
Test Generation with Inputs,
Outputs, and Quiescence
Jan Tretmans*

ABSTRACT This paper studies testing based on labelled transition sys-
tems, using the assumption that implementations communicate with their
environment via inputs and outputs. Such implementations are formalized
by restricting the class of transition systems to those systems that can al-
ways accept input actions, as in input/output automata. Implementation
relations, formalizing the notion of conformance of these implementations
with respect to labelled transition system specifications, are defined anal-
ogous to the theory of testing equivalence and preorder. A test generation
algorithm is given, which is proved to produce a sound and exhaustive test
suite from a specification, i.e., a test suite that fully characterizes the set
of correct implementations.

1 Introduction

Testing is an operat ional way to check the correctness of a system im-
plementat ion by means of experimenting with it. Tests are applied to the
implementa t ion under test, and based on observations made during the
execution of the tests a verdict about the correct functioning of the imple-
menta t ion is given. The correctness criterion tha t is to be tested is given in
the system specification, preferably in some formal language. The specifica-
t ion is the basis for the derivation of test cases, when possible automatically,
using a test generation algorithm.

Testing and verification are complementary techniques for analysis and
checking of correctness of systems. While verification aims at proving prop-
erties about systems by formal manipulat ion on a mathemat ica l model of
the system, testing is performed by exercising the real, executing implemen-
ta t ion (or an executable simulation model). Verification can give certainty
about satisfaction of a required property, but this certainty only applies to
the model of the system: any verification is only as good as the validity of
the system model. Testing, being based on observing only a small subset of
all possible instances of system behaviour, can never be complete: testing
can only show the presence of errors, not their absence. But since testing
can be applied to the real implementat ion, it is useful in those cases when a

*University of Twente, PO Box 217, NL-7500 AE Enschede, tretmansOcs.utwente.nl

128

valid and reliable model of the system is dii~cult to build due to complexity,
when the complete system is a combination of formal parts and parts which
cannot be formally modelled (e.g., physical devices), when the model is pro-
prietary (e.g., third party testing), or when the validity of a constructed
model is to be checked with respect to the physical implementation.

Many different aspects of a system can be tested: does the system do
what it should do, i.e., does its behaviour comply with its functional spec-
ification (conformance testing), how fast can the system perform its tasks
(performance testing), how does the system react if its environment does
not behave as expected (robustness testing), and how long can we rely on
the correct functioning of the system (reliability testing). This paper fo-
cuses on conformance testing based on formal specifications, in particular
it aims at giving an algorithm for the generation of conformance test cases
from transition system-based specifications.

The ingredients for defining such an algorithm comprise, apart from a
formal specification, a class of implementations. An implementation under
test, however, is a physical, real object, that is in principle not amenable
to formal reasoning. It is treated as a black box, exhibiting behaviour, and
interacting with its environment. We can only deal with implementations in
a formal way, if we make the assumption that any real implementation has
a formal model, with which we could reason formally. This formal model is
only assumed to exist, but it is not known a priori. This assumption is re-
ferred to as the test hypothesis [1, 10, 151. Thus the test hypothesis allows to
reason about implementations as if they were formal objects, and to express
the correctness of implementations with respect to specifications by a for-
real relation between such models of implementations and specifications.
This relation is called the implementation relation [3, 10 I. Conformance
testing now consists of performing experiments to decide how the unknown
model of the implementation relates to the specification. The experiments
are specified in test cases. Given a specification, a test generation algorithm
must produce a set of such test cases (a test suite), which must be sound,
i.e., which give a negative verdict only if the implementation is not correct,
and which, if the implementation is not correct, have a high probability to
give a negative verdict.

One of the formalisms studied in the realm of conformance testing is that
of labelled transition systems. A labelled transition system is a structure
consisting of states with transitions, labelled with actions, between them.
The formalism of labelled transition systems can be used for modelling
the behaviour of processes, such as specifications, implementations, and
tests, and it serves as a semantic model for various, well-known formal
languages, e.g., ACP, CCS, and CSP. Also (most parts of) the semantics
of standardized languages like LOTOS [91, SDL [41, and Estelle [81 can be
expressed in labelled transition systems.

Traditionally, for labelled transition systems the term testing theory does
not refer to conformance testing. Instead of starting with a specification to

129

find a test suite to characterize the class of its conforming implementations,
these testing theories aim at defining implementation relations, given a
class of tests: a transition systems p is equivalent to a system q if any test
case leads to the same observations with p as with q (or more generally, p
relates to q if for all possible tests, the observations made o fp are related in
some sense to the observations made of q). Different relations are defined
by variations of the class of tests, the way they are executed, and the
required relation between observations, see e.g., [5, 7]. Conformance testing
for labelled transition systems has been studied especially in the context of
testing communication protocols with the language LOTOS, e.g., [2, 11, 15,
19]. This paper uses both kinds of testing theories: first an implementation
relation is defined by using a class of tests, and, once defined, test generation
fTom specifications for this particular relation is investigated.

Almost all of the testing theory mentioned above is based on synchro-
nous, symmetric communication between different processes: communica-
tion between two processes occurs if both processes offer to interact on a
part icular action, and if the interaction takes place it occurs synchronously
in both participating processes. Both processes can propose and block the
occurrence of an interaction; there is no distinction between input and
output actions. For testing, a particular case where such communication
occurs, is the modelling of the interaction between a tester and an imple-
mentat ion under test during the execution of a test. We will refer to above
theories as testing with symmetric interactions.

This paper approaches communication in a different manner by distin-
guishing explicitly between the inputs and the outputs of a system. Such a
distinction is made, for example, in Inpu t /Outpu t Automata [12], Input-
Output State Machines [13], and Queue Contexts [17]. Outputs are actions
that are initiated by, and under control of the system, while input actions
are initiated by, and under control of the system's environment. A sys-
tem can never refuse to perform its input actions, while its output actions
cannot be blocked by the environment. Communication takes place be-
tween inputs of the system and outputs of the environment, or the other
way around. It implies that an interaction is not symmetric anymore with
respect to the communicating processes. Many reai-life implementations
allow such a classification of their actions, communicating with their en-
vironment via inputs and outputs, so it can be argued that such models
have a closer link to reality. On the other hand, the input-output paradigm
lacks some of the possibilities for abstraction, which can be a disadvantage
when designing and specifying systems at a high level of abstraction. In
an a t tempt to use the best of both worlds, this paper assumes that im-
plementations communicate via inputs and outputs (as part of the test
hypothesis), whereas specifications, although interpreting the same actions
as inputs, respectively outputs, are allowed to refuse their inputs, which
implies tha t technically specifications are just normal transition systems.

The aim of this paper is to study conformance testing and test gen-

130

eration algorithms for implementations that communicate via inputs and
outputs, based on specifications that are labelled transition systems. The
implementations are modelled by input-output transition systems, a spe-
cial kind of labelled transition systems, where inputs are always enabled.
These are introduced in section 2. Input-output transition systems differ
only marginally from the input/output automata of [12]. Section 3 recalls
some of the testing theory for symmetric interactions, in particular the
definition of some often used implementation relations. Implementation re-
lations with inputs and outputs are discussed in section 4. The first relation
is defined following a testing scenario & la [5]. It is analogous to the scenario
used in [14] to obtain a testing characterization of the relation quiescent
trace preorder on input/output automata [18], and analogous results are
obtained. However, it is shown that this relation does not make full use of
the freedom to have specifications which are not input-enabled. A class of
weaker implementation relations is defined, of which quiescent trace pre-
order is a special case. These relations allow to use the abstractness made
possible by non-input-enabled specifications. A fully abstract model with
respect to these relations is presented. Section 5 formalizes conformance
testing by introducing test cases, test suites, and how to run, execute, and
pass a test case. Finally, a test generation algorithm that produces prov-
ably correct test cases for any of the implementation relations of section 4
is developed in section 6. Some concluding remarks are given in section 7;
for complete proofs we refer to [16].

2 Models

The formalism of labelled transition systems is used for describing the
behaviour of processes, such as specifications, implementations, and tests.

Def in i t ion 2.1
A labelled transition system is a 4-tuple IS, L, T, so), consisting of a count-
able, non-empty set S of states, a countable set L of labels, a transition
relation T C_ S • (L U {T}) • S, and an initial state So E S. []

The labels in L represent the observable interactions of a system; the
special label r ~ L represents an unobservable, internal action. We denote
the class of all labelled transition systems over L by s For technical
reasons we restrict/:7"~q(L) to labelled transition systems that are strongly
converging, i.e., ones that do not have infinite compositions of transitions
with internal actions.

A trace is a finite sequence of observable actions. The set of all traces
over L is denoted by L*, with e denoting the empty sequence. If erl, ~ E L*,
then ~ . ~ is the concatenation of ~1 and er2.

131

Let p = (S, L, T, so) be a labelled transit ion system with s, s t E S, P(0 E
L U {r}, a(0 E L, and a E L*, then the following s tandard notat ions are
used. Note tha t we identify the process p with its initial s tate so.

s ~ ~ s' =def (S, #, s t) E T
8 p l ' . . . ' p ,) S t : d e f ~ 8 0 ~ . . . , 8 n : 8 = S 0

8 p l ' . . . ' pn) = d e f ~8 t : 8 P l " . . . ' D n) 8 t

8 ~ 8 t = d e f 8 = 8 t o r 8 r r) 8 t

s = ~ s' =dq 3s l , s2 : s A , sl --% s~ A , s t
a l ' a n a l

8) 'St : d e f ~ S O . . . S n : 8 : 80 ~ S l a2), . . .

s ~ =d~ 3st : s ~ s'

s = ~ =aef not 3st : s =g=~ s t

traces(p) = d e f { ~ E L* [p ~ }
i n i t (p) : d e f { a e L I p ~ }

I.~1) 81 la~.), . . . p,~ > 8n ..~ St

an t, : St
�9 8r t

A process p has finite behaviour if there is a natural number n, such tha t
all t races in traces(p) have length smaller than n; p is deterministic if for
all ~ E L*, there is at most one p ' such tha t p=g=vp'. I f a E traces(p), then
this pt is denoted by p a f t e r a .

We represent a labelled transit ion system in the s tandard way, either by
a tree or a graph, or by a process-algebraic behaviour expression, with a
syntax inspired by LOTOS [9]:

B :def s t o p I a ; S I i ; B I B D B I BI IB I ~ B

Here a E L, and B is a countable set of behaviour expressions. The oper-
ational semantics are given in the s tandard way by the following axioms
and inference rules:

F a ; B - - % B
~- i; B---~ B

B1 - -~ BI, p C n U {r} ~- B1 [~B2 - ~ B~
B 2 ~ B ~ , # e L U { T } F BI[]B:--~B~

B1 -% BI, B2 --% B~, a 6 L }- B1 I[B2 - -~ B~ [I B~
B - - ~ B t, B E B , # E L U { 7 } F E B " > B '

Communicat ion between processes modelled as labelled transit ion sys-
tems is based on symmetr ic interaction, as expressed by the composition
operator II- An interaction can occur if both the process and its environment
are able to perform tha t interaction, implying that both processes can also
block the occurrence of an interaction. If both processes offer more than
one interaction then it is assumed tha t by some mysterious negotiation
mechanism they will agree on a common interaction. There is no notion of
input or output , nor of initiative or direction. All actions are t reated in the
same way for both communicating partners.

132

Many real systems, however, communicate in a different manner. They
do make a distinction between inputs and outputs, and one can clearly
distinguish whether the initiative for a particular interaction is with the
system or with its environment. There is a direction in the flow of informa-
tion from the initiating communicating process to the other. The initiating
process determines which interaction will take place. Even if the other one
decides not to accept the interaction, this is usually implemented by first
accepting it, and then initiating a new interaction in the opposite direction
explicitly signalling the non-acceptance. One could say that the mysterious
negotiation mechanism is made explicit by exchanging two messages: one
to propose an interaction and a next one to inform the initiating process
about the (non-)acceptance of the proposed interaction.

We use input-output transition systems, analogous to input/output au-
tomata [12], to model systems for which the set of actions can be partitioned
into output actions, for which the initiative to perform them is with the
system, and input actions, for which the initiative is with the environment.
If an input action is initiated by the environment, the system is always
prepared to participate in such an interaction: all the inputs of a system
are always enabled; they can never be refused. Naturally an input action
of the system can only interact with an output of the environment, and
vice versa, implying that output actions can never be blocked by the en-
vironment. Although the initiative for any interaction is in exactly one of
the communicating processes, the communication is still synchronous: if an
interaction occurs it occurs at exactly the same time in both processes. The
communication, however, is not symmetric: the communicating processes
have different roles in an interaction.

Def in i t i on 2.2
An input-output transition system p is a labelled transition system in which
the set of actions L is partitioned into input actions Lx and output actions
Lu (LI U L~r = L, L~ N L~ = 0), and for which all inputs are always
enabled in any state:

whenever p ~ p ' then V a E L I : p'
The class of input-output transition systems with input actions in LI and
output actions in Lu is denoted by ZOTS(LI , Lu) C_ s U L~). []

Example 2.3
Figure 1 gives some input-output transition systems with LI = {butin}
and L~ = {liqout , chOCout}. In ql we can push the button, which is an input
for the candy machine, and then the machine outputs liquorice. After the
button has been pushed once, and also after having obtained liquorice, any
more pushing of the button does not make anything happen: the machine
makes a self-loop. In the sequel we use the convention that a self-loop of a
state that is not explicitly labelled, is labelled with all inputs that cannot
occur in that state (and also not via r-transitions, cf. definition 2.2). []

133

~b~tin
b~t in~ l iqou t

b u t i n ~

ql

~ in

q2 q3 s ~ _ j

FIGURE 1. Input-output transition systems

When studying input-output transition systems the notational conven-
tion will be that a, b, c . . . denote input actions, and z, y, x , . . . denote output
actions. Since input-output transition systems are labelled transition sys-
tems all definitions for labelled transition systems apply. In particular, the
synchronous parallel communication can be expressed by [[, but now care
should be taken that the outputs of one process interact with the inputs of
the other.

Note that input-output transition systems differ marginally from in-
put/output automata [12]: instead of requiring strong input enabling as
in [12] (Va E Lx : p ' - %), input-output transition systems allow input
enabling via internal transitions (weak input enabling, Va E Lz : p~ ~).

3 Testing with Symmetric Interactions

Before going to the test hypothesis that all implementations can be mod-
elled by input-output transition systems in sections 4, 5, and 6, this sec-
tion will briefly review the conformance testing theory that is based on the
weaker hypothesis that implementations can be modelled as labelled transi-
tion systems. In this case correctness of an implementation with respect to a
specification is expressed by an implementation relation on s Many
different relations have been studied, e.g., bisimuiation equivalence, fail-
ure equivalence and preorder, testing equivalence and preorder, and many
others [7]. A straightforward example is trace preorder _<tr, which requires
inclusion of trace sets. The intuition behind this relation is that an im-
plementation i E I:7"S(L) may show only behaviour, in terms of traces of
observable actions, which is specified in the specification s E ET"S(L).

D e f i n i t i o n 3.1
Let i, s E s then i <~tr 8 :dc f traces(i) C traces(s) []

Another, more sophisticated relation is testing preorder <re. In addition
to requiring that the traces observed with the implementation are con-
tained in those observed with the specification, testing preorder requires

134

that any possible observer, or tester, encountering a deadlock with the
implementation will experience the same deadlock when interacting with
the specification. We formalize it using a testing scenario that is slightly
different from the one in [5].

Def in i t ion 3.2
Let p , i , s E s ~ E L*, and A C L, then

1. p a f t e r ~ r e f A =de/ 3pt: p ~ p l and V a E A : pl=f~
2. p a f t e r ~ dead locks =dry p a f te r a r e f L

3. The sets of observations, obs and obs ~ respectively, that an observer
u E f-TS(L) can make of process p E C T,~(L) are given by the dead-
locks, respectively the traces of their synchronization u HP:

obs(u,p) -:def { ~r E L* [(u]]p) af te r a dead locks }

obsl(u,P) =dr! { ~ E L* I ullp:g~}
4. i <-~e s :dry Vu E s : obs(u,i) C obs(u,s)

and obs'(u,i) C_ obs'(u,s) []

The definition of _<re in definition 3.2 is extensional, i.e., in terms of how
the environment (i.c. the observers u) perceives a system. It can be rewrit-
ten into an intensional characterization, i.e., a characterization in terms
of properties of the transition systems themselves. This characterization,
given in terms of failure pairs is known to coincide with failure preorder on
our class of strongly converging transition systems [5].

Propos i t ion 3.3
i<__tes iff V c r E L * , A C _ L : i a f t e r ~ r e f A implies s a f t e r ~ r e f A O

An implementation relation that is strongly related to _~te is the relation
con f [2]. I t is a modification of ~ e by restricting all observations to only
those traces that are contained in the specification s. This restriction makes
testing a lot easier: only traces of the specification have to be considered,
not the huge complement of this set, i.e., the traces not explicitly specified.
Saying it in other words, c o n f requires that an implementation does what
it should do, not that it does not do what it is not allowed to do. It is for the
relation e o n f tha t several test generation algorithms have been developed
and implemented, that generate provably correct test cases, e.g., [2, 15, 191 .

Definit ion 3.4
i c o n f s ----de! Yu E s : (obs(u,i)N traces(s)) C_ obs(u,s)

and (obs'(u, i) N traces(s)) C_ obs'(u, s) []

Propos i t ion 3.5
i c o n f s iff

V~r E traces(s),A C_ L : i a f t e r cr r e f A implies s a f te r ~ r e f A []

135

4 Relations with Inputs and Outputs

We now make the test assumption that implementations can be modelled
by input-output transition systems: we consider implementation relations
C_ ZOTS(LI, Lu) • f-TS(Lx U Lu).

The implementation relations _<re and conf were defined by relating
the observations, made of the implementation by a symmetrically inter-
acting observer u E ETa(L), to the observations made of the specification
(definitions 3.2 and 3.4). An analogous testing scenario can be defined
for input-output transition systems, using the fact that communication
takes place along the lines explained in section 2: the input actions of the
observer synchronize with the output actions of the implementation, and
vice versa, so an input-output implementation in ZOTS(Lx, Lu) commu-
nicates with an 'output-input' observer in T.OT~S(Lu, LI). In this way the
input-output testin9 relation <ioe is defined between i E ZOTS(LI , Lu)
and s E f.T~q(Lx U Lu) by requiring that any possible observation made of
i by any 'output- input ' transition system is a possible observation of s by
the same observer (cf. definition 3.2).

D e f i n i t i o n 4.1
For i 6 IOT, S(L1, Lu) and s 6 s U Lu):

i <_iots =de/ Vu 6 ZOT, S(Lu, LI) : obs(u,i) C_ obs(u,s)
and obs'(u,i) C_ obs'(u,s) []

Note that , despite what was said above about the communication be-
tween the implementation and the observer, the observations made of s
are based on the communication between an input-output transition sys-
tem and a standard labelled transition system, since s need not be an
input-output system. Technically there is no problem in making such ob-
servations: the definitions of obs, obs', H, and . a f t e r . d e a d l o c k s apply
to labelled transition systems, not only to input-output transition systems.
Below we will elaborate on this possibility to have s E s

In [14] the testing scenario of testing preorder [5] was applied to define a
relation on input /ou tput automata, completely analogous to definition 4.1.
It was shown to yield the implementation relation quiescent trace preorder
introduced in [18]. Although we are more liberal with respect to the speci-
fication, s E f~T~q(LI U Lu), exactly the same intensional characterization
is obtained: _<iot is fully characterized by trace inclusion and inclusion
of (weakly) quiescent traces. A weakly quiescent trace (output-suspension
trace in [16]) is a trace after which no more outputs are possible. Note
again the marginal difference with the original definition of quiescence on
inpu t /ou tpu t automata [18]: there quiescence requires the absence of out-
puts and internal actions. We will refer to the latter as strong quiescence.
It is easy to see that on our class of strongly converging transition systems
both definitions coincide, but for diverging processes strong quiescence has

136

some counter-intuitive properties. For example, let d be a divergent loop,
d := r; d, then the trace a is not a strongly quiescent trace of a; d, which
results in some counter-intuitive implementations following strongly quies-
cent trace preorder (cf. [14]).

Definition 4.2
Let p E s A trace ~ E L* is weakly quiescent, if p a f t e r ~ r e f Lu �9
The set of weakly quiescent traces of p is denoted by 6-traces(p). []

Proposition 4.3
i <_lot S iff traces(i) C_ traces(s) and 6-traces(i) C_ 6-traces(s) []

Comparing the intensional characterization of _<Jot in proposition 4.3
with the one for _<re (proposition 3.3), we see that the restriction to input-
output systems simplifies the corresponding intensional characterization.
Instead of sets of pairs consisting of a trace and a set of actions (failure
pairs), it suffices to look at just two sets of traces. This relatively simple
characterization suggests to transform a labelled transition system into an-
other one representing exactly these two sets of traces, so that the relation
can be characterized by trace preorder <tr (definition 3.1) on the results of
this transformation. Such a transformation on a labelled transition system
p can be defined, and the result is called the 6-trace automaton A r. To
obtain Ap a special transition is attached to each state where quiescence
is possible. Then the resulting transition system is determinized. The spe-
cial transition indicating output quiescence has label 6, and goes to a state
stop, from where no other transitions can be made. The label 6 indicates
the absence of output actions in a state, i.e., it makes the absence of output
actions to an explicit observable action.

Definition 4.4
Let p = (S, LI U Lty, T, so) E s L x U Lu), then the 6-trace automaton of
p, Ap, is the transition system (S~, L6, T6, qo) E s L: U Lu U {6}), where

o Sj =de] ~(S) U {stop}, with s top a unique state;
(~v(S) is the powerset of S)

o L6 =dey L I O L u U { 6 } , w i t h 6 ~ L I U L u ;
o T~ =deI { q - ~ q ' I a E L I U L ~ , q,q'ES~,

q' = {s' E S [3 s E q: s = ~ s ' } # ~ }

U { q - A + s t o p I ~ s E q , V z e L v : s : : ~ }

0 q0 =def { S' E S [S O:=~s' }

Proposition 4.5
1. traces(p) = traces(Ap) M L*

3. Ap is deterministic.
4. V~ E traces(Ap) n L*, 3~c E Lrl U {6} : (Ap a f t e r ~) z)

[]

[]

137

�9

butin in
i

Aql Aq,

 {s0)

I~ /~N~ liq~
" k l{s3, s5}

Aqs

FIGURE 2. J-trace automata for figure 1

E x a m p l e 4.6
Figure 2 gives the J-trace automata for ql, q2, and q3 of figure 1. For
Ar the states, subsets of states of q3, have been added. Note that the
nondeterminism of q3 is removed, and that state {sl, s2} has a J-transition,
since there is a state in {Sl,S2}, i.c. s2, that refuses all outputs. []

An immediate corollary of propositions 4.3 and 4.5 is that the input-
output testing relation is completely characterized by trace preorder <_tr on
the corresponding J-trace automata: they serve as a fully abstract model
modulo _<iot. The J-trace automaton of a specification is sufficient and
necessary to define the class of <iot-conforming implementations, and it
will be the basis for the discussion of testing in section 6.

T h e o r e m 4.7
i<iotS iff A~<trA8 []

Ibutin ~~tin
8 1 8 2

•
butin ~ U t i n

As I

FIGURE 3. Two specifications and their S-trace automata

Example 4.8
From Aql , Aq2 , and Aqs (figures 1 and 2), using theorem 4.7, it follows
that ql <_lot q2: an implementation capable of only producing liquorice
conforms to a specification that prescribes to produce either liquorice or

138

chocolate. Although q2 looks deterministic, it in fact specifies that after
button there is a nondeterministic choice between supplying liquorice or
chocolate. It also implies that for this kind of testing q2 is equivalent to
butln; liqout; stop O butin; chocout; stop (omitting the input self-loops), an
equivalence which does not hold for _<re in the symmetric case. If we want
to specify a machine that produces both liquorice and chocolate, then two
buttons are needed to select the respective candies:

liq-button; liqout ; stop C3 choc-bu~on; chocout ; stop
On the other hand, q2 ~iot ql,q3: if the specification prescribes to pro-
duce only liquorice, then an implementation should not have the possibil-
ity to produce chocolate. We have ql <_iot q3, but qs ~iot ql, q2, since q3
may refuse to produce anything after the button has been pushed once,
while both ql and q2 will always output something. Formally: butin" ~ E
traces(Aqs), while butin'6 ~ traces(Aq~), traees(Aq2).

Figure 3 presents two non-input-output transition system specifications
with their 6-trace automata, but none of ql, q2, q3 correctly implements sl
or s2; the problem occurs with non-specified input traces of the specifica-
tion: bl~tin'butin E tT'acea(Aql), trace$(Aq2), tracea(Aqs), while butin'bUtin
~raees(A,~), traces(A,~). []

For the relation _<Jot it is allowed that the specification is not an input-
output transition system: a specification may have states that can refuse
input actions. Such a specification is interpreted as a not-completely spec-
ified input-output transition system, i.e., a transition system where a dis-
tinction is made between inputs and outputs, but where some inputs are
not specified in some states. The intention of such specifications often is
that the specifyer does not care about the responses of an implementa-
tion on such non-specified inputs. If a candy machine is specified to deliver
liquorice after pushing a button as in sl in figure 3, then it is intentionally
left open what an implementation may do after pushing the button twice:
perhaps ignoring it, supplying one of the candies, or responding with an
error message. Intuitively, ql would conform to 81, however, ql ~iot sl,
as was shown in example 4.8. The implementation freedom, intended with
non-specified inputs, cannot be expressed with the relation _<iot. From the-
orem 4.7 the reason can be deduced: since the implementation can always
perform input actions, all inputs must always be enabled in any state of the
specification in order to satisfy trace inclusion, so the specification must be
an input-output transition system, too, otherwise no implementation can
exist.

For input/output automata a solution to this problem is given in [6], us-
ing the so-called demonic semantics for process expressions. In this seman-
tics a transition to a demonic process N is added for each non-specified in-
put. Since 1~ exhibits any behaviour, the behaviour of the implementation is
not prescribed after such a non-specified input. We choose another solution
to allow for non-input-output transition system specifications to express

139

implementat ion freedom for non-enabled inputs: we introduce a weaker
implementation relation. To define this relation, i/o-conformance ioconf,
we first give an alternative characterization of _<io~ (proposition 4.10) to
see where the problem occurs, and how it might be solved. For this char-
acterization the output actions out(A) of a J-trace automaton are defined,
where J occurs as a special output action as explained above.

Def in i t ion 4.9
For A be a J-trace automaton, out(A) =def init(A) M (Lu U {J}) []

The set out(A) will be used particularly in expressions of the form
out(A a f t e r a) to denote the set of outputs (possibly including J) of the
state reached after a. if a • traces(A), then we define out(A after a) = @.

P r o p o s i t i o n 4.10
i_~io~ s iff Va E L* : ou t (A ia f t e ra) C out(As a f t e r a) []

In proposition 4.10 we see that ~iot requires tha t the outputs of the
implementation are included in the outputs of the specification after any
trace: traces of the specification, and traces that are not in the specifi-
cation. A weaker implementation relation is obtained if this requirement
is relaxed to inclusion for those traces that are explicitly specified in the
specification (cf. the relation between <~, and conf, definitions 3.2 and 3.4,
and propositions 3.3 and 3.5).

Defini t ion 4.11
i i o c o n f s --~def ~o'E traces(As) M L*: out(A i after a) C out(As a f t e r a)[]

E x a m p l e 4.12
Consider again figures 1, 2, and 3. Indeed we have ql i o c o n f sa. On the
other hand, q2 i o c ~ n f Sl, since q2 can produce more than liquorice after
the button has been pushed: out(Aq2 a f t e r buti,) = { liq, choc} (L { liq} =
out(As1 a f t e r butin). Moreover, ql, q2 ioconf s2 , but q3 i o c ~ n f s l , s2, since
J E out(Aq3 a f t e r butin), while J r out(As1 afterbuti,), out(A~ 2 afterbutin).

[]

The form of the characterizations of <_io~ in proposition 4.10 and of
io conf in definition 4.11 suggests to generalize them into a class of relations
ioconfy for any set of traces ~ . Implementation relations of the form
ioconfy will be the basis for test generation in section 6.

Defini t ion 4.13
Let ~ C_ L*, i E ZOTiq(Lz, Lu), s E s U Lu), then

i i o c o n f 3 : s :clef V a E J : : out(A~aftera) C out(As a f t e r a) O

140

5 Testing Input-Output Transition Systems

Now tha t we have formal specifications, expressed as labelled transit ion
systems, implementat ions, modelled by input-output transit ion systems,
and a formal definition of conformance, expressed by one of the implemen-
ta t ion relations i ocon fy , the next point of discussion is how tests look like,
and how tests are executed.

A test case is a specification of the behaviour of a tester in an experiment
to be carried out with an implementat ion under test. Such behaviour, like
other behaviours, can be described by a labelled transit ion system. But to
guarantee tha t the experiment lasts for a finite time, a test case should have
finite behaviour. Moreover, a tester executing a test case would like to have
control over the testing process as much as possible, so a test case should
be specified in such a way tha t unnecessary nondeterminism is avoided.
First of all, this implies tha t the test case itseff must be deterministic. But
also we will not allow test cases with a choice between an input action and
an output action, nor a choice between multiple input actions (input and
output with respect to the implementat ion). Both introduce unnecessary
nondeterminism in the test run: if a test case can offer multiple input ac-
tions, or a choice between input and output , then the continuation of the
test run is unnecessarily nondeterministic, since any input-output imple-
mentat ion can always accept any input action. This implies tha t in any
state of a test case either one part icular input is offered to the implemen-
tation, or all possible outputs are accepted. Finally, to be able to decide
about the success of a test, a verdict (pass or fail) is a t tached to each state
of the test. Altogether, we come to the following definition of a test case.

Def in i t ion 5.1

1. A test case t is a 6-tuple iS, Lu, Lj, T, v, so), such that:

o ~S, Lu U LI, T, 80) is a deterministic labelled transit ion system
with finite behaviour;

o for any state t ~ of the test case, either init(t') = {a} for some
a e LI,, or init(t') = Lu, or init(t') = r

o v : S -~ {fail, p a s s } is a verdict function.

The class of test eases over Lu and LI is denoted as ZOTSt(Ltr, LI).
2. A test suite T is a set of test cases: T C TOTSt (Lu , LI). 0

Note tha t L I and L u refer the inputs and outputs from the point of
view of the implementat ion under test, so L I denotes the outputs, and L u
denotes the inputs of the test ease. The definitions of s are extended
to TOT~qt (Lv, LI) by defining them over the underlying transit ion system.

A test run of an implementat ion with a test case is modelled by the
synchronous parallel execution of the test case with the implementat ion
under test, which continues until no more interactions are possible, i.e.,

141

until a deadlock occurs (definition 3.2). This deadlock may occur when the
(finite) test case reaches a final state, or when the combination reaches
a s tate where the test case expects an output from the implementat ion
which is not produced. An implementat ion passes a test run if and only if
the verdict of the test case in the state where the deadlock is reached is
pass . Since an implementat ion can behave nondeterministically different
test runs of the same test case with the same implementat ion may lead to
different final states, and hence to different verdicts. An implementat ion
passes a test case if and only if all possible test runs lead to the verdict
pass. This means tha t each test case must be executed several t imes in
order to give a final verdict, theoretically even infinitely many times.

Def in i t ion 5.2
1. A test run of a test case t 6 I O T S t (L u , LI) with an implementat ion

i E T.OTS(LI, Lu) is a trace of the synchronous parallel composit ion
of t and i, till, leading to deadlock.

2. An implementat ion i passes a test case t, if all the test runs of t and
i lead to a pass - s t a t e of t:

i p a s s e s t =clef Va E L* : (tlli) after a deadlocks
implies v (t a f t e r a) = p a s s

3. An implementat ion i passes a test suite T, if it passes all test cases
i n T : i p a s s e s T =de! Vt E T : i p a s s e s t . I f i d o e s n o t pass the
test suite, it fails: i fails T =def St E T : i pas~es t. []

pass ?to

I b~tin

p a s s / ~ fail ~ t3
liqouF/ ~chocout
t4~" ~ t s

fai l fai l

FIGURE 4. A test case

E x a m p l e 5.3
For q2 (figure 1) there are two test runs with t in figure 4:

tllq= buti":liq~ and Va e L: t2ilq'2=~

tllq2 buti"'eh~176 and Va r L: t311qh' ::#
where q~ and q~' are the final states of q2 after the liqo.t- and chocout-
actions, respectively. Although u(t2) = pass , we have tha t q2 fails t, since
v(t3) = fail. Similarly, ql p a s s e s t and qs fails t . []

142

6 Test Generation for Inputs and Outputs

Now all ingredients are there to present an algorithm genlo�9 ~ to gener-
ate test suites from labelled transition system specifications for any of the
implementation relations i o c o n f y . A generated test suite genlo�9 ~ (s)
must test implementations for conformance with respect to s and i o co n fy .
Ideally, an implementation should pass the test suite if and only if it is con-
forming. In this case the test suite is called complete [10]. Unfortunately,
in almost all practical cases such a test suite would be infinitely large,
hence for practical testing we have to restrict to test suites tha t can only
detect non-conformance, but tha t cannot assure conformance. Such test
suites are called sound. Test suites that can only assure conformance, but
not non-conformance are called exhaustive.

D e f i n i t i o n 6.1
Let s be a specification, and T a test suite, then for an implementation
relation i o c o n f y :

T is complete =d~f Vi : i i o c o n f ~ s if[i p a s s e s T
T is sound ~--dey Vi : i i o c o n f y s impl ies i pa s se s T
T is exhaustive =d~f Vi : i i o c o n f ~ s if i p a s s e s T []

We aim at producing sound test suites. To get some idea how such test
cases will look like we consider the definition of ioconf . In definition 4.11
we see that to test for i o c o n f w e have to check for each a E traces(As) N L*
whether out(Ai a f t e r a) C out(As a f t e r a). Basically, this can be done
by having a test case t that executes a:

t l l i~ t ' l l i '
and then checks out (Ai a f t e r a) by having transitions to pass-states for all
allowed outputs (those in out(A s a f t e r a)), and transitions to fail-states for
all erroneous outputs (those not in out(As a f t e r a)). Special care should
be taken for the special output & ~ actually models the absence of any
output, so no transition will be made at all if i ~ 'outputs ' 6; the test run
will deadlock in t ~ II i'. This can be checked by having the verdict p a s s
in the state t' if ~ is allowed (6 e out(As a f t e r a)) , and by having the
verdict fail in t ~, if the specification does not allow to have quiescence at
tha t point. All this is reflected in the following recursive algorithm. The
algorithm is nondeterministic in the sense that in each recursive step it
can be continued in many different ways: termination of the test case in
choice 1, any input action satisfying the requirement of choice 2, or checking
the allowed outputs in choice 3. Each continuation will result in another
sound test case (theorem 6.4.1), and all possible test cases together form an
exhaustive (and thus complete) test suite (theorem 6.4.2), so there are no
errors in implementations that are principally undetectable with test suites
generated with the algorithm. However, if the behaviour of the specification
is infinite, the algorithm allows to construct infinitely many different test

143

cases, which can be arbitrarily long, but which all have finite behaviour.
To define the algorithm one additional definition is needed.

D e f i n i t i o n 6 . 2
Let Y C L* and a �9 L, then Y a f t e r a : & f (~ E L* { a.a E Y:}. []

A l g o r i t h m 6.3
Let A be the 8-trace automaton of a specification, and let ~" C L*, then
a test case t �9 ~07"St(Lv, LI) is obtained by a finite number of recursive
applications of one of the following three nondeterministic choices:

1. (* terminate the test case ,)
t : = s t o p ;
v(t) :---- pas s ;

2. (, give a next input to the implementation ,)
t : = a ; t ' ;
v (t) : = p a s s ;

where a �9 L~, such that Y a f t e r a ~ 0, and t ' is obtained by recur-
sively applying the algorithm for Y a f t e r a and A', with A --% A'.

3. (* check the next output of the implementation .)
t := ~ { x ; s t o p] x �9 Lu, x r out(A))

[] E { x ; t ~ { z e L u , z e o u t (A) } ;
~,(t) := if (~ � 9 out(A) o r e C Y :) then pass else f a i l ;

where v (s top) := if e �9 Y then fall else pass for all x in the first
operand, and t~ is obtained by recursively applying the algorithm for
~" a f t e r x and A', with A x ~ A I. []

T h e o r e m 6.4

1. A test case obtained with algorithm 6.3 from As and Y is sound for
s with respect to ioconfj : .

2. The set containing all possible test cases that can be obtained with
algorithm 6.3 is exhaustive. []

Example 6.5

We generate a test case for sl from /~01 for the implementation relation
ioconf = ioconftraceKs) (figure 3). We start with giving an input:
butln G init(A,1) n LI, so t := butln; t ' and v(t) : p a s s .
In the next step we generate the test case t ' from A' = liqout; •; s top , where
we check the outputs:
t' := ~,{z;stop I z �9 Lu, x ~ {liqout) } D E{z;tz l z �9 Lu, x �9 {liqout))
= chocout; s t o p [] liqout; tliqout.
Since J ~ out(A') , we have v(t ') = fail. Moreover, v (s top) = fail.
Now generating tliqo~t from A" = dl s t op we again check the outputs:
tuq.~ := E{z; s t o p I z �9 Lu, x ~ {~}} [] r~{z; t= I z �9 Lu, x �9 {J}}

144

= chocout; stop [~/iqout; stop,
with for both branches p(stop) = fail, and ~(tZ~o.t) = pass.

Combining tZiqo., and t ~ into t we obtain the test case t of figure 4 as a
sound test case for sz, which is consistent with the results found in exam-
ples 4.12 and 5.3: qz ioconfsz, q2 ioc~Inf sl, and q3 ioc~nfsz, and indeed
ql passes t, q2 fails t, and q3 fails t. []

7 Concluding Remarks

This paper presented a theory for conformance testing of implementations
that communicate via inputs and outputs. The main ingredients of this
theory are the implementation relations _<ion, ioconf, and ioconfy, and
a sound and exhaustive test generation algorithm. The resulting theory
and algorithm are somewhat simpler than the corresponding theory and
algorithms for testing with symmetric interactions (e.g., compare propo-
sition 4.3 with 3.3, and compare algorithm 6.3 with the conf-based test
generation algorithm in [151). The theory and the algorithm can form the
basis for the development of test generation tools. They can be applied to
those domains where implementations can be assumed to communicate via
inputs and outputs, which is the case for many realistic systems, and where
specifications can be expressed in labelled transition systems, which also
holds for many specification formalisms.

It was indicated that input-output transition systems only marginally
differ from input/output automata [121, having weaker requirements on
input-enabling and on quiescence. We think that in a few cases these weaker
requirements are easier and more intuitive. This was indicated for quies-
cence with the example in section 4, just above definition 4.2, but it was
also indicated that for str0ngly-converging systems the two coincide. For a
precise comparison a more elaborate investigation of divergence in input-
output transition systems is necessary. The weaker requirement on input
enabling allows some systems that are 2:OT~q but not IOA. For example,
when the communication between an IOA system and a bounded input
buffer is hidden, then the whole system is not IOA anymore: when the
buffer is full, no input actions are possible anymore without first perform-
ing an internal event. Such a system is IOT~q.

The model of input-output transition systems is also very much related
to the model of input-output state machines [131. The idea for the ~-trace
automaton is inspired by the way the absence of output is treated in [131,
but there are subtle differences in the way the ~-transitions are added.

The implementation relations and algorithm in this paper generalize
those for queue systems [17]. Queue systems are transition systems in a
queue context, i.e., to which two unbounded queues are attached to model
asynchronous communication, one queue for inputs, and one for outputs.

145

An unbounded queue clearly has the property that input can never be re-
fused, while the output queue makes that from the system's point of view
output actions can never be refused by the environment.

Another open issue is the atomicity of actions. Although we allow spec-
ifications to be labelled transition systems, the actions are classified as
inputs and outputs, and they have a one-to-one correspondence to those
of the implementation. An interesting area for further investigation occurs
if implementation relations are combined with action refinement, so that
one abstract symmetric interaction of the specification is implemented us-
ing multiple inputs and outputs, e.g., implementing an abstract interaction
by means of a hand-shake protocol. Tests could be derived from the spec-
ification using symmetric algorithms (section 3) and then refined, or the
specification could be refined after which the input-output based algorithm
is used. The precise relation between testing, inputs and outputs, and ac-
tion refinement needs further investigation.

A second open problem is the well-known test selection problem (test-
suite size reduction [10]). Algorithm 6.3 can generate infinitely many sound
test cases, but which ones shall be really executed? Solutions can be sought
by defining coverage measures, fault models, stronger test hypotheses, etc.
[1, 10, 13, 15]. Another aspect is the incorporation of data in the test gen-
eration procedure. The state explosion caused by the data in specifications
needs to be handled in a symbolic way, otherwise automation of the test
generation algorithm in test tools will probably not be feasible. A last, more
practical problem is the implementation of the observation of quiescence.
In practical test execution tools, timers will have to be used, for which
the time-out values need to be chosen carefully, in order not to observe
quiescence where there is none.

8 REFERENCES

[1] G. Bernot. Testing against formal specifications: A theoretical view.
In S. Abramsky and T. S. E. Maibaum, eds., TAPSOFT'91, 99-119.
LNCS 494, Springer-Verlag, 1991.

[2] E. Brinksma. A theory for the derivation of tests. In S. Aggarwal
and K. Sabnani, eds., Prof. Spec., Test., and Vet. VIII, 63-74. North-
Holland, 1988.

[3] E. Brinksma, R. Alderden, R. Langerak, 3. van de Lagemaat, and
J. Tretmans. A formal approach to conformance testing. In J. de Meet,
et al., eds., Protocol Test Systems II, 349-363. North-Holland, 1990.

[4] ITU-T. SDL. Recommendation Z.100, 1992.

[5] R. De Nicola. Extensional equivalences for transition systems. Aeta
Informatica, 24:211-237, 1987.

146

[6] R. De Nicola and R. Segala. A process algebraic view of input/output
automata. TCS, 138:391-423, 1995.

[71 R.J. van Glabbeek. The linear time - branching time spectrum. In
J.C.M. Baeten and J.W. Klop, eds., CONCUR'go, LNCS 458, 278-
297. Springer-Verlag, 1990.

[81 ISO. Estelle - International Standard IS-9074, 1989.

[9] I S O . L O T O S - International Standard IS-8807, 1989.

[10] ISO/IEC JTC1/SC21 WG7, ITU-T SG 10/Q.8. Formal Methods in
Conformance Testing, working draft. September 1995.

[11] G. Leduc. A framework based on implementation relations for imple-
menting LOTOS specifications. Computer Ne#works and ISDN Sys-
tems, 25(1):23-41, 1992.

[12] N.A. Lynch and M.R. Turtle. An introduction to input/output au-
tomata. CWI Quarterly, 2(3):219-246, 1989.

[13] M. Phalippou. Relations d'Implantation et Hypotheses de Test sur des
Automates & Entrges et Sorties. PhD thesis, L'Universit~ de Bordeaux
I (F), 1994.

[14] R. Segala. Quiescence, fairness, testing, and the notion of implemen-
tation. In E. Best, ed., CONCUR'93, 324-338. LNCS 715, Springer-
Verlag, 1993.

[15] J. Tretmans. A Formal Approach to Conformance Testing. PhD the-
sis, University of Twente (NL), 1992.

[16] J. Tretmans. Testing labelled transition systems with inputs and out-
puts. Memorandum INF-95-26, University of Twente (NL), 1995.

[17] J. Tretmans and L. Verhaard. A queue model relating., synchronous
and asynchronous communication. In R.J. Linn and M.U. Uyar, eds.,
Prot. Spec., Test., and Vet. XII, 131-145. North-Holland, 1992.

[18] F. Vaandrager. On the relationship between process algebra and in-
put/output automata. In Logic in Computer Science, 387-398. Sixth
Annual IEEE Symposium, 1991.

[19] C. D. Wezeman. The CO-OP method for compositional derivation of
conformance testers. In E. Brinksma, et al., eds., Prof. Spee., Test.,
and Vet. IX, 145-158. North-Holland, 199(}.

