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ABSTRACT The utility of directly executing formal specifications is 
briefly touched upon and the concept of exhaustive search as a means 
of execution is introduced. A mechanism for improving the efficiency 
of such searches is presented in some detail. Finally, the results of an 
implementation of the mechanism are presented. 
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1 Introduction 

One common prescription for curing the ills of software development involves 
the development of a formal specification in a language such as Z [Spi89]. 
However, beyond the clarity brought about by the very act of writing a formal 
specification, it is unclear what additional benefits the development of a specifica- 
tion actually brings. 

One possible benefit arises if one is able to execute the specification. Such an exe- 
cution can be used to validate and help debug a specification. Unfortunately, it is 
not obvious how to directly execute a Z specification. One approach [Valgl] 
involves restricting Z to a constructive (and therefore executable) subset. 

Hayes and Jones [HJ89] argue that forcing any form of determinism into the spec- 
ification is a disservice, in that it may lead to restrictions in the programs that meet 
the specification. They provide numerous examples where this type of construc- 
tive style leads to over-specification. 

Fuchs [Fu92], in response, argues that any finite specification can be executed, 
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albeit inefficiently, by performing a search over the possible results. Ignoring 
quantification for the moment, it is straightforward and efficient to test whether a 
particular case is a legal execution of a specification of some operation. Thus if a 
system could enumerate all possible cases, checking each case against the specifi- 
cation, it could find all possible executions. Such a search can be easily extended 
to support both universal and existential quantification. 

We have built just such a system, called Nitpick I UD96]. The goal of Nitpick is to 
allow interactive exploration of formal specifications by generating instances of 
states satisfying invariants, executions of operations and counterexamples of 
claims about a specification. As all of these scenarios amount to finding models of 
a formula, this paper will focus only the ability to discover valid executions. 

To force a finite search space, we require the user to artificially restrict the scope 
of the search by limiting the number of elements of each type under considera- 
tion. Because of this limitation, Nitpick is not a verifier, since it can never search 
what is in general an infinite state space. Rather it is more like a debugger or 
tester, allowing the user to improve the specification, without ever certifying per- 
fection. 

Even for a small specification and small scope, the search can easily require check- 
ing 1020 total possible cases and we have seen examples (still simple) where the 
total space has approached 1040 total possible cases. The naive approach to fully 
searching these entire case spaces is clearly untenable. 

Our approach in Nitpick is to employ a collection of sound case space reduction 
techniques. We currently have implemented three such techniques: derived vari- 
able detection UD95], isomorph elimination UJD96] and enumeration tree prun- 
ing. With derived variable detection, we detect relationships that must hold with- 
in the specification and can be determined constructively. This allows us to 
remove certain variables from the enumeration space, constructing their values 
from the other variables which are enumerated. Isomorph elimination removes 
cases which are only relabelings of each other. The remainder of this paper focus- 
es on the concept, implementation and effectiveness of enumeration tree pruning, 
including its interaction with isomorph elimination. 

2 Overview 

Nitpick evaluates specifications and claims written in a simplified form of the Z 
specification language called NP,, that retains the essential non-constructive nature 
of Z Ua96]. In particular, formulas are built from simple relation and set opera- 
tors, composed with and, or, not, =* (logical implication) and r (logical equiva- 
lence). Formulas themselves are grouped into schemas, which are named collec- 

1 The Nitpick specification analyzer is freely available (in binary form for the Macintosh) 
from the authors or from http://www.cs.cmu.edu/-nitpick. 
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tions of formulas with associated variable declarations. Schemas are used to 
describe legal states of data structures as well as appropriate transitions of those 
data structures. Claims about the states are written in essentially the same formu- 
la language, allowing the user to make assertions about the specification. 

Although the Nitpick tool is built around the Z specification language, this reduc- 
tion technique is not limited just to Z specifications. Rather, it could be applied 
more broadly to find satisfying assignments for the variables in many logical 
expressions. All we rely on is the standard logical connectives and the ability to 
efficiently evaluate the terms for a given assignment. 

An assignment is a mapping from each free variable found in the specification to a 
value. Typically, in the execution of an operation, some of these variables repre- 
sent the state prior to execution while others represent the final state after the exe- 
cution of the operation. An assignment which satisfies all of the restrictions of the 
specification is called a satisfying assignment. We use the term case to describe a 
single assignment, satisfying or not. When looking for sample executions, a satis- 
fying assignment is an interesting case. 

To find these assignments, Nitpick identifies the free variables involved in the 
specification, enumerates all of the possible values for each of those variables 
(based on the scope restrictions provided by the user), and constructs an enumer- 
ation tree, with each level corresponding to a single free variable. The specifica- 
tion is then evaluated against each leaf and the satisfying assignments are reported 
back to the user. 

As a simple example, consider the formula 

a={}ora=borb=c 
with a, b and c each declared elsewhere to be sets of type T. For this example there 
are three free variables, a, b and c. Assuming that T is defined to consist only of 
the values tl and t2, a possible enumeration tree can be seen in Figure 1. 

Given this simple formula and this enumeration tree, the enumeration tree can be 
pruned in an obvious way. If the first portion of the formula (a = {}) is tested first 
for each value of a, it is clear that when a is empty the value of the entire formula 
is true and does not depend on which values of b or c are chosen. Because of this, 
the entire leftmost sub-tree below a can be pruned. Similarly, ira is equal to b, the 
value of the formula is independent of the value chosen for c and the appropriate 
sub-trees of b can be pruned. The reduced tree is shown in Figure 2. 

Note that this reduction does not occur statically, that is merely by examining the 
specification. On the contrary, at each node of the enumeration tree, starting from 
the root, the specification is partially evaluated given the variables bound thus far. 
If this partial assignment gives a definite value to the formula as a whole, the tree 
traversal can be safely terminated and the tree can be pruned at that node. 
Otherwise, each child of that node must be evaluated for possible pruning. 
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Because of this, the pruning is done on the fly while the search is being performed. 

Something could easily have gone wrong with this short circuiting of the tree. If c 
had been defined as the first level of the tree, only a small amount of pruning 
would have been possible. 

The goal of this reduction is to automatically remove as many leaves from the 
enumeration tree as possible. This should occur regardless of the order and struc- 
ture of the specification that the user provides to Nitpick. 

To maximize the pruning, the implementation must the optimal ordering of the 
variables in the enumeration tree. This is non-trivial to compute, so we approxi- 
mate this, seeking at least a "good" ordering. This is in addition to the work 
required to actually prune the enumeration tree. 

To understand this analysis, it is helpful to understand more about how Nitpick 
actually executes specifications. Logically, there are three steps Nitpick performs 
to evaluate a specification. First, the formula is analyzed and compiled into a sim- 
ple function which takes a full assignment of the variables as its input and returns 
a boolean indicating whether this assignment satisfies the specification. Next, the 
full set of potential values for each variable is computed 2 and these values are used 
to define the enumeration tree. Finally all combinations of these values are tested 
by checking partial and full assignments for each node in the enumeration tree. 

The enumeration tree, of course, need never be held in memory in its entirety. 
Using a depth first search, only an indicator of the current value for each variable 
need be maintained. Because of this, the memory utilization of a Nitpick execu- 
tion is minimal. 

3 Finding Determinants 

Discovering the variable ordering begins with discovering the determinants of the 
formula. Informally, a determinant is a sub-formula which can, by itself, deter- 
mine the value of the entire formula. Some determinants only determine the value 
of the formula if they are true and others only when they are false. We call these 
true and false value determinants respectively. 

To give a more formal definition of determinants, it is necessary to give a more 
formal definition of a formula. Although the following grammar is obviously sim- 
plified, it is sufficient for purposes here, since this reduction is independent of the 
term structure of the language. This simplified grammar is 

Formula = Formula and  Formula I Formula or  Formula I 

not Formula I predicate(x~ . . . . .  Xn ) 

2 To further reduce our memory requirements, we do not fully enumerate the set of values 
for most variables. Instead we initially compute the number of possible values and provide 
simple calculations which can compute each value quickly from a simple ordinal. 
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where predicate represents a function which takes n variables as its arguments and 
returns a boolean. 

The sets of true and false value determinants for a formula F can then be defined 
as the smallest sets of  sub-formulas of  F satisfying: 

FE trueDeterms and F ~ falseDeterms 

if f E trueDeterms and f = g or h 

then gE trueDeterms and h E trueDeterms 

if f ~ falseDeterms and f = g and h 

then g~ falseDeterms and h E falseDeterms 

if f E trueDeterms and f = not g 

then g~ falseDeterms 

if f E falseDeterms and f = not g 

then g~ trueDeterms 

This formalism can easily be extended to include the entire NP language (as well 
as many others). The logical implication operator (~)  can be converted into not 
and or in the standard manner, f ~ g = not f or g. All of the standard relational 
and set tests can be modelled as predicates, with specialized predicates to handle 
more complicated expressions. 

For our example above, a = {} or (a -- b or b = c), the sets of determinants are 

trueDeterms = { a = {}, a = b, b - -  c }  

falseDeterms = { a = { } or (a = b or b = c) } 

Note that it is possible for a formula to be both a true value and a false value 
determinant. Although not true in the example above, it is even possible for a for- 
mula to be a member of both miminal determinant sets. When this occurs, all 
other portions of the formula are extraneous since they do not effect the ultimate 
evaluation of the formula. As will be seen later, however, these other determinants 
may be useful to reduce the number of  cases needed to be considered. 

4 Variable and Formula Ordering 

To find a good ordering of  the variables, two special functions are used: one to 
estimate the chance of a sub-formula being known to be true given values for a 
subset of the variables and a similar one to estimate the chance of it being known 
to be false. These functions, called known value estimators, estimate what per- 
centage of all assignments will make a given formula true or false, given knowl- 
edge of only a subset of  variables. 
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selectedVariables := empty 
var iableOrder ing := empty 
remainingVariables = all free variables 
whi le not remainingVariables = {} 

bestChance := 0 
foreach var iable v in remainingVariables 

chance := 0 
testSet := selectedVariables u {v} 
foreach true determinant d 

chance := 1.0 - ((1.0 - chance) * 
( 1 . 0  - trueValueEstimator(d,testSet))) 

end foreach 
foreach false determinant d 

chance := 1.0 - ((1.0 - chance) * 
( 1 . 0  - falseValueEstimator(d,testSet))) 

end foreach 
if chance > bestChance 

bestVariable := v 
bestChance := chance 

end if 
end foreach 
if bestChance = 0 

/* no best selected yet, so choose an element */ 
bestVariable := choose (remainingVariables) 

end if 
remainingVariables := remainingVariables \ {bestVariable} 
selectedVariables := selectedVariables u {bestVariable} 
var iableOrder ing := append(variableOrdering,bestVariable) 

end whi le 

Figure 3. Simple Variable Ordering Algorithm 

For example, the true known value estimator may estimate that the formula 
a = (} will be true 12.5% of the time if the set of known variables contains a. If 
the set of known variables was {b, c} however, it would estimate a 0% chance of 
knowing that the formula was true. 

With these two functions, Nitpick performs a simple search to discover a good 
ordering of the variables. The algorthm for this search is given in Figure 3. The 
search is begun by using these functions to check each of the determinants against 
each single variable. The single variable with the aggregate best chance to induce 
tree pruning is thus identified. This process is then repeated, checking each 
remaining variable, in combination with the variables already selected, for their 
chance of pruning each determinant. 

If at any point, no single variable provides any additional opportunities for prun- 
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ing the enumeration tree, the full algorithm also checks all pairs of variables. If 
any pair gives opportunities for pruning while neither individual variable offers 
any, either variable can be chosen without preference. For performance reasons, 
we do not currently consider triples or larger groups of variables. 

If no best variable is found, we apply some heuristics to determine the best candi- 
date, implemented by our choose function from Figure 3. Our best heuristic to 
date is to take the variable with the smallest set of possible values, as this will cre- 
ate the cheapest tree if pruning does occur. Finally, we just arbitrarily choose one. 

Currently, we use a very rough approximation for the known value estimators. 
The first check, of course, verifies that enough variables are defined to have any 
knowledge of the value of the formula. Where sufficient variables are defined, we 
use some very rough hardwired approximations, such as estimating boolean 
equality as 1/2 true and 1/2 false, while set equality is estimated at 1/8 true and 7/8 
false 3. 

Coming back to our original example, a = {) or a = b or b = c, the ordering 
process can be easily demonstrated. During the first iteration, it is determined that 
a has a 1/8 chance of being true for the determinant a = () ,  while no other single 
variable could give a value to any other determinant. Therefore, a will be the first 
variable enumerated. During the second iteration, it is seen that the pair of vari- 
ables (a, b) has an approximate 1/8 chance of making a = b true (in addition to 
the a = {} chance), whereas the pair {a, c} could not determine any new deter- 
minants. The variable ordering is now determined to be <a, b, ? >. Since there is 
only a single variable remaining, no additional iterations are required and the final 
ordering is <a, b, c >, which is in fact the optimal variable ordering for this sim- 
ple example. 

Given a variable ordering, the appropriate ordering of determinants can now be 
defined. To test a single case, the determinants will be checked in this order, halt- 
ing when the value of the formula is first known (i.e. when a determinant has been 
evaluated to its determining value).To maximize pruning, we need to evaluate 
those determinants which are well defined higher in the enumeration tree before 
those that are only well defined lower in the tree. 

To implement this ordering, each determinant, whether true or false value, is 
tagged with the level of the lowest variable in the enumeration tree which is 
required by the determinant. They are then sorted, highest level first, based on 
these tags so that they may be evaluated in that order. 

3 The values for structured types, such as sets and relations, are based on an assumed car- 
dinality of three, which is the default for the scope settings. It remains to be seen whether 
refining these values by using the actual scope restrictions will improve the orderings. 
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foreach variable v 
resetValue (v) 

variableLevel := 1 
done := false 
repeat 

while variableLevel <= numVariables 
/* Check Determinants */ 
foreach determinant d where tag (d) = variableLevel 

if eval (d,case) = determingValue (d) 
goto valueDetermined 

/* Nothing determined yet */ 
variableLevel := variableLevel + 1 
continue while loop 

valueDetermined: 
displayCase (case,formula) 
repeat 

v := variables[variableLevel] 
if more Values (v) 

nextValue (v) 
exit repeat 

else 
resetValue (v) 
variableLevel := variableLevel - 1 

until variableLevel = 0 
if variableLevel = 0 

done := true 
end while 

/* Got to a leaf - Start back up */ 
variableLevel := variableLevel + 1 
repeat 

v := variables[variableLevel] 
if moreValues (v) 

nextValue (v) 
exit repeat 

else 
resetValue (v) 
variableLevel := variableLevel - 1 

until variableLevel = 0 
if variableLevel = 0 

done := true 
until done 

Figure 4. Partial Depth Pruning Search Algorithm 
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foreach variable v 
resetValue (v) 

variableLevel := numVariables 
done := false 
repeat 

/* Check Determinants */ 
foreach determinant d in order 

if eval (determinant,case) = determiningValue (d) 
variableLevel := tag (d) 
exit foreach 

displayCase (case,formula) 

/* Find next unpruned case */ 
repeat 

v := variables[variableLevel] 
if moreValues (v) 

nextValue (v) 
exit repeat 

else 
resetValue (v) 
variableLevel := variableLevel- 1 

until variableLevel = 0 
if variableLevel = 0 

done := true 
until done 

Figure 5. Full Depth Pruning Search Algorithm 

5 Pruning The Tree 

To prune the tree, we want to find the highest nodes in the enumeration tree for 
which the value of the formula is known. This can be easily determined using a 
pre-order walk of the tree. At each node of the enumeration tree, a subset of the 
determinants is evaluated. Only the determinants that have been associated with 
this level of the tree need to be evaluated, i.e. those determinants which use the 
variable corresponding to this level, but do not reference any lower variables. 
Having already sorted the determinants, this set is trivially recognized. 

If any of these determinants do in fact determine the value of the formula, the 
enumeration tree can be pruned here, ignoring all descendent nodes. If the for- 
mula is not resolved at this node, each descendant node in turn must be similarly 
checked. 

As noted earlier, the full enumeration tree is never, of course, maintained in mem- 
ory. Instead, only a means for determining the next value for each variable is nec- 
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essary. Pruning the tree at a given level simply involves choosing the next value for 
the variable at the appropriate level, and resetting (starting back at the first value) 
the variable at each subsequent level in the "tree". The algorithm for searching the 
tree is given in Figure 4. 

Partly for implementation reasons, Nitpick actually does a full enumeration down 
to a leaf before evaluatuing any of the determinants. This approach has the side 
effect of always providing a full assignment of variables, even if their values are 
not significant to the example discovered. 

To make the evaluation of a single case as efficient as possible, Nitpick compiles 
the formula (currently into a simple interpretable stream). The code is generated 
in the order that was determined above. The state of each logical connective is 
modelled by position in the code, with a single branch in the code mapping to 
each logical connective (and, or, etc.). To determine where pruning can occur, the 
generated code actually tracks which variables have been used. 

This variable tracking is done by tagging each branch in the generated code with 
the level of the lowest variable used in determining this branch. The modified 
algorithm for doing full depth searches with pruning is given in Figure 5. 

6 Measured Reductions 

This approach to reduce the state explosion has been implemented as a part of 
Nitpick. Nitpick consists of about 40,000 lines of C code and runs on Macintosh 
computers. Although we have not found instances where it is advantageous to 
turn off any of the space reductions techniques, we do allow them to be disabled 
for research purposes. 

To illustrate the effectiveness of this approach, we measured the search space with 
and without the tree pruning reduction for three different small to moderate 
example specifications, each run with a smaller and larger scope setting. The Style 
example is a simple abstraction of a word processing paragraph style mechanism; 
the Phone example is a toy specification modelling call forwarding in a phone sys- 
tem; and the Desktop example models the move operation for the Macintosh 
desktop in the face of aliases. These examples range in size from fifty to a hundred 
lines of NI' specification. For all of these runs, the total memory utilized by 
Nitpick was less than a megabyte all of which was allocated statically at compile 
time. 

The results of these measurements are shown in Table 1. In this table, the # "Cars 
column gives the number of free variables enumerated in the example. Space Size 
gives the total state size that would have to be searched without pruning. Search 
Size gives the number of states that remained after pruning. Time give the time in 
seconds (s), minutes (m) or hours (h) that the pruned search required when run on 
a Power Macintosh 7500. Improv is the (linear) improvement factor gained from 
the pruning. Log Ratio is the ratio of the logs of the Search Size and Space Size 
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Example Scope # Vats Space Size Search Size Time Improv Log Ratio 

Style Small 8 9.8E8 4.6 E3 0.9 s 105 0.41 
Style Large 8 1.7E14 6.5 E6 12m 107 0.46 
Phone Small 3 2.9E5 5.2 E4 31s 6 0.87 
Phone Large 3 6.5E8 5.1E7 4h 10 0.94 
Desktop Small 6 7.9E6 1.1E3 1.7s 104 0.49 
Desktop Large 6 !.2E13 5.3E6 36m 106 0.51 

Table 1. Results Of Pruning For Various Examples. 

columns. All of these examples make use of derived variable detection, but do not 
utilize isomorph elimination. Since both the Space Size andSearch Size columns 
include the derived variable detection reduction, the Improv and Log Ratio 
columns reflect only the gain from the tree pruning, 

As the table shows, the gains from this tree pruning can be huge, with a 10 7 linear 
reduction in the large style example. The most interesting column, however, is the 
rightmost one, Log Ratio. This indicates the exponential reduction gained by the 
pruning. 

One goal with Nitpick is to develop a number of reductions which each approach 
a log ratio of 0.5. As can be seen from the table, the pruning for all but the Phone 
example is near or beyond this goal. Such factors can drastically slow the expo- 
nential growth of state spaces. Although the growth of course remains exponen- 
tial, reducing the exponent by a relatively constant Small fraction flattens and 
shifts the growth curve to the right, yielding manageable search sizes for small to 
moderate specifications. Derived variable detection also typically gives a ratio 
around 0.5 (although this varies substantially depending on the style and structure 
of the specification). Like pruning, isomorph elimination, will meet this goal on 
many specifications, while occasionally dropping to the 0.9 range. 

In general, and as could be expected, the gains from pruning seem to be most sig- 
nificant with more variables and smaller individual scopes. The positive correla- 
tion with the number of variables bodes well for the ability to scale into larger and 
more complex specifications, since larger specifications will typically have a 
greater number of variables. 

This also blends nicely with the isomorph elimination work, which yields the 
largest reductions with fewer variables and larger scopes. Because of this combi- 
nation, the product of the log ratios of these two mechanisms is nearly always bet- 
ter than 0.5, even if one or the other is significantly over that target. 

7 Future Work 

Based on earlier, more approximate orderings, it is clear to us that the gain is 
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heavily dependent on choosing a good ordering. As was noted earlier, our current 
estimation functions for truth and false values are quite rough. Over time we may 
need to investigate more exacting measures, although these are likely to be more 
computationally expensive than the current tests. 

Another future research area is the possibility of adding additional determinants 
which can be computed more cheaply, in terms of the number of variables used, 
than the existing ones. For example, consider the following formula, where a and 
b are sets of type T and e is an element of T: 

a \ { e }  = b 

(The \ operator is set difference.) The smaller formula 

e ~ b  

can be derived from this formula. This additional formula can be conjoined to the 
first without changing its meaning, thus is seemingly redundant. This change does 
however allow enumeration tree pruning to occur before evaluating a (when e is 
in b). 

One final possibility is to record some information about the nature of the prun- 
ing at the point that it is discovered and then use this information to quickly find 
the next appropriate value. For example, consider a formula where the sub-for- 
mula a e b is a determinant and the enumeration tree has a above b. If a e b 
caused tree pruning with a having the value t2 and b having the value {), the tree 

walker could go directly to the value {t 2} for b, skipping over {tl}. If such value 
selections were sufficiently cheap, this significantly improve the search time. 

8 Related Work 

The first author's background with traditional compiler optimization [ASU86] was 
the basis for this work. However, there are fundamental differences between the 
expression re-ordering done by compilers and this work. Most notable among 
these is the goal itself. Compilers sort the executable trying to minimize the num- 
ber of instructions required to compute an expression. Thus they sort the cheap- 
est determinants to the front. And few programming languages give the compiler 
writer the freedom to re-order evaluation on the scale required here. 

Related approaches have also been tried in search problems over the last two 
decades in the AI field [KK88], particularly game playing and optimization prob- 
lems. These approaches tend to be much less rewarding in game playing since the 
problems tend to be much less absolute. In particular, no single sub-expression 
can generally definitively determine the outcome of the entire search. Rather a 
numeric weighting is typically established for each case investigated and the 
weightings compared. So related pruning strategies can only remove cases which 
are clearly inferior to ones already established, thus markedly reducing the effec- 
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tiveness of the pruning. In addition, searches for winning strategies in game play- 
ing, by their very nature, cannot re-order the evaluation tree, further limiting the 
effectiveness of this approach. 

Recently, work has been done on variable ordering heuristics for speeding search- 
es for solving constraint satisfaction problems[SF91]. While many of these heuris- 
tics are tailored to help with specific constraints, generally job shop scheduling, 
there are some general approaches which Nitpick may be able to exploit. Most 
interesting is the use of dynamic reordering of the search tree during the search. 
This is computationally very expensive and would only be useful if a significant 
further reduction in the search space was gained. 

Slaney's FINDER program [S1a94] uses similar techniques for different goals. Its 
purpose is to find models of formulas in first-order logic with uninterpreted func- 
tion symbols. Unlike Nitpick, FINDER constructs functions point-wise, and can 
thus exploit more fine-grained backtracking. By considering entire relation values, 
Nitpick, on the other hand, can combine backtracking search with isomorph elim- 
ination. FINDER depends on the user to provide variable orderings, and thus, 
although it may outperform this pruning algorithm when used by a skilled prac- 
tioner, is less automatic. 

9 Conclusion 

The common belief has been that an "executable" specification language was nec- 
essary in order to be able to directly execute formal specifications, However, as 
Fuchs [Fu92] pointed out, most specifications, even non-constructive and non- 
deterministic ones, can be used as the test for an exhaustive search. This can then 
be viewed as a very inefficient form of executing the specification. 

We have shown one mechanism which can be used to significantly reduce the 
search space required to execute a specification. While this mechanism alone does 
not allow efficient execution of specifications through searching, in combination 
with other such mechanisms it does allow a large body of specifications to be exe- 
cuted reasonably efficiently. This mechanism is particularly valuable here, since it 
becomes more effective as the specification becomes more complex (and would 
thus be thought to be more expensive to analyze). 

With such executions, a more exploratory and interactive environment can be 
provided to the specification writer. Nitpick is a first step towards such an envi- 
ronment, allowing less sophisticated users a means to become more comfortable 
with formal specifications. 

Further research is still needed to find more of these reductions, which in turn will 
enlarge the potential range of specifications which can be executed. As the suite of 
reductions becomes more powerful, the dream of executing arbitrary specifica- 
tions may perhaps be realized without sacrificing the enormous advantages of 
non-constructive specifications. 



85 

Appendix: Interaction with Isomorph Elimination 

There is an interaction between enumeration tree pruning and the isomorph elim- 
ination technique [JJD96] also employed by Nitpick. When using isomorph elim- 
ination, only isomorphically distinct values are used in the enumeration tree, with 
each value being "unlabeled". In the earlier enumeration example, four distinct 
values were enumerated for the sets a and b: {}, (h}, {t2}, {tl,t2}. The middle 
two values are isomorphic, so the isomorphic enumeration yields only three val- 
ues: {}, {" }, and ( . ,*},  where �9 and * are canonical values to be bound to specif- 
ic values in the labeling. 

Before labeling, it is undetermined whether �9 or * maps to t 1 (or to t2) in any 
given variable. The appropriate detection and generation of these labelings is 
beyond the scope of this paper. The reader here only needs to understand that the 
final labelings will generate a complete set of isomorphically distinct cases utiliz- 
ing actual values. 

At each leaf of the original enumeration tree, the complete necessary set of label- 
ings of these canonical values is evaluated. These additional values can be thought 
of as a new tree rooted at each leaf of the enumeration tree, where each level of 
this new tree corresponds to a variable which must be labeled. The labeling tree 
labels each relevant value used in each variable, so that an actual value can be test- 
ed for each variable. 

In this context, there are really two opportunities for pruning, one for each kind 
of tree. The pruning of the labeling trees looks much like the original pruning of 
the enumeration tree. It can be pruned if the value of the formula at some leaf of 
the labeling tree is independent of the lowest levels of the labeling tree. To ensure 
that the most effective chance of pruning can be obtained, the labeling trees 
always utilize the same variable ordering discovered earlier for use by the enu- 
meration tree. 

The enumeration tree can only be pruned if the value of the entire formula is 
known without considering any of the pruned variables for all leaves of the asso- 
ciated labeling trees. In other words, the enumeration tree can only be pruned 
back to the lowest pruning performed across all of the paths of the associated 
labeling tree. Note that it does not have to be the same determinant causing each 
pruning of the labeling tree, just that each pruning of the labeling tree must occur 
at the same (or higher) level as the pruning of the enumeration tree. As can be 
expected, this greatly reduces the effectiveness of pruning of the enumeration 
tree, although most of the loss is recovered by the pruning of the labeling tree. 
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