete sets. SIAM Journal on Computing, 8:431–433, 1979.

    Article  Google Scholar 

  13. O. Goldreich, L. Levin. A hard-core predicate for all one-way functions. In Proc. 21st STOC, pages 25–32, 1989.

    Google Scholar 

  14. J. Hartmanis. On log-tape isomorphisms of complete sets. Theoretical Computer Science, 7(3):273–286, 1978.

    Article  Google Scholar 

  15. L. Hemachandra, M. Ogiwara, and S. Toda. Space-efficient recognition of sparse self-reducible languages. Computational Complexity, 4:262–296, 1994.

    Article  Google Scholar 

  16. L. Hemachandra, M. Ogiwara, and O. Watanabe. How hard are sparse sets. In Proc. 7th Structures, pages 222–238, 1992.

    Google Scholar 

  17. M. Karpinski and R. Verbeek. On the Power of Two-Way Random Generators and the Impossibility of Deterministic Poly-Space Simulation. Information and Control, Vol. 71, pages 131–142, 1986.

    Article  Google Scholar 

  18. R. Karp and R. Lipton. Some connections between nonuniform and uniform complexity classes. In Proc. 12th ACM Symp. on Theory of Computing, pages 302–309, 1980.

    Google Scholar 

  19. R. Ladner. The circuit value problem is log space complete for P. SIGACT News, 7(1):18–20, 1975.

    Article  Google Scholar 

  20. R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial time reducibilities. Theoretical Computer Science, 1:103–123, 1975.

    Article  Google Scholar 

  21. S. Mahaney. Sparse complete sets for NP: solution of a conjecture of Berman and Hartmanis. Journal of Computer and System Sciences, 25:130–143, 1982.

    Article  Google Scholar 

  22. K. Mulmuley. A fast parallel algorithm to compute the rank of a matrix over an arbitrary field. Combinatorica, 7(1):101–104, 1987.

    Google Scholar 

  23. J. Naor and M. Naor. Small-bias probability spaces: efficient constructions and applications. In Proc. 22nd STOC, pages 213–223, 1990.

    Google Scholar 

  24. M. Ogihara. Sparse hard sets for P yield space-efficient algorithms. In Proc. 36th FOCS, pages 354–361, 1995.

    Google Scholar 

  25. M. Ogiwara and A. Lozano. On one-query self-reducible sets. In Proc. 6th Structures, pages 139–151, 1991.

    Google Scholar 

  26. M. Ogiwara and O. Watanabe. On polynomial-time bounded truth-table reducibility of NP sets to sparse sets. SIAM Journal on Computing, 20(3):471–483, 1991.

    Article  Google Scholar 

  27. D. Ranjan and P. Rohatgi. On randomized reductions to sparse sets. In Proc. 7th Structures, pages 239–242, 1992.

    Google Scholar 

  28. L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions. In Proceedings of 17th ACM Symposium Theory of Computing, pages 458–463, 1985.

    Google Scholar 

  29. J.H. van Lint. Introduction to Coding Theory. Springer-Verlag, 1991.

    Google Scholar 

  30. D. van Melkebeek. On Truth-table Hard Sparse sets for P. University of Chicago Technical Report 95-06. 1995.

    Google Scholar 

  31. P. Young. How reductions to sparse sets collapse the polynomial-time hierarchy: A primer (Part I). SIGACT News, 23(3):107–117, 1992.

    Article  Google Scholar 

  32. P. Young. How reductions to sparse sets collapse the polynomial-time hierarchy: A primer (Part II). SIGACT News, 23(4):83–94, 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Claude Puech Rüdiger Reischuk

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cai, J.Y., Naik, A.V., Sivakumar, D. (1996). On the existence of hard sparse sets under weak reductions. In: Puech, C., Reischuk, R. (eds) STACS 96. STACS 1996. Lecture Notes in Computer Science, vol 1046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60922-9_26

Download citation

  • DOI: https://doi.org/10.1007/3-540-60922-9_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60922-3

  • Online ISBN: 978-3-540-49723-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics