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Abs t r ac t .  Selecting the appropriate spatial scale for local edge analysis 
is a challenge for natural images, where blur scale and contrast may vary 
over a broad range. While previous methods for scale adaptation have 
required the global solution of a non-convex optimization problem [8], it 
is shown that knowledge of sensor properties and operator norms can be 
exploited to define a unique, locally-computable minimum reliable scale 
for local estimation. The resulting method for local scale control allows 
edges spanning a broad range of blur scales and contrasts to be reliably 
localized by a single system with no input parameters other than the 
second moment of the sensor noise. Local scale control further permits 
the reliable estimation of local blur scale in complex images where the 
conditions demanded by Fourier methods for blur estimation break down. 

1 I n t r o d u c t i o n  

Edge detectors are typically designed to recover step discontinuities in an im- 
age (e.g. [1-3, 11]), however the boundaries of physical structures in the world 
generally do not project to the image as step discontinuities, but  as blurred 
transitions corrupted by noise (Fig. 1). This paper  generalizes the detection of 
step discontinuities to encompass this broader, more physically realistic class of 
edges. We focus here on what can be computed from a local analysis of such 
luminance transitions. 

Geometric models for focal and penumbral  blur predict mathemat ical ly  iden- 
tical luminance transitions in the image, and shaded object edges can also mimic 
these pat terns  [4]. The goal of a local analysis must therefore be to reliably model 
luminance transitions over the broad range of conditions under which they occur, 
regardless of their physical origin. 

To illustrate the challenge in achieving this goal, consider the scene shown 
in Fig. 2. Because the light source is not a point source, the contour of the cast 
shadow exhibits a broad variation in penumbral  blur. On the left of Fig. 2 is 
shown the edge map generated by the Canny/Deriche edge detector [2, 3], where 
the scale parameter  has been tuned to detect the details of the mannequin.  At 
this relatively small scale, the contour of the shadow cannot be reliably resolved 
and the smooth intensity gradients behind the mannequin are detected as many  
short, disjoint curves. On the right of Fig. 2 is shown the edge map generated by 
the Canny/Deriche edge detector tuned to detect the contour of the shadow. At 
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Fig. 1. Edges in the world generically project to the image as spatially blurred. 
From left to right: Focal blur due to finite depth-of-field; penumbral blur at the 
edge of a shadow; shading blur at a smoothed object edge. 

this larger scale, the details of the mannequin are blurred out, and the contour 
of the shadow is fragmented at the section of high curvature under one arm. 

Fig. 2. Output of Canny/Deriche edge detector for small filter scale (left) and 
large filter scale (right). 

This example suggests that to process natural images, operators of multiple 
scales must be employed. Of course, this conclusion has been reached by many 
computer vision researchers (e.g. [2, 9,12,13,18]). However, the problem has been 
and continues to be: once a scale space has been computed, how is it used? Is 
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there any principled way to combine information over scale, or to reason within 
this scale space, to produce usable assertions about  the image? 

2 Min imum Reliable Scale 

The difficulty in reliably recovering structure from images such as Fig. 2 is tha t  
the appropr ia te  scale for estimation varies over the image. However, while the 
scale of the scene structure is space-variant, the properties of the sensor are 
typically fixed and known in advance. Given a specific model of a luminance 
edge, one can use knowledge of sensor noise properties to relate the parameters  
of the model to a unique minimum scale at which the edge can be reliably 
detected. We call this unique scale the minimum reliable scale for the edge. 

By reliable here we mean that  at this scale, the likelihood of error due to 
sensor noise is below a s tandard tolerance (e.g. 5% for an entire image). This 
definition does not account for the danger of incorrect assertions due to the 
influence of scene events nearby in the image, which in any band-limited system 
must  be an increasing function of scale. While a t tempts  have been made by 
others to explicitly model this phenomenon [2], it is our view tha t  this problem 
is unlikely to admit  such a general solution. For example, while an ensemble 
of images may yield an estimate of the expected separation between edges, if a 
sample of the ensemble contains a fine corduroy pattern,  this est imate will be 
of little use. The method for local scale control developed here is based on the 
conjecture that ,  given no prior knowledge of the scene being imaged, the most 
reliable scale for local estimation is the minimum reliable scale, as defined above. 

Jeong & Kim [8] have also proposed an adaptive method for est imating a 
unique scale for local edge detection. They pose the problem as the minimization 
of a functional over the entire image. They report  that  their results suffered from 
the complicated shape of the objective function, and the resulting sensitivity of 
the selected scale to the initial guess. It  will be shown here tha t  such problems 
can be avoided; that  given an appropriate  model for the sensor, est imation of 
the minimum reliable scale can be posed as a local problem. 

3 Model l ing Edges, Blur and Sensing 

An edge is modeled as a step function Au(x)  + B of unknown ampli tude A and 
pedestal  offset B, which, for the purposes of this discussion, will be aligned with 
the y-axis of the image coordinate frame. The focal or penumbral  blur of this 

1 ~ - - ( x2 - } -y2 ) /2o 'b  2 
edge is modelled by a Gaussian blur kernel, g(x, y, ab) = 2,--4~7~b~ of 
unknown scale constant ab. Sensor noise n(x, y) is modeled as a stationary, ad- 
ditive, zero-mean white noise process with s tandard deviation an. The complete 
edge model is thus: 

( A / 2 ) ( e r f ( x / v ~ a b )  + 1) + B + n(x, y) (1) 

An example of the model is shown in Fig. 3(a). 
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F ig .  3. a.  The blurred edge model: A = 10 grey levels, B = 127 grey levels, 
ab = 10 pixels, a,~ -- 1.6 grey levels, b .  Histogram of est imated sensor noise 

To est imate the sensor noise for the imaging system, a region of a defocused 
image of the ground plane shown in Fig. 2 was high-pass filtered with a unit- 
power kernel, the 2-tap filter ( 1 / v ~ , - 1 / V ~ ) .  The shading over this subimage 
varies slowly, and the defocus acts as an additional low-pass filter, so that  the 
scene structure contributes negligible energy to the filter output.  The following 
elementary result from the theory of random processes is now exploited [15]: 

P r o p o s i t i o n  1. The standard deviation of a linear transformation f. : ~n __+ 
of a set of Li.d. random variables of standard deviation an is the product of the 
L2 norm of the linear transformation and the standard deviation of the random 
variables: at. ,  = I l Z l l ' ~ ' : " n .  

Thus the statistics of the unit-power filter output  provide an est imate of the 
statistics of the sensor noise: a histogram is shown in Fig. 3(b). The s tandard 
deviation of the noise is approximately 1.6 quantization levels (for 8-bit images). 
The response of a unit-power operator  is defined to be significant if it exceeds the 
mean response to white noise by 5an: 8 quantization levels in this case. Based 
on the normal  model of sensor noise, the likelihood of an incorrect assertion for 
a single image of the size used here (256 x 384) is roughly 5%. 

4 L o c a l  Sca le  C o n t r o l  a n d  G r a d i e n t  E s t i m a t i o n  

A necessary condition for the local assertion of an edge is a non-zero gradient in 
the luminance function. The gradient can be estimated using steerable Gaussian 
first derivative basis filters [6,17]: 

- Y  e_(X2+y2)/2ax ~ 
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where al  denotes the scale of the first derivative Gaussian estimator. The re- 
sponse r~(x,y,  al) of a first derivative Gaussian filter g~(x,y ,al)  to an image 
I(x,  y) in an arbitrary direction 8 can be computed exactly as a weighted sum 
of the basis filter responses: 

r l  e (x, y, O" 1 ) = COS(O)r~ (X, y, O" 1 ) + sin(8)r~ (x, y, O" 1). 

At non-stationary points of the luminance function, r~ (x, y, a l )  has a unique 
maximum over 8, the gradient magnitude r~ M (x, y, al), attained in the gradient 
direction OM (X, y, O" 1 ): 

rglM(X,y, cT1) : ~ ( ? ' T ( x , y ,  O'1)) 2 - I - ( rY(x ,y ,o-1) )  2 

eM(x, y, = arctan(r (x, y, Y, 

For an image consisting of a blurred step edge along the y axis of amplitude 
A and blur parameter  ab, the gradient magnitude attains its maximum on the 
y axis: 

A 
(0, y, o l )  = + (2) 

To be confident that  a non-zero gradient is due to the image and not to the 
noise, we must consider the likelihood that  the response of the gradient operator 
could be due to noise alone. The second moment of the gradient operator can 
be expressed in terms of the second moments of the linear basis filter responses: 

E[ (r~l M (X, y, hi))  2] = E[ (r~ (x, y, al ) )  2] + E[(rY (x, y, al)) 2] 
Using Proposition 1, we can write the second moment of the response of the 
gradient operator to the sensor noise alone as 

~/E[ (r~ M (x, y, al))  2] = V~anllg~ (x, y, al)112 

Using the Cauchy inequality, this second moment can be used as a conser- 
vative estimate of the expected response of the gradient operator to the sensor 
noise, so that ,  using the chosen significance level of 5 standard deviations, it can 
be asserted that  the gradient of the original image is non-zero if 

r~ M (x, y, al) > 6~/E[(r~ u (x, y, al))2] _- 6V~anl Ig~ (x, y, al)l12 

The L2 norm of the Gaussian first derivative operator at a point is given by 
I Ig~ (x, y, al)112 --- 1 / ( 2 v ~ a  2) [4], thus we have the following 

D e f i n i t i o n  2. The significance threshold function sl (al) ,  tracing the threshold 
of reliability of the Gaussian gradient operator as a function of scale, is given by 

81 (O"1) ---- 3~rn/~/~Gr2 (3) 

Combining Eqns. 2 and 3 and solving for a l ,  we derive the following 
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Propos i t i on3 .  For a system with white sensor noise o] standard deviation an, 
and an edge of amplitude A and blur parameter ab, there exists a m i n i m u m  
tel lable  scale 51 at which the luminance gradient can be reliably detected: 

5~ = c~(1 + x/1 + (cab)2), where c = v~A/3an.  

In our experiments we attempt only to stay close to the minimum reliable 
scale by computing gradient estimates at octave intervals of scale, at each point 
using the smallest scale at which the gradient estimate exceeds the significance 
threshold function, i.e. 

51(x,y) ----inf{o'l : r~M(x,y, al) > Sl(O'l)} 

We tested this computation on the synthetic image of Fig. 4, a vertical edge 
blurred by a space-varying Gaussian kernel, corrupted by Gaussian i.i.d, noise. 
The minimum reliable scale space map for gradient estimation is shown in Fig. 
4(b). Five scales were used: al E {0.5, 1, 2, 4, 8} pixels. Observe how the estima- 
tion scale increases as the strength of the gradient signal decreases. 
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25 Actual ............... ,. 
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Fig. 4. Testing the local scale control algorithm on a synthetic image. (a) The 
blur grade is linear, ranging from ab = 1 pixel to ab = 26.6 pixels. Parameters 
(see Section 3): A = B = 85 grey levels, ab E [1,26.6] pixels, an = 1.6 grey 
levels. (b) Minimum reliable scale map for gradient estimation. Larger scales 
are rendered in lighter grey. White indicates that no reliable estimate could be 
made. (c) Detected edge. (d) Estimated blur scale. 

The result of this gradient computation for the image of the mannequin and 
shadow is shown in Fig. 5(a). While the smallest scale is reliable for the contours 
of the mannequin, higher scales are required to fully recover the shadow. Note 
that significant gradients are also detected on the smoothly shaded ground sur- 
face: gradient information alone is clearly an insufficient basis for edge detection. 
We now proceed to develop the complete criteria for edge selection. 



63 

Fig. 5. Maps of the minimum reliable scales for gradient and second derivative 
estimation, respectively. Larger scales are rendered in lighter grey. 

5 Edge Detec t ion  and Localization 

To distinguish edges from other forms of luminance gradients, we must some- 
how select for the sigmoidal shape that characterizes our edge model. This 
information is available in the second derivative of the luminance function, 
which can be estimated with a steerable second derivative of Gaussian operator, 
g~(x, y, a2) [4, 6,17]. Since we are interested only in the luminance variation or- 
thogonal to the edge, at each point in the image the second derivative is steered 
in the direction of the gradient estimated at the minimum reliable scale. As for 
the gradient, one can show that near an edge there exists a unique minimum 
scale at which the sign of the second derivative response r~(x, y, a2) can be reli- 
ably determined. A second derivative map is thus obtained which describes, at 
each point in the image where a significant gradient could be estimated, how this 
gradient is changing in the gradient direction (if at all). Six scales are employed 
to estimate the second derivative, at octave intervals: a2 E {0.5, 1, 2,4, 8, 16} 
pixels. The minimum reliable scale map for the mannequin image is shown in 
Fig. 5(b). 

The importance of the second derivative in localizing blurred edges is illus- 
trated in Fig. 6. Fig. 6(b) shows the luminance profile through the edge of the 
mannequin's shadow. Fig. 6(d) shows the gradient magnitude along the cross- 
section, and Fig. 6(c) shows the minimum reliable scales at which the gradient 
was estimated. Note how the scale of estimation automatically adapts as the 
strength of the signal varies. Although this allows the gradient to be reliably 
detected as non-zero over this cross-section, the response is not unimodah there 
are in fact 5 maxima in the gradient along the cross section of the edge. Marking 
edges at extrema in the gradient function would clearly lead to multiple separate 
responses to this single edge. 

Fig. 6(f) shows the estimated second derivative steered in the gradient direc- 
tion, and Fig. 6(e) shows the minimum reliable scales for these estimates. Note 
again how scale automatically adapts as the signal varies in strength: larger 
scales are needed near the centre of the edge where the luminance function is 
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nearly linear. Despite the rockiness of the gradient response, the adaptive sec- 
ond derivative response provides a unique zero-crossing to localize the edge, and 
strong extrema to identify its sigmoidal nature. The key here is that local es- 
timation at the minimum reliable scale guarantees that the sign of the second 
derivative estimate is reliable, and hence that the zero-crossing is unique. The 
number of peaks in the gradient response, on the other hand, depends on the 
blur of the edge, and is not revealed in the response of the operator at any 
single point: ensuring the uniqueness of a gradient maximum is not a local prob- 
lem. Thus the reliable detection and localization of blurred edges requires both 
gradient and second derivative information: 

Defini t ion4.  An edge exists at a point (x0, Y0) if it satisfies 2 conditions: 
Gradient Condition: 
The gradient of the luminance function at the point is detectably non-zero: 

51(xo ,Yo)  = inf{al : r ~  > sl(al)} i~ 

Second Derivative Condition: 
The second derivative of the luminance function in the gradient direction OM 
changes from positive to negative at the point: 

> 0 , < 0 

w h e r e  x _  ~- X 0 -b f C 0 8 O M  , Y-- ---- YO + es inOM 

x+ = Xo -- ecosOM , Y+ -~ YO -- es inOM 

a n d  52(x+,y+) --inf{a2 : I r ~  > s2(a2)} r 0 

d2(x- ,y- )  ---- inf{a2 : I r~  > s2(t:r2)} ~ 

Here, e is determined by the required localization precision: in this imple- 
mentation, blurred edges are localized to 1 pixel precision. Note that, in general, 
51 (x, y) r 52(x, y): the minimum reliable scales for estimating the gradient and 
second derivative are independent. 

Roughly speaking, the above definition selects for points where the luminance 
function is detectably sigmoidal in shape. There is a strong connection between 
this definition and the machinery of logical/linear operators developed to detect 
in-focus edges [7]. 

Fig. 4(c) shows the edge points from the synthetic variable-blur image se- 
lected by Definition 4, using the local scale control algorithm. The edge is re- 
liably and uniquely detected over a wide range of blur. Fig. 7 shows a map of 
the edge points in the image of the mannequin and shadow. Both the fine detail 
of the mannequin and the complete contour of the shadow are resolved, with- 
out spurious responses to the smooth shading gradients on the ground surface 
(compare with the results of the Canny/Deriche detector in Fig. 2.) 
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Fig. 6. (a) Mannequin shadow. White line indicates cross section of shadow 
boundary under analysis. (b) Cross section of luminance function across shadow 
boundary. (c) Minimum reliable scale for the gradient estimate. (d) Estimated 
gradient magnitude. (e) Minimum reliable scale for the second derivative esti- 
mate (f) Estimated directional second derivative. A unique zero-crossing local- 
izes the edge. 

Fig. 7. Edges recovered from mannequin image using local scale control. Both 
the fine detail of the mannequin and the blurred boundary of the shadow are 
recovered. 
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6 Using Contour Blur to Est imate Defocus 

Fig. 8(a) shows a tangle of branches, photographed with a shallow depth of field 
(f/3.5). Fig. 8(b) shows the edges detected for this image using local scale control 
for reliable estimation: both the in-focus and defocused branches are recovered. 

,.%<,:-:ci.: 

(b) 

(c) (d) 

Fig. 8. (a) A photograph of tree branches with small depth of field (f/3.5) 
and near focus. (b) Edge map (c) Foreground structure (focused contours). (d) 
Background structure (blurred contours). 

While excellent passive techniques for blur estimation have been developed, 
these typically require densely-textured surfaces varying slowly in depth [5, 14, 
16] and are therefore not suited for recovering depth structure from a complex 
image such as this, where each local neighbourhood may contain many depth 
discontinuities. For such images, blur estimates can only be made where structure 
exists, and must be computed as locally as possible. The local scale control 
method can be extended naturally to this problem. 

For the estimation of focal blur, the Gaussian kernel of our edge model rep- 
resents the point spread function of the lens system of the camera employed. 
Without loss of generality, we again assume that the edge is oriented parallel to 
the y axis of the image plane. The extrema in the estimated second derivative 
occur at the zero-crossings X M  of the third derivative of the blurred step edge: 



67 

A a~)((X2M/(a~ + a~) - 1)e -xL/2 (~]+~)  = 0 ri(x.,yM,o ) = + 

so tha t  XM = :I:v/~2 + a 2. Defining d as the distance between second derivative 

ex t rema of opposite sign in the gradient direction, we obtain ab = x/(d/2)  2 - a~. 
Thus the blur due to defocus can be estimated from the measured thickness of 
the contours, after compensation for the blur induced by the est imation itself. 

Fig. 4(d) shows a plot of the estimated and actual blurs of the synthetic test  
image. While the resulting pointwise blur estimates are noisy, they provide an 
approximately  unbiased estimate of the blur scale of the edge. This method for 
blur est imation was applied to the problem of segmenting the tangle of branches 
shown in Fig. 8. Fig. 8(c) and (d) show the extracted foreground (focused) and 
background (defocused) structure, respectively. 

7 S p a c e  C u r v e s  f r o m  D e f o c u s  a n d  C a s t  S h a d o w s  

While others have had some success in classifying contours as thin or diffuse 
[10, 19], this adaptive method for estimating contour blur can provide dense, 
accurate estimates continuously along image contours. As an example, consider 
the image of a model car (Fig. 9(a)) photographed with shallow depth of field 
( f /2 .5) .  The lens was focused on the rear wheel of the car, so tha t  the hood and 
front bumper  are defocused. Fig. 9(b) shows the edges detected using local scale 
control. Fig. 9(c) shows a 3-D plot of one of the main contours of the car. Here 
the vertical axis represents the focal blur ab, est imated as described above, and 
smoothed along the contour with a Gaussian blur kernel (a = 22 pixels). This 
adaptive method for blur estimation provides a continuous estimate of focal blur 
along the contour of the car. 

This method for blur estimation can also be used to extract  scene structure 
from penumbral  blur (Fig. 9(d)). For a fixed light source, the penumbral  blur 
is determined by the distance between the shadowing surface and the surface 
shadowed. 3 The results of penumbral  blur estimation are shown in Fig. 9(e). 

8 C o n c l u s i o n s  

While edge detectors are typically designed to detect step discontinuities in im- 
ages, physical edges in the world generally project to the image as blurred lu- 
minance transitions of unknown blur scale and contrast. In this paper,  we have 
developed a method for adapting the spatial scale of local est imation to al- 
low edges to be detected and characterized over this broad range of conditions. 

The estimation of distance from penumbral blur is more complicated than defocus, 
due to distortion caused by the slant of the ground surface relative to the observer 
and the light source. These estimates should therefore be viewed as qualitative. 
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Fig. 9. (a) Photograph of car model with shallow depth of field (]/2.5). (b) 
Edges recovered using local scale control. (c) Space curve of contour from car. 
Estimated blur scale in pixels plotted on vertical axis. (d) Mannequin image 
with shadow. (e) Blur scale contour of mannequin shadow. 

Specifically, this adaptive method reliably localizes edges while avoiding two im- 
portant types of error: (1) multiple responses to a single transition, and (2) 
blurring of fine structure. This method for local scale control was further ex- 
ploited to compute reliable estimates of local blur in complex images which do 
not satisfy the smoothness and texture density conditions required by traditional 
methods. These algorithms require no input parameters other than the second 
moment of the sensor noise. 
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