Skip to main content

The complexity of generating and checking proofs of membership

  • Conference paper
  • First Online:
STACS 96 (STACS 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1046))

Included in the following conference series:

  • 152 Accesses

Abstract

We consider the following questions:

  1. 1.

    Can one compute satisfying assignments for satisfiable Boolean formulas in polynomial time with parallel queries to NP?

  2. 2.

    Is the unique optimal clique problem (UOCLIQUE) complete for PNP[O(log n)]?

  3. 3.

    Is the unique satisfiability problem (USAT) NP hard? We define a framework that enables us to study the complexity of generating and checking proofs of membership. We connect the above three questions to the complexity of generating and checking proofs of membership for sets in NP and PNP[O(log n)]. We show that an affirmative answer to any of the three questions implies the existence of coNP checkable proofs for PNP[O(log n)] that can be generated in FP NP . Furthermore, we construct an oracle relative to which there do not exist coNP checkable proofs for NP that are generated in FP NP . It follows that relative to this oracle all of the above questions are answered negatively.

Part of this research was done while visiting the Univ. Politècnica de Catalunya in Barcelona. Partially supported by the Dutch foundation for scientific research (NWO) through NFI Project ALADDIN, under contract number NF 62-376.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity I & II. EATCS Monographs on Theoretical Computer Science, Springer-Verlag (1988, 1991)

    Google Scholar 

  2. Beigel, R.: NP-hard sets are P-superterse unless R=NP. Technical Report 88-04, Dept. of Computer Science, The John Hopkins University (1988).

    Google Scholar 

  3. Blass, A., Gurevich, Y.: On the unique satisfiability problem. Information and Control 55 (1982) 80–88

    Article  Google Scholar 

  4. Buhrman, H., Kadin, J., Thierauf, T.: On functions computable with nonadaptive queries to NP. Proc. 9th Structure in Complexity Theory Conference (1994) 43–52

    Google Scholar 

  5. Chang, R., Kadin, J., Rohatgi, P.: On Unique Satisfiability and the threshhold behavior of randomized reductions. Journal of Computer and System Science 50 (1995) 359–373.

    Article  Google Scholar 

  6. Cook, S.: The Complexity of Theorem-Proving Procedures. Proc. 3rd ACM Symposium on Theory of Computing (1971) 151–158

    Google Scholar 

  7. Chen, Z., Toda, S.: On the Complexity of Computing Optimal Solutions. International Journal of Foundations of Computer Science 2 (1991) 207–220

    Article  Google Scholar 

  8. Chen, Z., Toda, S.: An Exact Characterization of FP NP . Manuscript (1993)

    Google Scholar 

  9. Fenner, S., Homer, S., Ogiwara, M., Selman, A.: On Using Oracles That Compute values. 10-th Annual Symposium on Theoretical Aspects of Computer Science, Springer Verlag LNCS 665 (1993) 398–407

    Google Scholar 

  10. Fortnow, L.: Personal Communication. In the plane to Madras (India) (December 7, 1994)

    Google Scholar 

  11. Hemachandra, L.: The strong exponential hierarchy collapses. Journal of Computer and System Sciences 39(3) (1989) 299–322

    Article  Google Scholar 

  12. Hemaspaandra, L., Naik, A., Ogihara, M., Selman, A.: Finding Satisfying Assignments Uniquely Isn't so Easy: Unique Solutions Collapes the Polynomial Hierarchy. Algorithms and Compuatation, International Symposium ISAAC '94, Springer Verlag LNCS 834 (1994) 56–64

    Google Scholar 

  13. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley (1979)

    Google Scholar 

  14. Impagliazzo, R., Tardos, G.: Decision Versus Search Problems in Super-Polynomial Time. Proc. 30th IEEE Annual Symposium on Foundations of Computer Science (1989) 222–227

    Google Scholar 

  15. Kadin, J.: Restricted Turing Reducibilities and the Structure of the Polynomial Time Hierarchy. PhD thesis, Cornell University (1988)

    Google Scholar 

  16. Krentel, M.: The Complexity of Optimization Problems. Proc. 18th ACM Symposium on Theory of Computing (1986) 69–76

    Google Scholar 

  17. Levin, L.: Universal Sorting Problems. Problems of Information Transmission 9 (1973) 265–266

    Google Scholar 

  18. Ogihara, M.: Functions Computable with Limited Access to NP. Technical Report 538, University of Rochester (1995)

    Google Scholar 

  19. Papadimitriou, C.: On the complexity of unique solutions. Journal of the ACM 31(2) (1984) 392–400

    Article  Google Scholar 

  20. Papadimitriou, C., Yannakakis, M.: On the complexity of facets. Journal of Computer and System Sciences 28 (1984) 244–259

    Article  Google Scholar 

  21. Papadimitriou, C., Zachos, D.: Two remarks on the power of counting. 6th GI Conference on TCS, Springer Verlag LNCS 145 (1983) 269–276

    Google Scholar 

  22. Selman, A.: A taxonomy of complexity classes of functions. Journal of Computer and System Science 48 (1994) 357–381.

    Google Scholar 

  23. Toda, S.: On polynomial-time truth-table reducibilities of intractable sets to P-selective sets. Mathematical Systems Theory 24 (1991) 69–82.

    Google Scholar 

  24. Valiant, L., Vazirani, V.: NP is as easy as detecting unique solutions. Theoretical Computer Science 47(1) (1986) 85–93

    Article  Google Scholar 

  25. Wagner, K.: More complicated questions about maxima and minima and some closure properties of NP. Proc. 13th International Colloquium on Automata, Languages, and Programming (ICALP), Springer Verlag LNCS 226 (1986) 53–80

    Google Scholar 

  26. Wagner, K.: Bounded query classes. SIAM Journal on Computing 19(5) (1990) 833–846

    Article  Google Scholar 

  27. Watanabe, O., Toda, S.: Structural Analysis on the Complexity of Inverse Functions. Mathematical Systems Theory 26 (1993) 203–214

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Claude Puech Rüdiger Reischuk

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buhrman, H., Thierauf, T. (1996). The complexity of generating and checking proofs of membership. In: Puech, C., Reischuk, R. (eds) STACS 96. STACS 1996. Lecture Notes in Computer Science, vol 1046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60922-9_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-60922-9_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60922-3

  • Online ISBN: 978-3-540-49723-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics