
Applying the B Technologies to CICS

J o n a t h a n Hoare 1
J e r e m y Dick, Dave Neilson and Ib Scrensen 2

1 IBM UK Limited, Hursley
2 B-Core (UK) Ltd., Oxford Science Park

A b s t r a c t . This paper z reports on the experiences of IBM ttursley in
using the Z notation and the B-Method [Abr95] [Abr93] in developing
new function for IBM's CICS product 4 [IBM94].
A major constraint on the project was the need to produce code that
not only corresponded to its required function, but also met a number
of stringent non-functional requirements in areas such as integration,
performance and maintenance.
The Z notation was used to capture the required function, and the re-
sulting specification was hand-translated into AMN. The B-Toolkit, with
project-specific extensions, was then used for the development down to
PL /X code.
The success of this endeavour is discussed here. The use of Z and the
B-Method were very successful in addressing the new functional require-
ments. Meeting the non-functional requirements, however, was more dif-
ficult.

1 I n t r o d u c t i o n

The a p p l i c a t i o n of m a t h e m a t i c a l m e t h o d s to the deve lopmen t of I B M ' s CICS
p r o d u c t s b e g a n in 1982 wi th a co l l abo ra t i on be tween Hurs ley and the P r o g r a m -
ming Research G r o u p at Oxford Univers i ty on the use of the Z n o t a t i o n [Spi89]
[Wor92] for the specif icat ion. In i t i a l ly Z was used in the CICS code r e s t ruc tu r ing
in i t i a t ive [CN88] and since then i t has been used for the speci f ica t ion of mos t
new c o m p o n e n t s of CICS as well as p a r t s of the APE [CNS89].

In th is Z based deve lopment , whi ls t the speci f ica t ion s tage was fo rmal , the
rest of the process d id not change. T h e a im of I B M ' s use of the B - M e t h o d [NH94]
is to reduce the effort in design and coding by ex t end ing the use of m a t h e m a t i c a l
techniques and assoc ia ted tools to cover these la te r s tages, consequent ly a l lowing
developers to concen t ra te on the creat ive aspec ts of sof tware design.

The current p ro jec t began in March 1993, when a s i te l icence for the B-
Too lk i t [B-C93] was o b t a i n e d for Hursley, and a co l l abora t ive con t rac t was set

up wi th B-Core (UK) Ltd. .

3 Parts of this paper are based on [Hoa95].
4 CICS is a t rademark of IBM Corporation.

75

2 T h e B - M e t h o d a n d B - T o o l k i t

The B-Method [NH94] [ALN+91] [Abr95] is a state-based method which uses
the Abstract Machine Notation (AMN). Invented by :I-R Abrial, the notation is
based broadly on the same mathematics as Z (Zermelo set-theory and predicate
logic), extended by a generalised notion of substitution. It contains a very small
imperative programming language augmented by a number of specification con-
structs for expressing non-determinism. AMN semantics is compact and thus
tractable for sizable developments.

AMN does not address concurrency. The aspects of systems addressed by the
B-Method are similar to those of Z and VDM.

AMN admits three constructs: MACHINES which are expressed using only spec-
ification constructs, REFINEMENTS which may mix specification constructs with
imperative statements, and IMPLEMENTATIONS in which all non-determinism is
resolved through the use of imperative constructs only. Implementations are very
easy to translate into commonly used programming languages.

The B-Method encourages software development in layers. Top level specifi-
cations are implemented in terms of lower level specifications, or designs which
contain more detail. Thus the process of refinement decomposes abstract ma-
chines into smaller machines which are separately implementable through full
information hiding. The verification conditions that must be proven for correct
refinements are stipulated by the method.

The B-Toolkit [B-C93] provides a suite of programs that support the B-
Method. These include a parser, typechecker, animator, proof obligation gener-
ator, proof tools and code translators. The three main products of a B devel-
opment are code, design documentation and proof listings. The tools co-operate
in a rigorously controlled programming environment driven by a dependency
manager, which ensures the consistency of these three main products.

A major feature of the project reported in this paper is the extension of the B-
Toolkit to accommodate the CICS development environment. These extensions
are described in detail in Section 5.

The B-Method and B-Toolkit were selected as they were considered at the
time to represent the only practical approach to formal refinement.

3 A p p r o a c h

This project began with what has become standard practice in the CICS organ-
isation: the production of an initial requirements document called the Product
Level Design (PLD) that laid out the requirements which were to be addressed
by the proposed component and included an abstract Z specification of the new
function which was to be provided. Also included were details of some non-
functional characteristics that needed agreement prior to the design phase.

In order to link into the B-Method, the Z specification in the PLD was rewrit-
ten in AMN, and the B-Toolkit animator was used to validate the hand trans-
lation. A certain amount of proof work was also carried out at the specification
level at this stage.

76

An AMN design was then created to prototype the system against a model
of the underlying API consisting of a set of C libraries. C code was generated
from the prototype design, run and tested.

Satisfied with the overall design, the development team then proceeded to
redevelop towards the final target language, PL/X, a PL/1-1ike IBM proprietary
systems programming language. To achieve this~ a new set of B-Toolkit system
libraries had to be hand-coded in PL/X to form the target of the development.

Using a specially developed translator, PL/X was generated as the final code.
This was subject to unit test, integration test and system test.

Figure 1 summarises the approach taken, showing the dependencies in the
various activities undertaken.

Creation of Z specification

l
Translation of Z into AMN

Validation by Animation

Verification by pr

AMN prototype development Handeoding of PL/X libraries

t i --,,. 1 /
Testing of C prototype Redesign in AMN for PL/X

1
Translation into PL/X

l
Unit testing

l
Integration testing

1
System test

Fig. 1. The development approach adopted.

77

4 N o n - f u n c t i o n a l R e q u i r e m e n t s

With an installed customer base of in excess of 30,000 licences, CICS is a mature
product with a well established architecture and support infrastructure to which
any further development must conform. For the application of a new method
to CICS development, as described in this paper, this presents a number of
challenges.

Several impor tan t non-functional requirements are not normally stated in the
PLD, but are implicit for any new development. Amongst these are the following:

A r c h i t e c t u r e . The CICS architecture imposes a number of constraints, includ-
ing the use of P L / X as the target language, CDURUN 5 definitions for inter-
faces between components, CICS storage management facilities (as opposed
to native operating system functions), and the general use of CICS facilities
for synchronisation and concurrency control.

Size. Various limits on source and object code size for CICS modules are im-
posed by tools used in CICS development, such as the l ibrary system and
compilers. CICS standards and architecture also set bounds on certain pa-
rameters, such as automat ic storage. In addition, code size can have impli-
cations for execution performance of the resulting programs.

P e r f o r m a n c e . Typically, a CICS component will have many operations, a small
number of which are identifiable as performance critical. It is impor tant
that the modules implementing these operations are tuned to achieve a high
degree of efficiency.

M a i n t e n a n c e . An extensive maintenance process for CICS (involving hundreds
of service personnel, field engineers and others) is in place, and it would be
unrealistic to expect a radically new approach to be adopted. Code gener-
ated in any development must conform to existing maintenance standards,
including the use of s tandard trace and debugging facilities.

E n h a n c e m e n t . Any new development of CICS must form a sound basis for
future extensions in later releases, including the ability to add new function
to an existing area or modify the design if necessary. It is therefore essential
that the designs, and code where appropriate, are in a form which would
allow such extensions to be made readily.

5 A d d r e s s i n g N o n - f u n c t i o n a l R e q u i r e m e n t s

An essential feature of this project has been the availability of a comprehensive
suite of tools to support each stage of the development process. A number of
tools specific to the development environment were created in parallel with the
CICS design work and there has been a significant amount of feedback from the
project in this area, influencing not only the evolution of the CICS specific tools,
but also parts of the base toolkit.

This section describes those elements of the toolkit which were developed in
order to meet specific non-functional requirements.

5 A high-level language for the definition of CICS internal interfaces.

78

T h e P L / X t r a n s l a t o r s a n d l i b r a r y coding tools .
An implicit non-functional requirement was that the IBM internal P L / X lan-
guage should be used for the eventual code, and so an appropriate translator
for AMN implementations was incorporated into the toolkit. This tool incor-
porated program transformation to improve the quality of the final code. A
coding tool was also provided to assist in the production of the lowest level
library modules.

C o n t r o l B l o c k g e n e r a t o r .
The base B-Toolkit includes a utility called the base generator to produce
a complex specification and its AMN implementation from a high level de-
scription of the encapsulated state, written in a special definition language.
A similar facility was required for CICS whereby the software developer can
give an abstract description of the control blocks needed in his design. The
control block generator takes this description, and produces a specification
which encapsulates access to the control block, together with a correspond-
ing P L / X implementation. This was required in order to use the standard
CICS facilities for storage management.

C D U R U N g e n e r a t o r .
The internal interfaces between CICS components (domains) are defined us-
ing a special language called CDURUN. In order for other parts of CICS to
be able to use a new component it is necessary to produce a CDURUN def-
inition for the top level interface. To meet this requirement a generator tool
was written which produces a CDURUN definition and an AMN specifica-
tion from a high level description of the interface. An output from this tool
is also used to determine the action of the final CICS module construction
tool.

M o d u l e c o n s t r u c t i o n .
The physical organisation of code into modules in the CICS environment
often does not correspond to the layered logical structure of a B development.
Instead, a vertical partitioning is used, in which all the P L / X code needed to
implement a group of top-level operations is collected into a single compilable
file or module. The CICS module construction tool performs this vertical
partit ioning for a B development by restructuring the B development tree.
Such a vertical partitioning improves the performance of the final code by
localising the flow of control.

T r a c e f o r m a t t i n g .
For debugging purposes, particularly during maintenance, CICS standards
require execution trace entries to be appended to a log file. An oiTline util-
ity program is used to interpret the trace entries, allowing CICS' internal
processing to be reconstructed. A facility was added to the B-Toolkit to add
trace entries into the P L / X generated from AMN implementations, and to
produce the corresponding trace interpretation code.

D u m p f o r m a t t i n g .
If an error occurs during CICS execution, or if explicitly requested, a storage
dump is written to disk. For maintenance purposes, an olTline utility program

79

is used to reconstruct the state of each CICS component at the time that
the dump was taken. To meet this requirement, a facility was added to the
B-Toolkit to generate code automatically for this utility.

C o d e a n n o t a t i o n .
CICS maintenance requires code to be well annotated. The B-Toolkit trans-
lation process was extended by adding facilities that produce automatic an-
notation, hence increasing the traceability of program fragments back to
AMN designs.

T h e G M L m a r k u p too l .
The base B-Toolkit produces formatted output documents in the form of
I~TEX source. IBM, however, uses its own proprietary markup language,
GML [IBM89], for its documentation. It was therefore necessary to add an
option to the toolkit to produce GML output instead of I$TEX.

The CICS specific tools were incorporated into the same dependency and
configuration management environment as that of the base tools in the B-Toolkit.

Figure 2 shows the interaction of the tools specific to this project and the
entities that they exchange. Processes appear as shaded diamond shapes; objects
acted upon by those processes as rectangles. The rounded box marked 'Layered
Design Process' embodies all the other work carried out within the base tools of
the B-Toolkit.

The ease with which new tools could be added to the B-Toolkit was re-
markable. This extensibility is achieved in such a way that all tools constitute a
complete integrated development environment. The ability to so extend the B-
Method and supporting tools is a direct consequence of working with a uniform
syntax in all kernel tools.

6 A s s e s s m e n t o f R e s u l t s

The estimate at the outset of the project for the number of P L / X statements
required to implement the specified function was 15 KPS a, whereas the B de-
velopment resulted in 20.4 KPS of PL/X. This last figure includes code that is
replicated as a result of the vertical partitioning used during module construc-
tion, estimated to be approximately 35% ot the total. Normalising by this factor
gives a figure of 13.3 KPS. Effort expended on the development amounted to 30
man-months (not including tool development).

The B development was structured into layers comprising 61 AMN constructs
(abstract machines and implementations). The top layer specification contained
30 operations, fanning out into 324 distinct operations in the overall develop-
ment. Four control blocks were used to define the concrete data structures, con-
taining a total of 70 data fields. The generated P L / X comprised 8 modules.

Despite the complexity of the project, the B-Method proved highly sat-
isfactory in meeting the functional requirements. Complete functionality was
achieved down to running code, first in C in a simulated environment, and then

6 1000 p r o g r a m s t a t e m e n t s .

80

Control Block I] Domain
Definitions Definition

I Imported
[Specifications

t,, r i I /
l I i I

Library /' i
x l I I
is ['" Standard)I

Library
~t i x x x

I x x �9
PL/X IJbrafies "x ~s, ~x

Imported
Code

Specification

] [PL/XCode] I CIDCeSJ::: e

PL/X Code
Modules

CDURUN I
Interfaces

Fig. 2. Organisation of the CICS-specific tools.

in P L / X in the CICS environment. No data design errors were found in the
AMN, no coding errors were produced in the code generated from AMN, and
only easily correctable errors of omission in algorithmic design were encountered.

A summary of the numbers of faults found in each development activity is
found in the Fault Grid [Dic95] in Figure 3.

The clusters of errors on the diagram reveal the activities that are prone to
introducing errors. These are as follows.

- The creation of the original Z specification, which was carried out with no
tool support apart from a type-checker. The bulk of these errors where found

81

Creation of Z specification~
\ v p

Translation of Z into A M N . ~
\ - , / ,

" Validation by Animation~/~
\ /

Verification by proof~,~

AMN prototype development~

Testing of C prototype~/~
\ /

Handcoding of PL/X libraries~/~\x
\ /

Redesign in AMN for P L / X ~
\ /

Translation into PL/X~ ~

Unit testing~ ~

Integration testing~ ~

System test~/~

*For example, I fault
found in Unit testing
introduced in AMN

e development

Fig. 3. Fault Grid for the CICS deveopment.

by animation and proof work performed on the AMN after translation. This
underlines the importance of such tools in assessing the quality of a specifi-
cation.

- The hand-coding of the PL/X libraries, which was carried out with limited
tool support (in the form of the PL/X Coding Tool).

Note in particular the small number of faults found during testing of the that
related to the original specification, three in total. The one fault at the peak of
the grid (where the correction of errors is the most costly) was concerned with
the invocation of an operation outside of its precondition.

The integration requirements of the CICS architecture were met successfully
by the creation of three specific tools: the Control Block Generator, the CDU-

82

RUN Generator and the Module Construction toot.
The ability to produce code semi-automatically for dump and trace analysis

tools was considered to be a distinct asset, and saved considerable effort in
comparison with hand-coding. Also, the propagation of design annotations into
the code, including traceability information, reduced programming effort.

In the final review, however, the code fell short of satisfying the non-functional
requirements detailed below.

Size. The generated code exceeded acceptable limits for the CICS environment
in several respects:

- The call-by-value parameter passing mechanism increases the require-
ment for automatic storage, and consequently causes the CICS architec-
ture limits to be exceeded in some situations. More insight into how to
use call-by-reference mechanisms is required before program transforma-
tion techniques can be used successfully to address this problem.

- Greater code size implies an increase in the number of variables, and
a corresponding reduction in the ability of the P L /X compiler to make
sensible use Of base registers for optimisation purposes. This problem has
been partly addressed by adding program transformations which remove
many local variables used to pass values between operations.

- The volume of automatically generated annotation in the P L / X code
made the source files too large for the CICS library system to handle.
This problem could be addressed by finding the right balance in the
amount of annotation generated.

P e r f o r m a n c e . The final code was not considered to be adequately efficient for
certain critical operations. The reasons for this were:

- The hierarchical design adopted in the project is reflected in the structure
of the final code. Where an operation has to access two distinct encap-
sulated data items through sub-operations, algorithmic control cannot
descend below the lowest common ancestor of the two items. The effect
of this is that control has to repeatedly descend and ascend through a
series of layers to effect the operation, thus introducing inefficiency. It
is possible that an alternative design could have been found to alleviate
this problem. The addition of multiple refinement to the B-Method could
also help in this area.

- Call-by-value is used in the generated code, sometimes making it nec-
essary to copy quite large structures on calling functions, with conse-
quent inefficiency. Program transformations applied at the code genera-
tion stage went some way to solving this problem by removing redundant
parameter passing.

- Manual optimisation techniques, which would typically be used in asso-
ciation with traditional development, were not applied. Some of these
techniques can be automated, but others, by their very nature, are not
automatable, since they require an empirical approach. Manual post-hoc
modification of generated code is undesirable in that it invalidates the
AMN design, hence undermining many of the benefits of the method.

83

Maintenance / Enhancement. The code was not considered acceptable for
maintenance and extensibility according to CICS standards, for the following
reasons:

- The code, even with annotations, was not comprehensible enough to
make it modifiable with confidence. Here, efficiency considerations in the
use of in-line code to avoid function calls adversely affected readability.

- Modifications to the P L / X would have to be factored back into the AMN.
For external logistical reasons, the decision was taken only to maintain
the code at the P L / X source level.

- Logistical concerns raised issues regarding the longevity of the tools and
the maintenance of relevant skills.

7 R e c o m m e n d a t i o n s

Given the stringent constraints imposed by the development environment, a
compromise between traditional methods and the full B-Method would have
been more suitable.

Our recommendation would be to use the base generators and libraries to
produce an abstract executable prototype in which all major design decisions
are cleanly expressed. Without the need to include implementation details of no
relevance to the fundamental data or algorithmic design, there would be more
freedom to remain abstract.

The prototype should be developed using the full B-Method from specifi-
cation to low-level design, using typechecking and animation at every stage as
a means of validation. Verification by proof should be carried out on selected
modules.

When satisfied with the design, the development should be completed by tra-
ditional coding methods in compliance with the external requirements, working
from the lowest level formal design of the prototype.

8 C o n c l u s i o n

Never before have tool-supported formal methods been applied to this extent on
an IBM project of such complexity. A major contributory factor in overcoming
the considerable challenges encountered was the commitment of the project team
working in close cooperation with the tool suppliers.

Whilst the meeting of non-functional constraints was a considerable chal-
lenge, overall the application of the B-Method in the CICS project was highly
successful in addressing the functional requirements of the development.

Software engineering methods and tools often ignore the problem of non-
functional requirements. Indeed, it is difficult to conceive of a generic tool suffi-
ciently flexible in its approach to cater for the diversity of external constraints
imposed by existing development environments.

For new developments, however, particularly those without such predeter-
mined constraints, this project has demonstrated the feasibility of a tool-supported

84

rigorous development , encompass ing formal specification th rough to au toma t i c
t rans la t ion into code.

R e f e r e n c e s

[Abr93]
[Abr95]
[ALN+91]

J.R. Abrial. B-Technology technical overview. 1993.
J.R. Abrial. The B-Book - Assigning Programs to Meanings. 1995.
J.R. Abrial, M.K.O. Lee, D.S. Neilson, P.N. Scharbach, and I.H. Sorensen.

The B-method (softwaxe development). In W.J. Prehn, S.; Toetenel, editor,
VDM 91. Formal Software Development Methods. ~th International Sympo-
sium of VDM Europe Proceedings., volume 2, pages 398-405. BP Res., Sun-
bury Res. Centre, Sunbury-on-Thames, UK, Springer-Verlag, Berlin, Ger-
many, October 1991.

[B-C93]

[CUSS]

[CNS89]

[Dic95]

[rloa95]

[IBM89]

[IBM94]

[NH94]

[Spi89]

[Wor92]

The B-method is a formal software development process for the production
of highly reliable, portable and maintainable software which is verifiably
correct with respect to its functional specification. The method uses the
abstract machine notation (AMN) as the language for specification, design
and implementation within the process. AMN is a sugared and extended
version of E.W. Dijkstra's (1976), guarded command notation with built-in
structuring mechanisms for the construction of large systems. The method
is supported over the entire spectrum of activities from specification to im-
plementation by a set of computer-aided tools. (3 Refs).
B-Core (UK) Ltd. B-Toolkit User Manual. (available from B-Core (UI 0
Ltd. on request), 1993.
B. P. Collins and C. J. Nix. The use of software engineering, including the Z
notation in the development of CICS. Quality Assurance, 14(3), September
1988.
B. P. Collins, J. E. Nicholls, and I. H. Sorensen. Introducing formal meth-
ods: The CICS experience with Z. IBM Technical Report TR12.260, 1989.
Dick, J. Fault grids: another way of presenting fault counts. Software Reli-
ability and Metrics Club Newsletter, (16), 1995.
J. P. Hoare. Application of the B-Method to CICS. In J. P. Bowen and
M. Hinchey, editors, Applications of Formal Methods. Prentice Hall Interna-
tional, 1995.
IBM Corporation. The IBM Publishing Systems BookMaster General Infor-
mation. Manual GC3~-5006, 1989.
IBM Corporation. CICS Family: General Information. Manual GC33-0155,
1994.
D. S. Neilson and Sorensen I. H. The B-technologies: A system for computer
aided programming. In U. H. Engberg, K. G. Larsen, and P. D. Mosses, edi-
tors, Proceedings of the 6th Nordic Workshop on Programming Theory, pages
18-35. B-Core (UK) Ltd., BRICS Notes Series, Univ. Aarhus, Denmark, 17-
19 October 1994.
J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, Hemel
Hempstead, 1989.
J. B. Wordsworth. Software Development with Z: a Practical Approach to
Formal Methods in Software Engineering. Addison-Wesley, 1992.

