
Strategy Construction in
Infinite Games with Streett and
Rabin Chain Winning Conditions

Nils Buhrke*
Helmut Lescow*
Jens VSge*

ABSTRACT We consider finite-state games as a model of nonterminating
reactive computations. A natural type of specification is given by games
with Streett winning condition (corresponding to automata accepting by
conjunctions of fairness conditions). We present an algorithm which solves
the problem of program synthesis for these specifications. We proceed in
two steps: First, we give a reduction of Streett automata to automata with
the Rabin chain (or parity) acceptance condition. Secondly, we develop an
inductive strategy construction over Rabin chain automata which yields
finite automata that realize winning strategies. For the step from Rabin
chain games to winning strategies examples are discussed, based on an
implementation of the algorithm.

1 Introduction

In recent years, methods of automatic verification for finite-state programs
have been applied successfully, which have clearly reached the level of prac-
tical use. For the existing automata theoretic results on finite-state pro-
gram synthesis the situation is quite different. Not only explicit formula-
tions of algorithms but Mso experience in nontrivial examples are missing.
The present paper offers an algorithm for finite-state program synthesis
from automaton specifications; we also discuss some examples based on an
implementation.

The foundations of finite-state program synthesis were laid in the work
of B/ichi and Landweber [BL69]. Papers exploiting further the approach
include Pnueli, aosner [PR89], Abadi, Lamport, Wolper [ALW89], and
Nerode, Yakhnis, Yakhnis [NYY92]. Recently, the paradigm of program
synthesis has attracted increasing attention in the context of discrete event

*Institut fiir Informatik und Praktische Mathematik, Christian-Albrechts-Universitgt
Kiel, D-24098 Kiel, email: {nb, hel, jv)~informatik.uni-kiel.de. Supported by Deutsche
Forschungsgemeinschaft, projects Th 352/3-2 and Th 352/5-1.

208

and discrete control systems ([RW89], [KG95], lAMP95]). Unfortunately,
however, these papers do not present directly implementable synthesis al-
gorithms; and also the original Biichi-Landweber paper, while describing
an algorithm, is not feasible.

We adopt the following game theoretic framework (see [Tho95] for more
detailed background). The interaction between two parties (say, a program
and its environment) is modeled by two players, called 0 and 1 here, of an
"infinite game" (or "Gale-Stewart game" [GS53]). In a play of the game,
both parties perform actions in turn, thus building up an infinite computa-
tion. In the state-based description to be assumed in this paper, an action
causes a transition in a state graph, and referring to the alternation be-
tween the two players, we suppose that this state graph is partitioned into
two sets such that the transition relation induces a bipartite graph with
respect to these two sets. The two players' actions can then be viewed as
movements of a token through this "game graph" along the graph edges. By
conditions on the visited (or infinitely often visited) states it can be speci-
fied which computations ("plays") cause a win of player 0. As we identify
player 0 with the party "program" and player 1 with the "environment",
this winning condition for player 0 defines the set of "desired computations"
as given by the specification.

The synthesis problem for these games asks for programs that realize
winning strategies for player 0, i.e. allow player 0 to choose transitions
that ensure his win whatever player 1 does. Biichi and Landweber [BL69]
showed that one can effectively compute the set of states from where (as
start of a play) player 0 wins, and that such a winning strategy is always
realizable by a finite automaton.

In applications (e.g. in problems of discrete control) a natural type of
winning condition is the so-called "Streett form" [Str82], i.e. a conjunction
of conditions of the form

"if state set Uk is visited infinitely often then state set Lk is
visited infinitely often".

Short:
(*) A (Inf(Tr) N U~ r 0 ~ Inf(lr) N Lk r 0).

IKk<r

Finite game graphs with such winning conditions (for player 0) can
be viewed as finite Streett automata (in the sense of w-automata theory
[Tho90]), known to characterize the regular w-languages.

The computational difficulties in constructing winning strategies for such
games are due to two phenomena: First the size of memory needed in
winning strategies, secondly the recursive descent by which the given game
graph is reduced when a strategy is constructed.

In this paper we develop an algorithm for strategy synthesis in Streett
games which proceeds in two steps (by which the above mentioned phe-
nomena are handled separately). First, we transform Streett games to

209

games with "Rabin chain winning condition" (or "parity winning condi-
tion" [Mos91]). The blow-up of the game graphs in this step corresponds
to the introduction of sufficient memory for winning strategies. The second
step is the construction of memory-less winning strategies for these Rabin
chain games; it involves a decomposition of the game graph. Other ap-
proaches might merge these two aspects (e.g. following [McN93], [TW94],
[YY93]), but for experiments it seems useful to be able to study the two
effects separately.

The first step has some resemblance to the reduction of games with the
Muller winning condition to the Rabin chain condition (see e.g. Emerson,
Jutla [EJ91], Thomas [Who95]). We use a new version of the "latest ap-
pearance record". This data structure is hidden already in Rabin's paper
[Rab69, lemma 3.8], and appeared in many forms (Gurevich, Harrington
[GH82], Bfichi [Bfic83], Muchnik [Muc92], Safra [Saf92], Muller, Schupp
[MS95]). We use a form, called "index appearance record" here, where in a
Streett game with winning condition (,) the indices of referenced sets Lk in
the order of their last visits are kept in a record, together with two pointers.
This is similar to Biichi's "order vector with hit position" [Biic83]. As a re-
sult we obtain a rather simple transformation with the (previously known)
time complexity polynomial in the number of states but exponential in the
number of pairs.

The actual synthesis algorithm starting from a game with Rabin chain
or parity winning condition involves an induction (over the cardinality of
the state space of the game) following the approach of [McN93, section 3]
and [Tho95]. The time complexity of this synthesis problem is still open;
our algorithm has an exponential upper bound but seems to allow practical
u s e .

The paper is structured as follows: Section 2 introduces the terminol-
ogy, section 3 the transition from Streett games to Rabin chain games, and
section 4 presents the synthesis algorithm. In the final section we discuss
the synthesis algorithm in a small example. The algorithm is implemented:
more experiments with examples seem necessary to find appropriate heuris-
tics for choosing pivot states which help to minimize backtracking in the
synthesis algorithm.

We thank Wolfgang Thomas for many helpful discussions during the
preparation of this paper.

2 Definitions and Notation

In the context of infinite games, it proved to be useful to consider a type
of "w-automaton" introduced by McNaughton [McN93] where we abstract
from the labels of transitions, since the acceptance (or winning) condition
depends only on visits of states; moreover, each state is associated with

210

just the player whose turn it is to make the next move.
So a finite-state game is given by a bipartite finite directed graph G and

a "winning condition". The idea is that two players, called player 0 and
player 1, are moving a token alternatively from vertex to vertex along edges
in the game graph. A game graph is of the form G = (Q, Q0, Q1, E) with
Q = Q0 0 Q1 and E C (Q0 x Q1) u (Q1 • Q0) where Qi is the set of vertices
where it is the turn of player i to move the token. Since we are interested
only in infinite computations it is convenient to demand that each vertex
of the game graph has at least one outgoing edge.

A play r is an infinite sequence of states from Q visited by the token in
successive moves, i.e., a sequence lr �9 Q~ with (r(t) , r (t + l)) �9 E for all t.
The winner of a play is declared by a winning (or accepting} condition
Win : Qo~ _+ {0, 1} that maps a play lr to i iff the play r is won by player
i. So a game F is given by a pair F = (G, Win). In the sequel, we also use
the term "state" for "vertex".

In this paper we deal with Rabin games and Streett games (referring
to the analogous acceptance conditions for w-automata). These games are
characterized by special winning conditions. A Rabin condition is given by
a system [2 C 2 Q • 2 Q, and the function Win defined by Win(N) = 0 iff

3(L, U) �9 ~ s.t. Inf(~r) f~ L = 0 A In f (r) N U ~s 0

where In f (r) is the set of vertices visited infinitely often during the play
~r. A Rabin game is called Rabin chain game if the set of accepting pairs

consists of pairs (E~, Fk) that form a chain by set inclusion: E1 C_ F1 C
E2 C . . . C Fr (cf. [Mos91]).

The Etreett condition (following [Str82]) is dual to the Rabin condition in
the sense that a play 7r is won by player 0 in a l%abin game iff r is accepted
for player 1 in the corresponding Streett game. So the Streett acceptance
condition is given by a system [2 C 2 Q x 2 Q where the function Win is
defined by Win(N) = 0 iff

V(L, U) E f~ : In f (r) n U r r ~ 1hi(r) n L ~s 0.

A strategy for player i in the game r is a function which associates with
a partial play ending in Qi a state in Q l - i . W.l.o.g. a strategy may be
defined as a partial function e : Q*Qi -+ Ql- i with e (p l , - - - , p~) = p~+l
such that (pk, pk+l) E E. The strategy ~ is called a winning strategy if, for
any choice of moves of player 1 - i, it induces a play won by player i.

Biichi and Landweber showed that finite automata (with fixed finite
memory M) are sufficient to realize winning strategies for games on finite
graphs (cf. [BL69]). Due to this a strategy for player i can be defined, using
a finite (memory) set M, as a function ~ : Q,i x M --+ QI-~ and using a
function ~ : Q • M --+ M for updating the memory with each move of the
token.

211

For a finite game graph G = (Q, Q0, Q1, E) we call G = (O, Q0, 01 , /~) a
game-extension by memory if there is a finite set M and a memory-upda te
function ~o : Q x M --+ M, s.t. G is characterized by M and ~ as follows

(i) O =
(ii) Qi----

(iii) E =

Q x M ,
Qi • M, for all i �9 {0, 1},
{((q, m), (q', m ')) : (q, q') �9 E and ~(q', m) = m'}.

The game F = (G, Win) may be simulated by the game F = (G, Wi"--n)
when we define Wi-'-n(ir) := Win(Prl(ir)) for all r �9 Q~, where Prj is the
projection to the j - th components of an w-sequence of tuples.

Thus, a strategy is describable by an extended game graph where all
edges from states in Qi not of the form ((q, m), (c~(q, m), ~o(q, m))) are
deleted. We call a strategy for player i no-memory if no additional memory
is required, i.e. the strategy is a function Qi --+ QI-~. It can be described
by the game graph where all but one outgoing edges from states in Qi are
deleted.

3 From Stree t t games to Rab in chain games

Between the games given in normal form described by Biichi [Biic83, w and
the games with Rabin chain condition introduced by Mostowski [Mos91]
is a close relation. If these games are played on finite graphs the winning
strategies may be given as subgraphs on the game graph, which are called
no-memory strategies. Biichi [Biic83, w showed how to transform Muller
games into games in normal form. The same technique is presented (in sim-
pler terminology and in the simpler case of finite-state games) in Thomas
[Tho95] for constructing Rabin chain games out of Muller games. In both
cases the memory needed for constructing winning strategies in the main
part consists of the well known "latest appearance record" or "order vec-
tor".

For building Rabin chain games out of Streett games in our case we
extend the "index appearance record", introduced by Muller and Schupp
[MS95], by two pointers as done by Safra [Saf92]. For this transforma-
tion we present here an easily implementable algorithm of time complexity
polynomial in the size of states and exponential in the number of Streett
conjunctions. The same can be done for Rabin games.

Let us introduce some conventions to talk about the properties of winning
plays in a Streett game. Usually, we assume the following situation:

212

Let F = (G, Win) be a Streett game defined over a finite game
graph G = (Q, Q0, Q1, E) and a finite sequence of Streett pairs

(,) fl = (L~,Uk)ke{1 r} with Lk,Uk C_ Q, for k E { 1 , . . . , r } , and
Lr Ur = Q, s.t. for all plays r E Q~ = we have WinQr) = 0 iff
for all k e {1 , . . . , r} the following condition holds: In f (r) 0 Uk r
0 implies Inf(rr) f3 Lk ~s ~.

For a given play rr E QO, we say that player 0 reaches an index k E {1 , . . . , r}
in the play r at position t if 7r(t) ELk , and player 1 reaches the index k
in the play 7r at t if rr(t) e Ok. An index k e {1 , . . . , r} reached infinitely
often in a play 7r E QW by player i E {0, 1} is called frequent for player i on
the play r .

It is quite clear that for a play r E QO~, player 0 wins iff the indices
that are frequent for player 1 are also frequent for player 0 on the play 7r,
formally

{ l < k < r : I n f C ~ r) n U h r 1 6 2

In a play of a Streett game as in (*) we associate to each position an
index appearance record (iar) consisting of permutations. The record at a
position is given by shifting the indices reached for player 0 in the previous
record to the right keeping the remainder in its previous ordering. A start
record for the first position is defined. As an auxiliary notion we need a
so-called shift function.

Defini t ion 1 Assume (.). For each q E Q and a permutation iar =
(il, i2 , . . . , it) o f { i , . . . , r}, let i (iar, q) be the subsequence of iar consisting
of those ij where q e L~j. Similarly, let L(iar, q) be the (complementary)
subsequence of iar with the ij such that q ~ Lij. The value of the shift
function sh : Perm({1 , . . . , r}) • Q -+ Perm({1 , . . . , r}) is defined by

sh(iar, q) :-- -L(iar, q)L(iar, q).

The crucial point in defining the Rabin chain winning condition are
the "hit positions" for each player. Hit functions were invented by Bfichi
[Biic83] to characterize games by a winning condition in normal form. In
our case it would be sufficient to use one hit function which denotes the
least hit position of both players and an extra function for the owner of the
hit position, which is Biichi's original version. For a simpler argumentation,
however, we proceed with two hit functions, one for each player.

Defini t ion 2 Assume (.). The hit function hiti : P e r m ({ 1 , . . . , r}) • Q -+
{1 , . . . , r} for player i E {0,1} over t < w is defined by

(Lia,(p) if i O, hiti(iar, q) := pp E {1, . , r } : q E
" t U~.~(p) /f i = l .

213

The hit functions for both players are well-defined, since the Streett
condition contains the pair (Lr, Ur) = (Q, Q). The pair may be added to
every Streett condition without changing the winning plays of the game.

For the whole play in the Streett game a sequence of extended index
appearance records is defined as follows:

D e f i n i t i o n 3 Assume (*). The function 1AR : Q~ ~ P e r m ({ 1 , . . . , r}) ~
associates with any rr E Qo~ an w-sequence IAR(rr) of iar's defined by

IAR(~)(O) := (1, 2 , . . . , r),
1AR(r) (t) := sh(1AR(Tr)(t - 1), 7r(t)), for t > O.

The sequence of hit positions for each player on a play is given by the
following definition.

D e f i n i t i o n 4 Assume (*). The hit function HISq : Qo~ __4 { 1 , . . . , r} ~ over
w-sequences is defined for player i E {0, 1} by

HIT~ (~r)(0) := r,
HIT~(Tr)(t) := hi t i (IAR(~r) (t - 1),rr(t)), f o r t > O.

Before we can convert Street games to Rabin chain games we need the
following lemma, which give us a link between the least infinite-hit posi-
tions of each player and the winner of each play.

L e m m a 5 Assume (*), let ~r E Q~ be a play in s and let

p0 := t~P : p E l n f (H I T o (~r))

be the least infinite-hit position of player 0 in the play 7r. Then the play 7r
is won by player 0 iff for all Pa E ln I (HIT1 (r)) we have po < px.

Proof. Let 7r E QW be a play in the game s and a := IAR(Tr) the
infinite sequence of the index appearance records on ~r and P0 : = / t p : p E
I n f (H IT o (Tr)).

Let to < w be a position in rr such that from to onwards all the indices
reached for both players are frequent ones, and Po 5 SlTo(rr)(t) for all
t > to. Then for all t > to the sets

F(t) := { , (t) (p) e { 1 , . . . , r } : p 0 < P S r}

are equal to the set F(to) and consist of the frequent indices for player 0
on rr. In the following we will prove that a play 7r �9 Q~ is a win for player
0 if and only if for all infinite-hit positions p~ �9 In f (HIT~ (r)) of player 1
we have p0 < Pl. This is done in two steps.

" ~ " : Let rr be a winning play for player 0 and pt �9 In f (HIT~ (Tr)). Then
there exist infinitely many indices tl < t2 < . . . < w with to < tl and
HITl(~r)(tl) = Pl. Since 7r is winning for player 0 all indices reached
after to are in F(t) , so we get P0 _< Pl.

214

"r Assume now that there exists a Pl e I n f (H I T l (r)) with Pl <
P0. For all p < P0 and to < t we have that a(to)(p) = a(t)(p),
which means that ~ is not changed for positions less than P0 after
the position to. So player 1 reaches infinitely often an index which is
not in the set of the frequent indices for player 0 on the play r . So
we get Win(r) = 1.

O

T h e o r e m 6 Assume (*). Then there is a memory extension s = (G, Wi~n)
of the game r with the l nite game graph V = (Q, 60, q l , and wher
Wi~n is a Rabin chain winning condition s.t. for all plays ~r E Q,~ in the
game F we have

(+) Win(Prl(~r)) = 0 iff Win(fr) = O.

Proof. We have to construct in the following a finite memory set M,
a memory update function 90 : Q x M --4 M and the sequence of Rabin
chain pairs. Then we have to prove that the two games are equivalent in
the sense of (+).

The finite set M of memory is given by

M := P e r m ({ 1 , . . . , r }) x { 1 , . . . , r } x { 1 , . . . , r } .

The function 90 : Q x M -4 M is given for (q, iar, ho, hi) E Q x M by

90(q, iar, ho, hi) := (sh(iar, q), hito(iar, q), hitl (iar, q)).

The Rabin chain acceptance condition (El, F1, E2, F2, . . . , Er, Fr) is
built up inductively for k �9 {1 , . . . , r} and F0 := $ by

Ek := Fk-lU{(q, iar, h0, hi) �9 Q x M : ht = k - 1 and k < h0 < r},
Fk :=Ek U{(q, iar, h0, h i) � 9 a n d k < h l < r } .

Note that E1 is the empty set. It is easy to see that for all k �9 { 1 , . . . , r}
the sets E~ consist exactly of this states for which the hit position for at
least one of the players is less than k.

Let G = (0 , G0, 0x,/~) be the memory-extended game graph by the
finite memory set M and the memory-update function ~. Define Win :
Q~ --4 {0, 1} over the Rabin chain (El , Fr). Then r = (a , Win) is
a Rabin chain game. Finally we show that the two games are equivalent,
w.r.t. (+).

Therefore let ~r �9 Qw. Define r := Prl(fr). Then r �9 Q~, HITo(r) =
Pr3(ir) and g I T l (r) = Pr4(~r). By Lemma 5, Win(r) = 0 iff for all
Pl �9 I n f (H I T i (r)) the least infinite-hit position for player 0 is less or
equal than Pl iff there exists an index k �9 {1 , . , . , r} with Inf(~r) N Fk r
and Inf(~r) N Ek = ~, The last equivalence follows from the construction

of the Rabin chain. Therefore Win(r) = 0 iff Win(it) = O. []

215

From Theorem 6 it follows directly that the generation of the states,
of the edges and of the winning condition for a Rabin chain game based
on a Streett game can be done separately. For the states and the winning
condition it suffices to use simple enumeration routines with t ime complex-
ity O(n2~l~ In the case of the edges the construction is also done by
enumerat ion in t ime 0(n22 ~ logr), whereby we have to use the hi t-function
and the shift-function as in Theorem 6.

T h e o r e m 7 The above construction yields, starting from a Streett game
with n states and r accepting pairs, an equivalent Rabin chain game in time
O(n22rl~

Let us add a remark on games with special type of Streett winning
condition: Assume a game (*) has a Streett winning condition such that
L1 C_ L2 C . . . C L, . In this special case we can extract a Rabin chain
game immediately by defining the following winning condition assuming
tha t F0 := 0 and U0 := 0:

Ek : : Fk-1 U Uk-1 and Fk := Ek U Lk, for all k E { 1 , . . . , r}.

The proof is similar to the proof of Theorem 6 by defining the hit functions
over the states q E Q for both players by

hito(q) := #k < r : q E L k and hitl(q) := #k < r : q E Uk.

It follows from the next section that Rabin chain games allow n o - m e m o r y
winning strategies. Hence in the case of Streett games with monotone in-
creasing L-sets both players have a no -memory strategy.

4 Strategy construction for Rabin chain games

In this section we construct a deterministic winning strategy for a Rabin
chain game. In the following we always mean by strategy a n o - m e m o r y
strategy.

Strategies will be presented by functions ~ : Q --+ Q to {J_}. Such a
function contains two strategies (given by the induced maps from Q0 to
Q1 to {1} , resp. from Q1 to Q0 to {/-}). If a player has no winning possibility
in a state q this is indicated by ~(q) -- J_. Otherwise his s t rategy is to select

e q.
For each game (G, Win) with f~ -- (El , F 1 , . . . , Er, Fr) there is a dual

game (G, Win) , where players are changed: G = (Q, Q1, Q0, E). The ac-
ceptance condition can be complemented by shifting the state sets by one:

f~ : (O, EI, F 1 , E 2 , . . . , F r - I , E r , F~,Q).

We construct a strategy by induction on the size of game graphs. So
we need a notion of subgame. A game (G ~, W i n ~) is called a subgame of

216

(G, Win) i f O ' C O and G' = (O', Q o N Q ' , Ol f3Q', E f 3 (Q ' • Q')).
The acceptance condition must be ~ ' = 0 if Fr N Q' = ~ and otherwise
~' = (E~,F/,.. . ,E',F~) with l = min{k �9 {1 , . . . r}]Fk N O ' # 0} and
for k �9 { l , . . . , r}: E l = E~ s Q' and F~ -- Fk f3 Q'. Furthermore, in the
underlying graph at least one transition must leave each state. This is the
only condition for a subset O' C_ O to induce a subgame.

We define a function reach() which over O computes the set R of states
from which a player i can force a visit in a given "target set" T. More
precisely, the function reach(Qi, E,T) in Figure 1 determines the states
R C Q \ T from which player i can force a visit in T; simultaneously a
function e : R --+ O U {• is computed which defines a "strategy" to
ensure this. The word "strategy" here only refers to the domain R which
is computed by reach().

f u n c t i o n reach(Qi, E, T) :
r e t u r n Reach(Qi, E, T, T)

f u n c t i o n Reach(Qi, E, T, T ~) :
R : = 0
p : = ~

i f T ' = ~ t h e n
r e t u r n (R, p)

e l se
for e a c h q E T I do

for each p E E - l (q) \ T do
i f p E O~ t h e n

n := n u {p)
p := pu(p +q)

else
t := true
for each ql E E(p) do

i f ql ~ T t h e n
t := false

i f t t h e n
R := R u {p}
p : = p u (p ~ •

(R ~, p') : - Reach(Qi, E, T U R, R)
r e t u r n (R U R I, p U pl)

FIGURE 1. Function reach()

In the functions reach() and strategy() the notations E(p) := {ql(P, q) e
E} and E-l(q) := {PI(P,q) E E} are used for describing the transition
relation E.

The computat ion of function reach() starts with setting R = ~. If there

217

is a state q E Q0 \ (T U R) with a transition leading into T U R this state is
added to R. If there is a state q E Q~ \ (T U R) with all transitions leading
into T U R this state is also added to R. These steps are repeated until
there is no further state to add. This construction ensures that Q~ -- Q - R
induces a subgame.

A strategy for a Rabin chain game (G, Win) with G -- (Q, Q0, Q1, E)
and f~ = (El , F1, . . . , Er, Fr) can be determined by the recursively defined
function strategy 0 of Figure 2: It returns a triple (V0, V1, ~), where ~ is
the winning set for player i and g : Q -+ Q u {A_} is a strategy function. We
divide the problem in four different cases of which three are quite simple.

(a) The trivial case is [Q[- 0. On this graph winning sets are empty and
the strategy function is also empty.

(b) If the acceptance condition is empty (~ = 0), player 0 cannot win.
Thus winning sets are V0 = $ and V1 -- Q. For the states of player 0
the value of the strategy function is 1 , for the states of player 1 any
of the directly reachable states can be chosen.

(c) If the graph has a non-empty acceptance condition with E1 = 0 the
case can be reduced to the dual game (G, Win) with G : (Q, Q1, Q0,
E) and

~ = (F 1 , E 2 , . . . , F r - I , E r , Fr ,Q) i f F r C Q o r
f~=(F1,E2,...,Fr-I,Er) if Fr ---- Q.

(d) If none of the previous conditions holds the situation is more compli-
cated. We select a pivot state p E El . Player 1 wins if he can visit
this state infinitely often. By applying reach(Q, E, {p}) we compute
all states R C Q \ {p} from which player 1 can force a visit of p. This
function also computes a strategy p to get there. Then we determine
a strategy for the remaining subgame (G \ (R U {p}), Win') with
f~' = f~ \ (R U {p}) which results from the original game by removing
all states of RU {p}. By induction hypotheses we get winning sets V0,
V1 and a strategy ~ for this subgame. Now we have a strategy for all
states but p which leads to two possible cases:

1. Player 1 can prevent player 0 from entering V0. Then player 0
has a winning strategy on V0 and player 1 on the remaining set
V1URU{p}. Let's assume that in state p the choice ofq E QU{A_}
is a way for player 1 to avoid entering V0. Then the strategy for
the whole game is p U ~ U {p ~-+ q}.

2. Player 1 cannot prevent entering V0 in state p. Then we only
know that player 0 has a winning strategy on V0. We compute
all further states from which player 0 can force entering Vo.
We name this set R ~ and the strategy p~. Again the remaining

218

f u n c t i o n strategy(Q, Qo, Q1, E, (El, F1, . . . , Er, Fr)):
(a) if size(Q) = 0 t h e n

r e t u r n (0, 0, 0)
(b) e l se i f r -- 0 t h e n

r e t u r n (0, Q, Q --+ Q u {.l_} : p ~ • if p e Q0,
p qeE(p) i f p e Q 1)

(c) e lse i f E1 : ~ t h e n
i f Fr -- Q t h e n

(V1, V0, ~r) :_- strategy(Q, Q1, Qo, E, (F1, E2 , Fr-1, Er))
e lse

(V1, Vo, tr) := strategy(Q, Q1, Qo, E, (El, E2, . . . , F~- I , E , , -fir, Q))
r e t u r n (Vo, V1, ~r)

e lse
se lec t p E E1
(R, p) :-- reach(Q1, E, {p})
(V0, Yl, or) :-- strategy(Q, Qo, Q1, E, (El, F1, �9 Er, Fr), R O {p})
i f (p e Q o A E(p) M Vo = O) V (p e Q1 A E(p) k Vo ys O) t h e n

if p E Qo t h e n
q:--_L

else
se lec t q E E(p) N V1

r e t u r n (Y0, Yx U {p} U R, p U {(p . q)} U
else

(R', p') :-- reach(Qo, E, go)
(Vo, Vl, ~r') :-- strategy(Q, Qo, Q1, E, (El, Fx , . . . , Er, Fr), R' U Y0)
r e t u r n (Uo U R ~ U Vo, U1, triVo U p' U ~r')

f u n c t i o n strategy(Q, Qo, Q~, E, (E~, F1, . . ., Er, F~), R):
i f F1 \ R = 0 t h e n

r e t u r n strategy(Q, Qo, Q1, E, (E2, F2, . . . , Er, F~), R)
else

r e t u r n s trategy(QkR, QokR, QI \R , E \ (R x R),
(E l \ R , Fl kR, . . ,, ErkR, F~ \ R))

(d)

(dl)

(d2)

FIGURE 2. Ftmction strategy()

subgraph induces a subgame (G \ (Vo U R'), Win ') with f~' =
f~ \ (Vo U R'). By induction hypotheses we get winning sets Uo,
U1 and a strategy a~ for this subgame . Thus the strategy for
the whole game is air0 U p' U ~'.

This function terminates because in each recursive call the number of states
or the length of the acceptance condition is reduced. The computation time
of strategy() excluding its recursive calls is bounded by a polynomial. The
function strategy() calls itself at most twice for smaller subgames. Thus the

219

strategy algorithm has an exponential worst ease complexity of O(21QI).

5 Applying the synthesis algorithm

5.1 A s imple type o f Rab in chain games

Let G = (Q, Qo, Q1, E) be a game graph. As usual the edge relation E is
a subset of (Q0 • Q1) u (Q1 • Q0). For the vertices in Q we add

�9 an irreflexive partial order -K and

�9 a vertex labeling T with T(p) �9 {t, f } for all p �9 Q

such that

(,) -~(p -K q Y q -K p)
[(r - 4 p ~ r-< q) A (p-K r ~ q -< r) V T(p) = T(q)].

Condition (*) requires that two states which are incomparable w.r.t. -<
have either identical labels or are comparable to the same states.

For any set M _C Q of vertices the set rain(M) of minimal elements of
M w.r.t. -< is uniquely defined.
In order to gain a Rabin chain game we use the winning condition:

Player 0 wins a play 7r 4 ~, for allp �9 min(Inf(~r)) : T(p) = t.

Let us verify that this is indeed a Rabin chain game. We construct the
sets E~, Fi as follows:

E1 = { p E Q I - ~ 3 q E Q T (q) = t A q - 4 p } ,

F1 = {p E Q I Vq c Q \ EI T(q) = f ~ p -< q},

E~+I -= { p 6 Q I - ~ 3 q 6 Q \ F ~ T (q) = t A q - < p } ,

Fi+I -- {p E Q I Vq �9 Q \ Ei+I T(q) = f ~ p -~ q}.

Assume we have a play ~r such that for all p �9 min(Inf(lr)) T(p) = t
holds. Then there is an i such that Inf(Tr) N Fi 7s 0 and Inf(~r) N Ei = 0.
Otherwise there would be a state p in Inf(~r) with T(p) = f that is minimal
in Inf(~r) w.r.t -4.

Now assume we have a play Ir and an i such that I n f (r) n F~ ~ 0 and
Inf(lr) N Ei -- 0. By condition (*) we know that

�9 for all p �9 Ei and for all q �9 Fi p -< q,

�9 for a l l p � 9 and for a l l q � 9 p - 4 q .

Then by definition of Fi the -K-minimal vertices p of Inf(Tr) are in
Inf(~r) M Fi and for these vertices T(p) = t holds.
So the above definition leads indeed to a Rabin chain game.

220

Example 8 Let Q0 = {(n, 0) l n E {0 , . . . ,7}} and Ol = {(n, 1) l n
{0 , . . . , 7}}, and let (n, i) .~ (re, j) ~ n < m for all i , j e {0,1}. The
edge relation E is given is given in terms of auxiliary functions fl : Q0 --+ Q1
and g~ : Q1 --~ Q0 by the following definition:

(p, f f) e E r 3i (f i(p) = p' Vgi(p) = i f) .

In our example we use the functions:

fin, o)) = (n, 1),

gl ((n , 1)) = (n, 0),

((n + 5, 1)
/~ ((n, 0)) =

(n + 1,1)

(n+5 ,0)
g2((n, = (n + 1, O)

i f n E {2,6}
otherwise,

i f n e {0,4}
otherwise.

(Here "+" means addition modulo 8.) So player 0 can use a function fl to
reach a new vertex whereas player 1 uses a function gi.

FIGURE 3. Game graph for the Rabin chain game of Example 8

Let T with T(n , i) = t for even n and T(n , i) = f for odd n. By definition
player 0 wins iff the minimal number n visited infinitely often is even.

If we represent the states in Q0 by circles and the ones in Q1 by squares
we get the game graph of Figure 3. Note that by other choices of the func-
tions fi, gi many more examples of Rabin chain games can be generated.
Beyond the concrete example above, for which an analysis "by hand" is
still possible, in the next orders of magnitude we considered various exam-
ples from 32 up to 1024 states. We used contrived (however nonrandom)
definitions of -~, labeling T, and functions fi, gi-

221

Number of states "Average time" "Maximal time"
32
48
64
96
128
192
256
384
512
768
1024

0.1
0.3
0.4
1.3
2.6
5.7
11.0
30.0
74.0

210.0
469.0

0.1
0.5
0.6
1.5
4.2
7.7
16.4
49.6
106.9
356.7
749.5

TABLE 1. CPU time used (in seconds) to compute strategies for example games

The CPU time (on a SUN Sparc 10) for computing the strategies is
shown in Table 1. We considered up to ten games of each given size with
different edge relations and accepting chains. In the table, the average t ime
as well as the maximal time of the considered cases are noted.

Although the worst case complexity of the algorithm is exponential, it
seems applicable to problems of considerable size. Note that the maximal
(and average) times we found by our experiments grow moderately even in
our preliminary version with an uncontrolled choice of pivots (just using
the first in a given enumeration).

5.2 Remarks on the strategy synthesis algorithm

The strategy synthesis algorithm splits a given game graph into two parts,
containing the states from which player 0 resp. 1, wins.

The solution for Example 8 is depicted in Figure 4. From the states in the
left-hand side, player 0 has a winning strategy as indicated by the chosen
displayed edges, from the states in the right-hand part player 1 wins by
traversing through the displayed edges.

In general, the critical point in applying the algorithm is the choice of the
pivot states (in the " se l ec t " line of d) in Figure 2). We see two approaches
to handle this problem. A possible heuristic is to select states p where
Reach(p) is of maximal size; this reduces the size of the subgame to which
the induction hypothesis is applied. However in general this greedy method
may fail to find the best descent in reducing the game graph: Note that in
case d2, a second use of the inductive hypothesis is necessary which may
spoil the optimality of reduction. Another approach would be to introduce
a preprocessing of the game graph, yielding an order of pivot elements
(similar to preprocessing a linear equation system when applying Gauss
elimination). The structure theory of game graphs necessary for this is still
missing.

222

FIGURE 4. Winning strategies for Rabin chain game of example 8

6 Conclusion

We have presented and implemented (for the first time, to our knowledge)
an algorithm which synthesizes finite-state winning strategies from automa-
ton specifications of infinite games. In our implementation the necessary
pivot choice is still done by the user.

Ongoing work deals with the implementation of algorithms to transform
games with other winning conditions into Rabin chain form and of strat-
egy synthesis algorithms in which memory construction and game graph
decomposition are combined (as in [McN93], [TW94], and [YY93]).

7 REFERENCES

[ALW89] M. Abadi, L. Lamport, and P. Wolper. Realizable and unre-
alizable specifications of reactive systems. In G. Ausiello et
al., editor, Automata, Languages, and Programming, volume 372
of LNCS, pages 1 - 17, Berlin, Heidelberg, New York, 1989.
Springer-Verlag.

[AMP95] E. Asarin, O. Maler, and A. Pnueli. Symbolic controller synthesis
for discrete and timed systems. In P. Antsaklis et al., editor,
Hybrid Systems II, volume 999 of LNCS, pages 1 - 20, Berlin,
Heidelberg, New-York, 1995. Springer-Verlag.

[BL69]

[Biic83]

[EJ91]

[GH82]

[GS53]

[KG95]

[McN93]

[Mos91]

[MS95]

[Muc92]

INYY92]

[PR89]

[Rab69]

223

J. R. Biichi and L. H. Landweber. Solving sequential conditions
by finite-state strategies. Trans. Amer. Math. Soc., 138:295 -
311, 1969.

J. R. Biichi. State strategies for games in Fo~ r3 G~. J. Symb.
Logic, 48:1171 - 1198, 1983.

E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and
determinacy. In Proc. 32nd IEEE Symp. on the Foundations of
Computing, pages 368 - 377, 1991.

Y. Gurevich and L. Harrington. Trees, automata, and games. In
Proc 14th ACM Symp. on the Theory of computing, pages 60 -
65, San Fancisco, 1982.

D. Gale and F. M. Stewart. Infinite games with perfect informa-
tion. Annals of Mathematical Studies, 28:245 - 266, 1953.

R. Kumar and V. K. Garg. Modeling and Control of Logical
Discrete Event Systems. Kluwer Academic Publishers, Norwell,
MA, USA, 1995.

R. McNaughton. Infinite games played on finite graphs. Ann.
Pure Appl Logic, 65:149 - 184, 1993.

A.W. Mostowski. Games with forbidden positions. Technical
Report Preprint No. 78, Uniwersytet Gdafiski, Instytyt Matem-
atyki, 1991.

D.E. Muller and P.E. Schupp. Simulating alternating tree au-
tomata by nondeterministic automata: New results and new
proofs of the theorems of Rabin, McNaughton and Safra. Theo-
retical Computer Science, 141:69 - 107, 1995.

A. Muchnik. Games on infinite trees and automata with dead-
ends: A new proof for the decidability of the monadic second
order theory of two successors. Bulletin of the European Associ-
ation for Theoretical Computer Science, 48:220 - 267, 1992.

A. Nerode, A. Yakhnis, and V. Yakhnis. Concurrent programs
as strategies in games. In Moschovakis Y., editor, Logic from
Computer Science. Springer, 1992.

A. Pnueli and R. Rosner. On the systhesis of a reactive module.
In Proc. 16th ACM Sympos. on Principles of Prog. Lang., pages
179 - 190, Austin, 1989.

M. O. Rabin. Decidability of second-order theories and automata
on infinite trees. Transactions of the American Mathematical
Society, 141:1- 35, 1969.

[Rw89]

[s 2]

[Str82]

[Thog0]

[Tho95]

[TW94]

[w93]

224

P. J. G. Ramadge and W. M. Wonham. The control of discrete
event systems. Proceedings of the IEEE, 77, 1:81 - 98, 1989.

S. Safra. Exponential determinization for w-automata with
strong-fairness acceptance condition. In Proc. 2$th ACM Sym-
posium on Theory of Computing (STOC), pages 275-282, 1992.

R.S. Streett. Propositional dynamic logic of looping and con-
verse. Information and Control, 54:121 - 141, 1982.

W. Thomas. Automata on infinite objects. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B,
chapter 4, pages 131-191. North-Holland, Amsterdam, 1990.

W. Thomas. On the synthesis of strategies in infinite games. In
Ernst W. Mayr and Claude Puech, editors, STACS 95, volume
900 of LNCS, pages 1 - 13, Berlin, Heidelberg, New-York, 1995.
Springer-Verlag.

J.G. Thistle and W.M. Wonham. Control of infinite behaviour
of finite automata. SIAM J. of Control and Optimization,
32(4):1075- 1097, 1994.

A. Yakhnis and V. Yakhnis. Gurevich - Harrington's games de-
fined by finite automata. Ann. Pure Appl Logic, 62:265 - 294,
1993.

