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A b s t r a c t .  This paper z reports on the experiences of IBM ttursley in 
using the Z notation and the B-Method [Abr95] [Abr93] in developing 
new function for IBM's CICS product 4 [IBM94]. 
A major  constraint on the project was the need to produce code that  
not only corresponded to its required function, but also met a number 
of stringent non-functional requirements in areas such as integration, 
performance and maintenance. 
The Z notation was used to capture the required function, and the re- 
sulting specification was hand-translated into AMN. The B-Toolkit, with 
project-specific extensions, was then used for the development down to 
PL /X  code. 
The success of this endeavour is discussed here. The use of Z and the 
B-Method were very successful in addressing the new functional require- 
ments. Meeting the non-functional requirements, however, was more dif- 
ficult. 

1 I n t r o d u c t i o n  

The  a p p l i c a t i o n  of  m a t h e m a t i c a l  m e t h o d s  to the  deve lopmen t  of  I B M ' s  CICS 
p r o d u c t s  b e g a n  in 1982 wi th  a co l l abo ra t i on  be tween Hurs ley  and the  P r o g r a m -  
ming  Research  G r o u p  at  Oxford  Univers i ty  on the  use of  the  Z n o t a t i o n  [Spi89] 
[Wor92] for the  specif icat ion.  In i t i a l ly  Z was used in the  CICS code r e s t ruc tu r ing  
in i t i a t ive  [CN88] and  since then  i t  has  been used for the  speci f ica t ion of  mos t  
new c o m p o n e n t s  of  CICS as well as p a r t s  of  the  APE [CNS89]. 

In  th is  Z based  deve lopment ,  whi ls t  the  speci f ica t ion s tage  was fo rmal ,  the  
rest  of  the  process  d id  not  change.  T h e  a im  of I B M ' s  use of  the  B - M e t h o d  [NH94] 
is to  reduce the  effort in design and  coding by  ex t end ing  the  use of  m a t h e m a t i c a l  
techniques  and  assoc ia ted  tools  to  cover these  la te r  s tages,  consequent ly  a l lowing 
developers  to  concen t ra te  on the  creat ive  aspec ts  of  sof tware  design.  

The  current  p ro jec t  began  in March  1993, when a s i te  l icence for the  B- 
Too lk i t  [B-C93] was o b t a i n e d  for Hursley,  and  a co l l abora t ive  con t rac t  was set 

up wi th  B-Core  (UK)  Ltd. .  

3 Parts  of this paper are based on [Hoa95]. 
4 CICS is a t rademark of IBM Corporation. 
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2 T h e  B - M e t h o d  a n d  B - T o o l k i t  

The B-Method [NH94] [ALN+91] [Abr95] is a state-based method which uses 
the Abstract Machine Notation (AMN). Invented by :I-R Abrial, the notation is 
based broadly on the same mathematics  as Z (Zermelo set-theory and predicate 
logic), extended by a generalised notion of substitution. It contains a very small 
imperative programming language augmented by a number of specification con- 
structs for expressing non-determinism. AMN semantics is compact and thus 
tractable for sizable developments. 

AMN does not address concurrency. The aspects of systems addressed by the 
B-Method are similar to those of Z and VDM. 

AMN admits three constructs: MACHINES which are expressed using only spec- 
ification constructs, REFINEMENTS which may mix specification constructs with 
imperative statements, and IMPLEMENTATIONS in which all non-determinism is 
resolved through the use of imperative constructs only. Implementations are very 
easy to translate into commonly used programming languages. 

The B-Method encourages software development in layers. Top level specifi- 
cations are implemented in terms of lower level specifications, or designs which 
contain more detail. Thus the process of refinement decomposes abstract ma- 
chines into smaller machines which are separately implementable through full 
information hiding. The verification conditions that  must be proven for correct 
refinements are stipulated by the method. 

The B-Toolkit [B-C93] provides a suite of programs that  support the B- 
Method. These include a parser, typechecker, animator,  proof obligation gener- 
ator, proof tools and code translators. The three main products of a B devel- 
opment are code, design documentation and proof listings. The tools co-operate 
in a rigorously controlled programming environment driven by a dependency 
manager, which ensures the consistency of these three main products. 

A major  feature of the project reported in this paper is the extension of the B- 
Toolkit to accommodate the CICS development environment. These extensions 
are described in detail in Section 5. 

The B-Method and B-Toolkit were selected as they were considered at the 
time to represent the only practical approach to formal refinement. 

3 A p p r o a c h  

This project began with what has become standard practice in the CICS organ- 
isation: the production of an initial requirements document called the Product 
Level Design (PLD) that  laid out the requirements which were to be addressed 
by the proposed component and included an abstract Z specification of the new 
function which was to be provided. Also included were details of some non- 
functional characteristics that  needed agreement prior to the design phase. 

In order to link into the B-Method, the Z specification in the PLD was rewrit- 
ten in AMN, and the B-Toolkit animator was used to validate the hand trans- 
lation. A certain amount  of proof work was also carried out at the specification 
level at this stage. 
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An AMN design was then created to prototype the system against a model 
of the underlying API consisting of a set of C libraries. C code was generated 
from the prototype design, run and tested. 

Satisfied with the overall design, the development team then proceeded to 
redevelop towards the final target language, PL/X, a PL/1-1ike IBM proprietary 
systems programming language. To achieve this~ a new set of B-Toolkit system 
libraries had to be hand-coded in PL/X to form the target of the development. 

Using a specially developed translator, PL/X was generated as the final code. 
This was subject to unit test, integration test and system test. 

Figure 1 summarises the approach taken, showing the dependencies in the 
various activities undertaken. 

Creation of Z specification 

l 
Translation of Z into AMN 

Validation by Animation 

Verification by pr 

AMN prototype development Handeoding of PL/X libraries 

t i  --,,. 1 /  
Testing of C prototype Redesign in AMN for PL/X 

1 
Translation into PL/X 

l 
Unit testing 

l 
Integration testing 

1 
System test 

Fig. 1. The development approach adopted. 
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4 N o n - f u n c t i o n a l  R e q u i r e m e n t s  

With  an installed customer base of in excess of 30,000 licences, CICS is a mature  
product  with a well established architecture and support  infrastructure to which 
any further development must  conform. For the application of a new method 
to CICS development, as described in this paper, this presents a number  of 
challenges. 

Several impor tan t  non-functional requirements are not normally stated in the 
PLD, but are implicit for any new development. Amongst  these are the following: 

A r c h i t e c t u r e .  The CICS architecture imposes a number  of constraints, includ- 
ing the use of P L / X  as the target  language, CDURUN 5 definitions for inter- 
faces between components,  CICS storage management  facilities (as opposed 
to native operating system functions), and the general use of CICS facilities 
for synchronisation and concurrency control. 

Size.  Various limits on source and object code size for CICS modules are im- 
posed by tools used in CICS development, such as the l ibrary system and 
compilers. CICS standards and architecture also set bounds on certain pa- 
rameters,  such as automat ic  storage. In addition, code size can have impli- 
cations for execution performance of the resulting programs.  

P e r f o r m a n c e .  Typically, a CICS component  will have many  operations, a small 
number  of which are identifiable as performance critical. It  is impor tant  
that  the modules implementing these operations are tuned to achieve a high 
degree of efficiency. 

M a i n t e n a n c e .  An extensive maintenance process for CICS (involving hundreds 
of service personnel, field engineers and others) is in place, and it would be 
unrealistic to expect a radically new approach to be adopted. Code gener- 
ated in any development must  conform to existing maintenance standards, 
including the use of s tandard trace and debugging facilities. 

E n h a n c e m e n t .  Any new development of CICS must  form a sound basis for 
future extensions in later releases, including the ability to add new function 
to an existing area or modify the design if necessary. It  is therefore essential 
that  the designs, and code where appropriate,  are in a form which would 
allow such extensions to be made readily. 

5 A d d r e s s i n g  N o n - f u n c t i o n a l  R e q u i r e m e n t s  

An essential feature of this project has been the availability of a comprehensive 
suite of tools to support  each stage of the development process. A number  of 
tools specific to the development environment were created in parallel with the 
CICS design work and there has been a significant amount  of feedback from the 
project in this area, influencing not only the evolution of the CICS specific tools, 
but also parts  of the base toolkit. 

This section describes those elements of the toolkit which were developed in 
order to meet specific non-functional requirements. 

5 A high-level language for the definition of CICS internal interfaces. 
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T h e  P L / X  t r a n s l a t o r s  a n d  l i b r a r y  coding tools .  
An implicit non-functional requirement was that  the IBM internal P L / X  lan- 
guage should be used for the eventual code, and so an appropriate translator 
for AMN implementations was incorporated into the toolkit. This tool incor- 
porated program transformation to improve the quality of the final code. A 
coding tool was also provided to assist in the production of the lowest level 
library modules. 

C o n t r o l  B l o c k  g e n e r a t o r .  
The base B-Toolkit includes a utility called the base generator to produce 
a complex specification and its AMN implementation from a high level de- 
scription of the encapsulated state, written in a special definition language. 
A similar facility was required for CICS whereby the software developer can 
give an abstract description of the control blocks needed in his design. The 
control block generator takes this description, and produces a specification 
which encapsulates access to the control block, together with a correspond- 
ing P L / X  implementation. This was required in order to use the standard 
CICS facilities for storage management.  

C D U R U N  g e n e r a t o r .  
The internal interfaces between CICS components (domains) are defined us- 
ing a special language called CDURUN. In order for other parts of CICS to 
be able to use a new component it is necessary to produce a CDURUN def- 
inition for the top level interface. To meet this requirement a generator tool 
was written which produces a CDURUN definition and an AMN specifica- 
tion from a high level description of the interface. An output  from this tool 
is also used to determine the action of the final CICS module construction 
tool. 

M o d u l e  c o n s t r u c t i o n .  
The physical organisation of code into modules in the CICS environment 
often does not correspond to the layered logical structure of a B development. 
Instead, a vertical partitioning is used, in which all the P L / X  code needed to 
implement a group of top-level operations is collected into a single compilable 
file or module. The CICS module construction tool performs this vertical 
partit ioning for a B development by restructuring the B development tree. 
Such a vertical partitioning improves the performance of the final code by 
localising the flow of control. 

T r a c e  f o r m a t t i n g .  
For debugging purposes, particularly during maintenance, CICS standards 
require execution trace entries to be appended to a log file. An oiTline util- 
ity program is used to interpret the trace entries, allowing CICS' internal 
processing to be reconstructed. A facility was added to the B-Toolkit to add 
trace entries into the P L / X  generated from AMN implementations, and to 
produce the corresponding trace interpretation code. 

D u m p  f o r m a t t i n g .  
If an error occurs during CICS execution, or if explicitly requested, a storage 
dump is written to disk. For maintenance purposes, an olTline utility program 



79 

is used to reconstruct the state of each CICS component at the time that  
the dump was taken. To meet this requirement, a facility was added to the 
B-Toolkit to generate code automatically for this utility. 

C o d e  a n n o t a t i o n .  
CICS maintenance requires code to be well annotated. The B-Toolkit trans- 
lation process was extended by adding facilities that produce automatic  an- 
notation, hence increasing the traceability of program fragments back to 
AMN designs. 

T h e  G M L  m a r k u p  too l .  
The base B-Toolkit produces formatted output  documents in the form of 
I~TEX source. IBM, however, uses its own proprietary markup language, 
GML [IBM89], for its documentation. It was therefore necessary to add an 
option to the toolkit to produce GML output  instead of I$TEX. 

The CICS specific tools were incorporated into the same dependency and 
configuration management environment as that  of the base tools in the B-Toolkit. 

Figure 2 shows the interaction of the tools specific to this project and the 
entities that  they exchange. Processes appear as shaded diamond shapes; objects 
acted upon by those processes as rectangles. The rounded box marked 'Layered 
Design Process' embodies all the other work carried out within the base tools of 
the B-Toolkit. 

The ease with which new tools could be added to the B-Toolkit was re- 
markable. This extensibility is achieved in such a way that  all tools constitute a 
complete integrated development environment. The ability to so extend the B- 
Method and supporting tools is a direct consequence of working with a uniform 
syntax in all kernel tools. 

6 A s s e s s m e n t  o f  R e s u l t s  

The estimate at the outset of the project for the number of P L / X  statements 
required to implement the specified function was 15 KPS a, whereas the B de- 
velopment resulted in 20.4 KPS of PL/X.  This last figure includes code that  is 
replicated as a result of the vertical partitioning used during module construc- 
tion, estimated to be approximately 35% ot the total. Normalising by this factor 
gives a figure of 13.3 KPS. Effort expended on the development amounted to 30 
man-months (not including tool development). 

The B development was structured into layers comprising 61 AMN constructs 
(abstract machines and implementations). The top layer specification contained 
30 operations, fanning out into 324 distinct operations in the overall develop- 
ment. Four control blocks were used to define the concrete data structures, con- 
taining a total of 70 data fields. The generated P L / X  comprised 8 modules. 

Despite the complexity of the project, the B-Method proved highly sat- 
isfactory in meeting the functional requirements. Complete functionality was 
achieved down to running code, first in C in a simulated environment, and then 

6 1000 p r o g r a m  s t a t e m e n t s .  
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Fig. 2. Organisation of the CICS-specific tools. 

in P L / X  in the CICS environment.  No data design errors were found in the 
AMN, no coding errors were produced in the code generated from AMN, and 
only easily correctable errors of  omission in algorithmic design were encountered. 

A summary  of  the numbers of  faults found in each development activity is 
found in the Fault Grid [Dic95] in Figure 3. 

The clusters of  errors on the diagram reveal the activities that are prone to 
introducing errors. These are as follows. 

- The creation of  the original Z specification, which was carried out with no 
tool  support apart from a type-checker. The bulk of  these errors where found 
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Handcoding of PL/X libraries~/~\x 
\ /  

Redesign in AMN for P L / X ~  
\ /  

Translation into PL/X~ ~ 

Unit testing~ ~ 

Integration testing~ ~ 
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*For example, I fault 
found in Unit testing 
introduced in AMN 

e development 

Fig. 3. Fault Grid for the CICS deveopment. 

by animation and proof work performed on the AMN after translation. This 
underlines the importance of such tools in assessing the quality of a specifi- 
cation. 

- The hand-coding of the PL/X libraries, which was carried out with limited 
tool support (in the form of the PL/X Coding Tool). 

Note in particular the small number of faults found during testing of the that 
related to the original specification, three in total. The one fault at the peak of 
the grid (where the correction of errors is the most costly) was concerned with 
the invocation of an operation outside of its precondition. 

The integration requirements of the CICS architecture were met successfully 
by the creation of three specific tools: the Control Block Generator, the CDU- 
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RUN Generator and the Module Construction toot. 
The ability to produce code semi-automatically for dump and trace analysis 

tools was considered to be a distinct asset, and saved considerable effort in 
comparison with hand-coding. Also, the propagation of design annotations into 
the code, including traceability information, reduced programming effort. 

In the final review, however, the code fell short of satisfying the non-functional 
requirements detailed below. 

Size.  The generated code exceeded acceptable limits for the CICS environment 
in several respects: 

- The call-by-value parameter passing mechanism increases the require- 
ment for automatic storage, and consequently causes the CICS architec- 
ture limits to be exceeded in some situations. More insight into how to 
use call-by-reference mechanisms is required before program transforma- 
tion techniques can be used successfully to address this problem. 

- Greater  code size implies an increase in the number of variables, and 
a corresponding reduction in the ability of the P L /X  compiler to make 
sensible use Of base registers for optimisation purposes. This problem has 
been partly addressed by adding program transformations which remove 
many local variables used to pass values between operations. 

- The volume of automatically generated annotation in the P L / X  code 
made the source files too large for the CICS library system to handle. 
This problem could be addressed by finding the right balance in the 
amount  of annotation generated. 

P e r f o r m a n c e .  The final code was not considered to be adequately efficient for 
certain critical operations. The reasons for this were: 

- The hierarchical design adopted in the project is reflected in the structure 
of the final code. Where an operation has to access two distinct encap- 
sulated data  items through sub-operations, algorithmic control cannot 
descend below the lowest common ancestor of the two items. The effect 
of this is that  control has to repeatedly descend and ascend through a 
series of layers to effect the operation, thus introducing inefficiency. It 
is possible that  an alternative design could have been found to alleviate 
this problem. The addition of multiple refinement to the B-Method could 
also help in this area. 

- Call-by-value is used in the generated code, sometimes making it nec- 
essary to copy quite large structures on calling functions, with conse- 
quent inefficiency. Program transformations applied at the code genera- 
tion stage went some way to solving this problem by removing redundant 
parameter  passing. 

- Manual optimisation techniques, which would typically be used in asso- 
ciation with traditional development, were not applied. Some of these 
techniques can be automated,  but others, by their very nature, are not 
automatable,  since they require an empirical approach. Manual post-hoc 
modification of generated code is undesirable in that  it invalidates the 
AMN design, hence undermining many of the benefits of the method. 
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Maintenance / Enhancement.  The code was not considered acceptable for 
maintenance and extensibility according to CICS standards, for the following 
reasons: 

- The code, even with annotations, was not comprehensible enough to 
make it modifiable with confidence. Here, efficiency considerations in the 
use of in-line code to avoid function calls adversely affected readability. 

- Modifications to the P L / X  would have to be factored back into the AMN. 
For external logistical reasons, the decision was taken only to maintain 
the code at the P L / X  source level. 

- Logistical concerns raised issues regarding the longevity of the tools and 
the maintenance of relevant skills. 

7 R e c o m m e n d a t i o n s  

Given the stringent constraints imposed by the development environment, a 
compromise between traditional methods and the full B-Method would have 
been more suitable. 

Our recommendation would be to use the base generators and libraries to 
produce an abstract executable prototype in which all major  design decisions 
are cleanly expressed. Without  the need to include implementation details of no 
relevance to the fundamental  data  or algorithmic design, there would be more 
freedom to remain abstract. 

The prototype should be developed using the full B-Method from specifi- 
cation to low-level design, using typechecking and animation at every stage as 
a means of validation. Verification by proof should be carried out on selected 
modules. 

When satisfied with the design, the development should be completed by tra- 
ditional coding methods in compliance with the external requirements, working 
from the lowest level formal design of the prototype. 

8 C o n c l u s i o n  

Never before have tool-supported formal methods been applied to this extent on 
an IBM project of such complexity. A major contributory factor in overcoming 
the considerable challenges encountered was the commitment  of the project team 
working in close cooperation with the tool suppliers. 

Whilst the meeting of non-functional constraints was a considerable chal- 
lenge, overall the application of the B-Method in the CICS project was highly 
successful in addressing the functional requirements of the development. 

Software engineering methods and tools often ignore the problem of non- 
functional requirements. Indeed, it is difficult to conceive of a generic tool suffi- 
ciently flexible in its approach to cater for the diversity of external constraints 
imposed by existing development environments. 

For new developments, however, particularly those without such predeter- 
mined constraints, this project has demonstrated the feasibility of a tool-supported 
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rigorous development ,  encompass ing formal  specification th rough  to au toma t i c  
t rans la t ion into code. 
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